Skip to content
2000
image of DrugSurvPlot: A Novel Web-Based Platform Harnessing Drug Sensitivity Scores as Molecular Biomarkers for Pan-Cancer Survival Prognosis

Abstract

Background

Using predicted drug sensitivity scores as survival biomarkers may improve precision medicine and overcome the limitations of genomically guided approaches in clinical trials.

Methods

Pan-Cancer Drug Sensitivity Score Survival Analysis (DrugSurvPlot) is an interactive, login-free web analyzer built with R (v4.3.1), leveraging the Shiny package for interface/server logic, the DT package for data table queries/downloads, and the survival package for survival analysis. Data preprocessing was performed using OncoPredict, enabling users to export processed tables and results.

Results

DrugSurvPlot integrates 189 GEO datasets (including 10 immune checkpoint inhibitor treatment datasets) and 33 TCGA datasets, totaling 85,531 records across 52 cancer types and 13 survival status data types, while incorporating 198 anticancer drugs from GDSC2. This tool supports two cutoff strategies for drug sensitivity scores, offers advanced survival analysis methods, and enables customizable high-definition visualization of results.

Discussion

DrugSurvPlot represents a significant advancement in computational oncology by establishing predicted drug sensitivity scores as novel prognostic biomarkers for tumor survival analysis. This interactive platform integrates comprehensive datasets spanning 198 anticancer drugs and 52 cancer types, while providing researchers with intuitive tools for generating publication-ready Kaplan-Meier analyses. Current limitations in drug repertoire coverage and dataset diversity will be addressed through ongoing expansion of pharmacological databases and incorporation of emerging data modalities, including single-cell transcriptomics.

Conclusions

In summary, DrugSurvPlot offers a no-code platform with comprehensive datasets, diverse cancer coverage, and customizable survival analysis, addressing critical research gaps. Continuous enhancements will improve predictive accuracy and clinical utility, establishing it as an evolving powerhouse in drug-survival investigations.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232412138250722020114
2025-07-24
2025-10-29
Loading full text...

Full text loading...

References

  1. Feng F. Shen B. Mou X. Li Y. Li H. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine. J. Genet. Genomics 2021 48 7 540 551 10.1016/j.jgg.2021.03.007 34023295
    [Google Scholar]
  2. Liu L. Xie Y. Yang H. HPVTIMER: A shiny web application for tumor immune estimation in human papillomavirus&associated cancers. iMeta 2023 2 3 130 10.1002/imt2.130 38867938
    [Google Scholar]
  3. Fang Y. Kong Y. Rong G. Systematic investigation of tumor microenvironment and antitumor immunity with IOBR. Med Res 2025 1 1 136 140 10.1002/mdr2.70001
    [Google Scholar]
  4. Bedard P.L. Hyman D.M. Davids M.S. Siu L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020 395 10229 1078 1088 10.1016/S0140‑6736(20)30164‑1 32222192
    [Google Scholar]
  5. Nussinov R. Tsai C.J. Jang H. Anticancer drug resistance: An update and perspective. Drug Resist. Updat. 2021 59 100796 10.1016/j.drup.2021.100796 34953682
    [Google Scholar]
  6. Prasad V. Fojo T. Brada M. Precision oncology: Origins, optimism, and potential. Lancet Oncol. 2016 17 2 e81 e86 10.1016/S1470‑2045(15)00620‑8 26868357
    [Google Scholar]
