Skip to content
2000
Volume 9, Issue 1
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

The cornea is a particularly attractive target for gene therapy designed to improve the outcome of corneal transplantation. First, there is a clear and well-defined clinical need. Second, because donor corneas can be preserved for days if not weeks within an eye bank, ex vivo transduction of a donor cornea can be carried out without the urgency associated with many other forms of transplantation. Finally, the partial sequestration of the eye from the systemic circulation decreases the likelihood of spillover of vector and transgene, and the immune privileged nature of the cornea and anterior segment affords a degree of protection from immune responses directed against the vector. A wide range of vectors has been investigated for gene transfer to the cornea. A number of viral vectors, in particular, have proved to be efficient at transducing the cornea and in association with a variety of transgenes, have been used successfully to prolong corneal allograft survival significantly in animal models. The most suitable such vector for future clinical studies in corneal transplantation has yet to be determined, but the most likely include recombinant adenoviral, adeno-associated viral and lentiviral vectors. In this review, we examine the ability of these viral vectors to transduce the cornea, and summarise those studies in which gene therapy has been used to prolong experimental corneal allograft survival.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/156652309787354621
2009-02-01
2025-09-28
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/156652309787354621
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test