Skip to content
2000
Volume 4, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

With the development of the first viral vector systems 20 years ago [Mann et al., 1983; Watanabe and Temin, 1983] gene therapy strategies have come to the forefront of novel therapeutics [Cavazzana-Calvo et al., 2000]. A deeper understanding of vector biology and the molecular mechanisms of disease alongside tremendous advances in vector technology have significantly advanced the field of human gene therapy. Over the last few years several challenges needed to be overcome in order to bring gene therapy strategies closer to the clinic. These hurdles include the preparation of large amounts of stable, high titre vectors, minimising vector-related immunology and last but not least targeting infection and transgene expression to tissue or cells, which in many cases are not or only slowly dividing. Viral vectors are useful vehicles for the delivery of foreign genes into target cells, and retroviral vectors have been popular because of their ability to integrate into the host cell genome and maintain persistent gene expression. Moreover, lentiviruses, members of the retroviral family, have the ability to infect cells at both mitotic and post-mitotic stages of the cell cycle thus opening up the possibility to target non-dividing target cells and tissues. Human immunodeficiency virus (HIV) based vectors have been used in vitro and in vivo in a number of situations, however, safety concerns still exist, and therefore the development of vector systems based on primate as well as non-primate lentiviruses is ongoing. Concomitantly with lentiviral vector design, much has been learned about the incorporation of heterologous env proteins on lentiviral cores in order to combine specific targeting properties of envelope glycoproteins with the biological properties of lentiviral vectors. In this review article we will give an overview over advantages lentiviral vector systems offer. We will then discuss the current state of our understanding of the structure and function of viral envelope glycoproteins and emerging targeting strategies based on retroviral and lentiviral vector systems.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/1566523043345995
2004-12-01
2025-09-28
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/1566523043345995
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test