  7. Collins I. Workman P. New approaches to molecular cancer therapeutics. Nat. Chem. Biol. 2006 2 12 689 700 10.1038/nchembio840 17108987
    [Google Scholar]
  8. Ross J.S. Fletcher J.A. The HER-2/neu oncogene in breast cancer: Prognostic factor, predictive factor, and target for therapy. Stem Cells 1998 16 6 413 428 10.1002/stem.160413 9831867
    [Google Scholar]
  9. Zhang J. Li H. Tao W. GseaVis: An R package for enhanced visualization of gene set enrichment analysis in biomedicine. Hoboken, New Jersey Wiley Online Library 2025
    [Google Scholar]
  10. Azhdari S. Moghaddam A.S. Abdollahi E. Immunomodulatory therapeutic effects of curcumin on m1/m2 macrophage polarization in inflammatory diseases. Curr. Mol. Pharmacol. 2023 16 1 2 14 10.2174/1874467215666220324114624 35331128
    [Google Scholar]
  11. Sensi B. Angelico R. Toti L. Mechanism, potential, and concerns of immunotherapy for hepatocellular carcinoma and liver transplantation. Curr. Mol. Pharmacol. 2024 17 18761429310703 10.2174/0118761429310703240823045808 39225204
    [Google Scholar]
  12. Sharma P. Wagner K. Wolchok J.D. Allison J.P. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat. Rev. Cancer 2011 11 11 805 812 10.1038/nrc3153 22020206
    [Google Scholar]
  13. Lin A. Qiu Z. Zhang J. Effect of NCOR1 mutations on immune microenvironment and efficacy of immune checkpoint inhibitors in patient with bladder cancer. Front. Immunol. 2021 12 630773 10.3389/fimmu.2021.630773
    [Google Scholar]
  14. Tu S.M. Bilen M.A. Tannir N.M. Personalised cancer care: Promises and challenges of targeted therapy. J. R. Soc. Med. 2016 109 3 98 105 10.1177/0141076816631154 26933155
    [Google Scholar]
  15. Pao W. Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer 2010 10 11 760 774 10.1038/nrc2947 20966921
    [Google Scholar]
  16. Camidge D.R. Pao W. Sequist L.V. Acquired resistance to TKIs in solid tumours: Learning from lung cancer. Nat. Rev. Clin. Oncol. 2014 11 8 473 481 10.1038/nrclinonc.2014.104 24981256
    [Google Scholar]
  17. Chen E.Y. Raghunathan V. Prasad V. An overview of cancer drugs approved by the us food and drug administration based on the surrogate end point of response rate. JAMA Intern. Med. 2019 179 7 915 921 10.1001/jamainternmed.2019.0583 31135822
    [Google Scholar]
  18. Hamburg M.A. Collins F.S. The path to personalized medicine. N. Engl. J. Med. 2010 363 4 301 304 10.1056/NEJMp1006304 20551152
    [Google Scholar]
  19. Collins F.S. Varmus H. A new initiative on precision medicine. N. Engl. J. Med. 2015 372 9 793 795 10.1056/NEJMp1500523
    [Google Scholar]
  20. Shin S.H. Bode A.M. Dong Z. Addressing the challenges of applying precision oncology. NPJ Precis. Oncol. 2017 1 1 28 10.1038/s41698‑017‑0032‑z 29872710
    [Google Scholar]
  21. Clayton E.A. Pujol T.A. McDonald J.F. Qiu P. Leveraging TCGA gene expression data to build predictive models for cancer drug response. BMC Bioinformatics 2020 21 S14 364 10.1186/s12859‑020‑03690‑4 32998700
    [Google Scholar]
  22. Ayers M. Symmans W.F. Stec J. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J. Clin. Oncol. 2004 22 12 2284 2293 10.1200/JCO.2004.05.166 15136595
    [Google Scholar]
  23. Coelho M.A. Strauss M.E. Watterson A. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat. Genet. 2024 56 11 2479 2492 10.1038/s41588‑024‑01948‑8 39424923
    [Google Scholar]
  24. Cheng J. Cashman J.R. Pancreatic cancer drug-sensitivity predicted by synergy of p53-Activator Wnt Inhibitor-2 (PAWI-2) and protein biomarker expression. Invest. New Drugs 2021 39 1 131 141 10.1007/s10637‑020‑00998‑z 32915418
    [Google Scholar]
  25. Godone R.L.N. Leitão G.M. Araújo N.B. Castelletti C.H.M. Lima-Filho J.L. Martins D.B.G. Clinical and molecular aspects of breast cancer: Targets and therapies. Biomed. Pharmacother. 2018 106 14 34 10.1016/j.biopha.2018.06.066 29945114
    [Google Scholar]
  26. Liu H.R. Harnessing traditional medicine and biomarker-driven approaches to counteract Trichostatin A-induced esophageal cancer progression. World J. Gastroenterol. 2025 31 20 106443 10.3748/wjg.v31.i20.106443 40495945
    [Google Scholar]
  27. Liu H. Toxic medicine used in traditional chinese medicine for cancer treatment: Are ion channels involved? J. Tradit. Chin. Med. 2022 42 6 1019 1022 10.19852/j.cnki.jtcm.20220815.005
    [Google Scholar]
  28. Liu H. An example of toxic medicine used in Traditional Chinese Medicine for cancer treatment. J. Tradit. Chin. Med. 2023 43 2 209 210 10.19852/j.cnki.jtcm.2023.02.001
    [Google Scholar]
  29. Grilley-Olson J.E. Bedard P.L. Fasolo A. A phase Ib dose-escalation study of the MEK inhibitor trametinib in combination with the PI3K/mTOR inhibitor GSK2126458 in patients with advanced solid tumors. Invest. New Drugs 2016 34 6 740 749 10.1007/s10637‑016‑0377‑0 27450049
    [Google Scholar]
  30. Wainberg Z.A. Alsina M. Soares H.P. A multi-arm phase I study of the pi3k/mtor inhibitors pf-04691502 and gedatolisib (PF-05212384) plus irinotecan or the mek inhibitor PD-0325901 in advanced cancer. Target. Oncol. 2017 12 6 775 785 10.1007/s11523‑017‑0530‑5 29067643
    [Google Scholar]
  31. Feizi N. Nair S.K. Smirnov P. PharmacoDB 2.0: Improving scalability and transparency of in vitro pharmacogenomics analysis. Nucleic Acids Res. 2022 50 D1 D1348 D1357 10.1093/nar/gkab1084 34850112
    [Google Scholar]
  32. Chawla S. Rockstroh A. Lehman M. Gene expression based inference of cancer drug sensitivity. Nat. Commun. 2022 13 1 5680 10.1038/s41467‑022‑33291‑z 36167836
    [Google Scholar]
  33. Kusch N. Schuppert A. Two-step multi-omics modelling of drug sensitivity in cancer cell lines to identify driving mechanisms. PLoS One 2020 15 11 0238961 10.1371/journal.pone.0238961 33226984
    [Google Scholar]
  34. Ye B. Li Z. Wang Q. A novel artificial intelligence network to assess the prognosis of gastrointestinal cancer to immunotherapy based on genetic mutation features. Front. Immunol. 2024 15 1428529 10.3389/fimmu.2024.1428529
    [Google Scholar]
  35. Shoemaker R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006 6 10 813 823 10.1038/nrc1951 16990858
    [Google Scholar]
  36. Kimble D.C. Dvergsten E. Thomeas-McEwing V. Karovic S. Conrads T.P. Maitland M.L. Evaluation of publicly available in vitro drug sensitivity models for ovarian and uterine cancer. Gynecol. Oncol. 2021 160 1 295 301 10.1016/j.ygyno.2020.10.044 33190933
    [Google Scholar]
  37. Ball C.R. Fröhling S. Let’s get functional: Drug sensitivity profiling to enable precision sarcoma medicine. Cell Stem Cell 2024 31 10 1389 1390 10.1016/j.stem.2024.09.006 39366358
    [Google Scholar]
  38. Huang W. Lin A. Luo P. EPHA5 mutation predicts the durable clinical benefit of immune checkpoint inhibitors in patients with lung adenocarcinoma. Cancer Gene Ther. 2021 28 7-8 864 874 10.1038/s41417‑020‑0207‑6 32759987
    [Google Scholar]
  39. Niu Y. Lin A. Luo P. Prognosis of lung adenocarcinoma patients with ntrk3 mutations to immune checkpoint inhibitors. Front. Pharmacol. 2020 11 1213 10.3389/fphar.2020.01213
    [Google Scholar]
  40. Yi R. Lin A. Cao M. ATM mutations benefit bladder cancer patients treated with immune checkpoint inhibitors by acting on the tumor immune microenvironment. Front. Genet. 2020 11 933 10.3389/fgene.2020.00933
    [Google Scholar]
  41. Lu C. Li X. Ren Y. Zhang X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol. 2021 87 2 159 172 10.1007/s00280‑020‑04216‑8 33426580
    [Google Scholar]
  42. Vidyasagar M. Identifying predictive features in drug response using machine learning: Opportunities and challenges. Annu. Rev. Pharmacol. Toxicol. 2015 55 1 15 34 10.1146/annurev‑pharmtox‑010814‑124502 25423479
    [Google Scholar]
  43. Hao B. Ma K. Xu J. Proteomics analysis of histone deacetylase inhibitor-resistant solid tumors reveals resistant signatures and potential drug combinations. Acta Pharmacol. Sin. 2024 45 6 1305 1315 10.1038/s41401‑024‑01236‑5 38383757
    [Google Scholar]
  44. Jin S. Zhong W. Li B. Multidimensional analysis of the impact of Gemmatimonas, Rhodothermus, and Sutterella on drug and treatment response in colorectal cancer. Front. Cell. Infect. Microbiol. 2024 14 1457461 10.3389/fcimb.2024.1457461
    [Google Scholar]
  45. Venezian Povoa L. Ribeiro C.H.C. Silva I.T. Machine learning predicts treatment sensitivity in multiple myeloma based on molecular and clinical information coupled with drug response. PLoS One 2021 16 7 0254596 10.1371/journal.pone.0254596 34320000
    [Google Scholar]
  46. Yun H.J. Kim M. Kim S.Y. Effects of anti-cancer drug sensitivity-related genetic differences on therapeutic approaches in refractory papillary thyroid cancer. Int. J. Mol. Sci. 2022 23 2 699 10.3390/ijms23020699 35054884
    [Google Scholar]
  47. Saha Detroja T. Detroja R. Mukherjee S. Samson A.O. Identifying hub genes associated with neoadjuvant chemotherapy resistance in breast cancer and potential drug repurposing for the development of precision medicine. Int. J. Mol. Sci. 2022 23 20 12628 10.3390/ijms232012628 36293493
    [Google Scholar]
  48. Guo C. Jiang X. Zhang Y. Bao G. Comprehensive analysis of tumor immune-related gene signature for predicting prognosis, immunotherapy, and drug sensitivity in bladder urothelial carcinoma. Transl. Cancer Res. 2024 13 12 6732 6752 10.21037/tcr‑24‑1053 39816541
    [Google Scholar]
  49. Liu C. Jin Y. Zhang H. Effects of KMT2D mutation and its exon 39 mutation on the immune microenvironment and drug sensitivity in colorectal adenocarcinoma. Heliyon 2023 9 2 13629 10.1016/j.heliyon.2023.e13629 36846668
    [Google Scholar]
  50. Liu H. Wang P. CRISPR screening and cell line IC50 data reveal novel key genes for trametinib resistance. Clin. Exp. Med. 2024 25 1 21
    [Google Scholar]
  51. Barretina J. Caponigro G. Stransky N. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012 483 7391 603 607 10.1038/nature11003 22460905
    [Google Scholar]
  52. Yang W. Soares J. Greninger P. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids 2012 41 D1 D955 D961 [PMID: 23180760
    [Google Scholar]
  53. Seashore-Ludlow B. Rees M.G. Cheah J.H. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 2015 5 11 1210 1223 10.1158/2159‑8290.CD‑15‑0235 26482930
    [Google Scholar]
  54. di Micco P. Antolin A.A. Mitsopoulos C. canSAR: Update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2023 51 D1 D1212 D1219 10.1093/nar/gkac1004 36624665
    [Google Scholar]
  55. Luna A. Elloumi F. Varma S. CellMiner cross-database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res. 2021 49 D1 D1083 D1093 10.1093/nar/gkaa968 33196823
    [Google Scholar]
  56. Wishart D.S. Feunang Y.D. Guo A.C. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  57. Liu C.J. Hu F.F. Xia M.X. Han L. Zhang Q. Guo A.Y. GSCALite: A web server for gene set cancer analysis. Bioinformatics 2018 34 21 3771 3772 10.1093/bioinformatics/bty411 29790900
    [Google Scholar]
  58. Sun X. Zhang Y. Li H. DRESIS: The first comprehensive landscape of drug resistance information. Nucleic Acids Res. 2023 51 D1 D1263 D1275 10.1093/nar/gkac812 36243960
    [Google Scholar]
  59. Li K. Yang H. Lin A. CPADS: A web tool for comprehensive pancancer analysis of drug sensitivity. Brief. Bioinform. 2024 25 3 bbae237 10.1093/bib/bbae237 38770717
    [Google Scholar]
  60. Tomczak K Czerwińska P Wiznerowicz M The Cancer GenomeAtlas (TCGA): An immeasurable source of knowledge Contemporary Oncology / Wspólczesna Onkologia. 2015 (1) 68 77
    [Google Scholar]
  61. Barrett T. Wilhite S.E. Ledoux P. NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids 2012 41 D1 D991 D995 [PMID: 23193258
    [Google Scholar]
  62. Schoenfeld D.A. Sample-size formula for the proportional-hazards regression model. Biometrics 1983 39 2 499 503 10.2307/2531021 6354290
    [Google Scholar]
  63. Nagashima K. Noma H. Sato Y. Gosho M. Sample size calculations for single&arm survival studies using transformations of the Kaplan–Meier estimator. Pharm. Stat. 2021 20 3 499 511 10.1002/pst.2090 33347712
    [Google Scholar]
  64. Ritchie M.E. Phipson B. Wu D. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  65. Zeng j (2023) GEOmirror: Download expression dataset by GSE id. R package version 0.2.0. Available from: https://github.com/ jmzeng1314/GEOmirror
    [Google Scholar]
  66. Davis S. Meltzer P.S. GEOquery: a bridge between the Gene Expression Omnibus(GEO) and BioConductor. Bioinformatics 2007 14 1846 1847 Available at: https://bioconductor.org/packages/release/bioc/html/GEOquery.html
    [Google Scholar]
  67. Maeser D. Gruener R.F. Huang R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  68. Nagy Á. Lánczky A. Menyhárt O. Győrffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci. Rep. 2018 8 1 9227 10.1038/s41598‑018‑27521‑y 29907753
    [Google Scholar]
  69. Alboukadel K. Marcin K. Przemyslaw B. Survminer: Drawing survival curves using “ggplot2”. 2023 Available from: https:// cran.r-project.org/web/packages/survminer/index.html
    [Google Scholar]
  70. Therneau T (2024). A Package for Survival Analysis in R. R package version 3.8-3. Available from: https://CRAN.R-project.org/package=survival
  71. Xie Y. Cheng J. Tan X. 2024 DT: A wrapper of the JavaScript library ‘DataTables’. R package version 0.33. Available at[https:// CRAN.R-project.org/package=DT]
    [Google Scholar]
  72. Hallek M. Shanafelt T.D. Eichhorst B. Chronic lymphocytic leukaemia. Lancet 2018 391 10129 1524 1537 10.1016/S0140‑6736(18)30422‑7 29477250
    [Google Scholar]
  73. Rai K.R. Jain P. Chronic lymphocytic leukemia (CLL)—Then and now. Ltd 2016 91 3 330 340
    [Google Scholar]
  74. Fischer K. Bahlo J. Fink A.M. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: Updated results of the CLL8 trial. Blood 2016 127 2 208 215 10.1182/blood‑2015‑06‑651125 26486789
    [Google Scholar]
  75. Thompson P.A. Tam C.S. O’Brien S.M. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016 127 3 303 309 10.1182/blood‑2015‑09‑667675 26492934
    [Google Scholar]
  76. Anderson V.R. Perry C.M. Fludarabine. Drugs 2007 67 11 1633 1655 10.2165/00003495‑200767110‑00008 17661532
    [Google Scholar]
  77. Wilson P.K. Mulligan S.P. Christopherson R.I. Metabolic response patterns of nucleotides in B-cell chronic lymphocytic leukaemias to cladribine, fludarabine and deoxycoformycin. Leuk. Res. 2004 28 7 725 731 10.1016/j.leukres.2003.11.013 15158094
    [Google Scholar]
  78. Plunkett W. Gandhi V. Evolution of the arabinosides and the pharmacology of fludarabine. Drugs 1994 47 6 30 38 10.2165/00003495‑199400476‑00006 7525187
    [Google Scholar]
  79. El-Serafi I. Micallef Nilsson I. Moter A. Impact of fludarabine and treosulfan on ovarian tumor cells and mesothelin chimeric antigen receptor T cells. Cancer Immunol. Immunother. 2024 73 163 10.1007/s00262‑024‑03740‑3
    [Google Scholar]
  80. Liu J. Hong S. Yang J. Targeting purine metabolism in ovarian cancer. J. Ovarian Res. 2022 15 1 93 10.1186/s13048‑022‑01022‑z
    [Google Scholar]
  81. Zhang L. Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol. Med. Rep. 2015 12 6 7869 7876 10.3892/mmr.2015.4443 26497667
    [Google Scholar]
  82. Fang J. Cao Z. Chen Y.C. Reed E. Jiang B.H. 9-beta-D-arabinofuranosyl-2-fluoroadenine inhibits expression of vascular endothelial growth factor through hypoxia-inducible factor-1 in human ovarian cancer cells. Mol. Pharmacol. 2004 66 1 178 186 10.1124/mol.66.1.178 15213310
    [Google Scholar]
  83. Zaffaroni N. Orlandi L. Gornati D. de Marco C. Vaglini M. Silvestrini R. Fludarabine as a modulator of cisplatin activity in human tumour primary cultures and established cell lines. Eur. J. Cancer 1996 32 10 1766 1773 10.1016/0959‑8049(96)00176‑1
    [Google Scholar]
  84. Hoogstad-van Evert J. Bekkers R. Ottevanger N. Intraperitoneal infusion of ex vivo-cultured allogeneic NK cells in recurrent ovarian carcinoma patients (a phase I study). Medicine 2019 98 5 14290 10.1097/MD.0000000000014290 30702598
    [Google Scholar]
  85. Geller M.A. Cooley S. Judson P.L. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 2011 13 1 98 107 10.3109/14653249.2010.515582 20849361
    [Google Scholar]
  86. Mittelman A. Ashikari R. Ahmed T. Savona S. Arnold P. Arlin Z. Phase II trial of fludarabine phosphate (F-Ara-AMP) in patients with advanced breast cancer. Cancer Chemother. Pharmacol. 1988 22 1 10.1007/BF00254183
    [Google Scholar]
  87. Doultsinos D. Carlesso A. Chintha C. Peptidomimetic&based identification of FDA&approved compounds inhibiting IRE1 activity. FEBS J. 2021 288 3 945 960 10.1111/febs.15372 32446294
    [Google Scholar]
  88. Ikeda S. Okamoto T. Okano S. PD-L1 is upregulated by simultaneous amplification of the PD-L1 and JAK2 genes in non–small cell lung cancer. J. Thorac. Oncol. 2016 11 1 62 71 10.1016/j.jtho.2015.09.010 26762740
    [Google Scholar]
  89. Huang X. Ke K. Jin W. Identification of genes related to 5-fluorouracil based chemotherapy for colorectal cancer. Front. Immunol. 2022 13 887048 10.3389/fimmu.2022.887048
    [Google Scholar]
  90. Hostallero D.E. Wei L. Wang L. Cairns J. Emad A. Preclinical-to-clinical anti-cancer drug response prediction and biomarker identification using TINDL. Genomics Prot Bioinf 2023 21 3 535 550 10.1016/j.gpb.2023.01.006 36775056
    [Google Scholar]
  91. Passaro A. Al Bakir M. Hamilton E.G. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment Cell 2024. Amsterdam, Netherlands Elsevier B.V. 2024
    [Google Scholar]
  92. Feng L. Yang W. Ding M. A personalized pharmaco-epistatic network model of precision medicine. Drug Discov. Today 2023 28 7 103608 10.1016/j.drudis.2023.103608 37149282
    [Google Scholar]
  93. Li G. Wan Y. Jiao A. Breaking boundaries: Chronic diseases and the frontiers of immune microenvironments. Hoboken, New Jersey Wiley Online Library 2025
    [Google Scholar]
  94. Zhou Q. Wu J. Bei J. Integration of single-cell sequencing and drug sensitivity profiling reveals an 11-gene prognostic model for liver cancer. Hum. Genomics 2024 18 1 132 10.1186/s40246‑024‑00698‑2 39587687
    [Google Scholar]
  95. Wang Z. Zhao Y. Zhang L. Emerging trends and hot topics in the application of multi-omics in drug discovery: A bibliometric and visualized study. Curr. Pharm. Anal. 2024 21 1 20 32 10.1016/j.cpan.2024.12.001
    [Google Scholar]
  96. Chen J. Lin A. Luo P. Advancing pharmaceutical research: A comprehensive review of cutting-edge tools and technologies. Curr. Pharm. Anal. 2024 21 1 1 19 10.1016/j.cpan.2024.11.001
    [Google Scholar]
  97. Cheng X. Dai C. Wen Y. NeRD: A multichannel neural network to predict cellular response of drugs by integrating multidimensional data. BMC Med. 2022 20 1 368 10.1186/s12916‑022‑02549‑0 36244991
    [Google Scholar]
  98. Rintala T.J. Napolitano F. Fortino V. Multi-task deep latent spaces for cancer survival and drug sensitivity prediction. Bioinformatics 2024 40 ii182 ii189 10.1093/bioinformatics/btae388 39230696
    [Google Scholar]
  99. Bazgir O. Ghosh S. Pal R. Investigation of REFINED CNN ensemble learning for anti-cancer drug sensitivity prediction. Bioinformatics 2021 37 i42 i50 10.1093/bioinformatics/btab336 34252971
    [Google Scholar]
  100. Chiu Y.C. Chen H.I.H. Gorthi A. Deep learning of pharmacogenomics resources: Moving towards precision oncology. Brief. Bioinform. 2020 21 6 2066 2083 10.1093/bib/bbz144 31813953
    [Google Scholar]
  101. Liu P. Li H. Li S. Leung K.S. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinformatics 2019 20 1 408 10.1186/s12859‑019‑2910‑6 31357929
    [Google Scholar]
  102. Xia F. Shukla M. Brettin T. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics 2018 19 Suppl. 18 486 10.1186/s12859‑018‑2509‑3
    [Google Scholar]
  103. Peng S. Jia K. Peng M. Predicting NSCLC surgical outcomes using deep learning on histopathological images: Development and multi-omics validation of Sr-PPS model. Int. J. Surg. 2025 111 7 4279 4294 10.1097/JS9.0000000000002526
    [Google Scholar]
  104. Lin A. Qi C. Li M. Deep learning analysis of the adipose tissue and the prediction of prognosis in colorectal cancer. Front. Nutr. 2022 9 869263 10.3389/fnut.2022.869263
    [Google Scholar]
  105. Wang H. Dai C. Wen Y. GADRP: Graph convolutional networks and autoencoders for cancer drug response prediction. Brief. Bioinform. 2023 24 1 bbac501 10.1093/bib/bbac501 36460622
    [Google Scholar]
  106. Liu H. Peng W. Dai W. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks. Methods 2024 222 41 50 10.1016/j.ymeth.2023.11.018 38157919
    [Google Scholar]
  107. Peng W. Liu H. Dai W. Yu N. Wang J. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Bioinformatics 2022 38 19 4546 4553 10.1093/bioinformatics/btac574 35997568
    [Google Scholar]
  108. Sun W Ren C Xu J. Using graph convolutional network with subgraph-aware for circRNA-drug sensitivity identification. IEEE/ACM Trans Comput Biol Bioinform 2024 21 (6) 1765 74
    [Google Scholar]
  109. Gao Q. Xu T. Li X. Interpretable dynamic directed graph convolutional network for multi-relational prediction of missense mutation and drug response. IEEE J. Biomed. Health Inform. 2025 29 2 1514 1524 10.1109/JBHI.2024.3483316 39423073
    [Google Scholar]
  110. Peng W Lin J Dai W Yu N Wang J. Hierarchical graph representation learning with multi-granularity features for anti-cancer drug response prediction. IEEE J Biomed Health Inform 2024 1 12 10.1109/JBHI.2024.3492806 39504283
    [Google Scholar]
  111. Peng W. Chen T. Dai W. Predicting drug response based on multi-omics fusion and graph convolution. IEEE J. Biomed. Health Inform. 2022 26 3 1384 1393 10.1109/JBHI.2021.3102186 34347616
    [Google Scholar]
  112. Liu H. Dong A. Rasteh A.M. Identification of the novel exhausted T cell CD8+markers in breast cancer. Sci. Rep. 2024 14 19142 10.1038/s41598‑024‑70184‑1
    [Google Scholar]
  113. Liu H. Tang T. MAPK signaling pathway-based glioma subtypes, machine-learning risk model, and key hub proteins identification. Sci. Rep. 2023 13 1 19055 10.1038/s41598‑023‑45774‑0
    [Google Scholar]
  114. Liu H. Tang T. A bioinformatic study of IGFBPs in glioma regarding their diagnostic, prognostic, and therapeutic prediction value. Am. J. Transl. Res. 2023 15 3 2140 2155 [PMID: 37056850
    [Google Scholar]
  115. Liu H. Guo Z. Wang P. Genetic expression in cancer research: Challenges and complexity. Gene Rep. 2024 37 102042 10.1016/j.genrep.2024.102042
    [Google Scholar]
  116. Liu H. Li Y. Karsidag M. Tu T. Wang P. Technical and biological biases in bulk transcriptomic data mining for cancer research. J. Cancer 2025 16 1 34 43 10.7150/jca.100922 39744578
    [Google Scholar]
  117. Wang C. Lye X. Kaalia R. Deep learning and multi-omics approach to predict drug responses in cancer. BMC Bioinformatics 2022 22 Suppl. 10 632 10.1186/s12859‑022‑04964‑9
    [Google Scholar]
  118. Freeberg M.A. Fromont L.A. D’Altri T. The European genome-phenome archive in 2021. Nucleic Acids Res. 2022 50 D1 D980 D987 10.1093/nar/gkab1059 34791407
    [Google Scholar]
  119. Burgin J. Ahamed A. Cummins C. The European nucleotide archive in 2022. Nucleic Acids Res. 2023 51 D1 D121 D125 10.1093/nar/gkac1051 36399492
    [Google Scholar]
  120. Olbrecht S. Busschaert P. Qian J. High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: Specific cell subtypes influence survival and determine molecular subtype classification. Genome Med. 2021 13 1 111 10.1186/s13073‑021‑00922‑x
    [Google Scholar]
  121. Chen D. Liu P. Lu X. Pan-cancer analysis implicates novel insights of lactate metabolism into immunotherapy response prediction and survival prognostication. J. Exp. Clin. Cancer Res. 2024 43 1 125 10.1186/s13046‑024‑03042‑7 38664705
    [Google Scholar]
  122. Tan Z Chen X Zuo J Fu S Wang H Wang J. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med 2023 21 (1) 223 10.1186/s12967‑023‑04056‑z 36973787
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232412138250722020114
Loading
/content/journals/cgt/10.2174/0115665232412138250722020114
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: DrugSurvPlot ; survival analysis ; pancancer ; Shiny ; drug sensitivity ; web tools
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test