Skip to content
2000
image of Machine Learning-Driven PCDI Classifier for Invasive PitNETs

Abstract

Introduction

Aggressive Pituitary Neuroendocrine Tumors (PitNETs) pose significant therapeutic challenges due to their invasive behavior and resistance to conventional therapies. Current prognostic markers lack the ability to capture molecular heterogeneity, necessitating novel biomarkers. Dysregulated Programmed Cell Death (PCD) pathways are implicated in tumorigenesis, but their prognostic relevance in invasive PitNETs remains unexplored.

Method

GEO datasets (GSE51618, GSE169498, GSE260487) were analyzed to identify differential gene expression between noninvasive and invasive PitNETs. A curated panel of 1,548 PCD-related genes was integrated. Machine learning (LASSO regression and SVM-RFE) was employed to construct a PCD-associated Index (PCDI). For validation, ROC analysis, immune infiltration assessment (CIBERSORT, TIMER, ssGSEA), and experimental validation RT-qPCR were performed.

Results

The PCDI, comprising 11 genes (., FGFR3, MAPK11, SLC7A11), distinguished invasive from noninvasive PitNETs with high accuracy. High-PCDI tumors exhibited enriched metabolic pathways and immune activation. Consensus clustering stratified PitNETs into two molecular subtypes (C1/C2), with C2 (high-PCDI) showing elevated immune scores and pathway activity. Experimental validation confirmed the differential expression of key genes in invasive tumors (*<0.05).

Discussion

The PCDI outperforms traditional prognostic models by capturing PCD-immune-metabolic crosstalk. High-PCDI tumors demonstrate adaptive immune evasion despite an elevated checkpoint molecule expression, suggesting therapeutic potential for combined MAPK inhibitors and immunotherapy. Limitations include retrospective data and small validation cohorts.

Conclusion

The PCDI provides a robust molecular framework for risk stratification and personalized therapy in invasive PitNETs. Future studies should validate its clinical utility and explore pan-cancer relevance.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232399193250529074831
2025-07-04
2025-09-13
Loading full text...

Full text loading...

References

  1. Asa S.L. Mete O. Perry A. Osamura R.Y. Overview of the 2022 who classification of pituitary tumors. Endocr. Pathol. 2022 33 1 6 26 10.1007/s12022‑022‑09703‑7 35291028
    [Google Scholar]
  2. Raverot G. Ilie M.D. Lasolle H. Aggressive pituitary tumours and pituitary carcinomas. Nat. Rev. Endocrinol. 2021 17 11 671 684 10.1038/s41574‑021‑00550‑w 34493834
    [Google Scholar]
  3. Trouillas J. Burman P. McCormack A. Aggressive pituitary tumours and carcinomas: Two sides of the same coin? Eur. J. Endocrinol. 2018 178 6 C7 C9 10.1530/EJE‑18‑0250 29588294
    [Google Scholar]
  4. Drummond J. Roncaroli F. Grossman A.B. Korbonits M. Clinical and pathological aspects of silent pituitary adenomas. J. Clin. Endocrinol. Metab. 2019 104 7 2473 2489 10.1210/jc.2018‑00688 30020466
    [Google Scholar]
  5. Melmed S. Kaiser U.B. Lopes M.B. Clinical biology of the pituitary adenoma. Endocr. Rev. 2022 43 6 1003 1037 10.1210/endrev/bnac010 35395078
    [Google Scholar]
  6. Lu L. Wan X. Xu Y. Chen J. Shu K. Lei T. Prognostic factors for recurrence in pituitary adenomas: Recent progress and future directions. Diagnostics 2022 12 4 977 10.3390/diagnostics12040977 35454025
    [Google Scholar]
  7. Zhang X. Yang F. Han N. Recurrence rate and exploration of clinical factors after pituitary adenoma surgery: A systematic review and meta-analysis based on computer artificial intelligence system. Comput. Intell. Neurosci. 2022 2022 1 10 10.1155/2022/6002672 36275975
    [Google Scholar]
  8. Taniguchi-Ponciano K. Hinojosa-Alvarez S. Hernandez-Perez J. Longitudinal multiomics analysis of aggressive pituitary neuroendocrine tumors: Comparing primary and recurrent tumors from the same patient, reveals genomic stability and heterogeneous transcriptomic profiles with alterations in metabolic pathways. Acta Neuropathol. Commun. 2024 12 1 142 10.1186/s40478‑024‑01796‑x 39217365
    [Google Scholar]
  9. Xu L Lei Z Wang Q Androgen receptor mediates dopamine agonist resistance by regulating intracellular reactive oxygen species in prolactin-secreting pituitary adenoma. Antioxid Redox Signal 2024 ars.2024.0611. 10.1089/ars.2024.0611 39360800
    [Google Scholar]
  10. Gao W. Wang X. Zhou Y. Wang X. Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target. Ther. 2022 7 1 196 10.1038/s41392‑022‑01046‑3 35725836
    [Google Scholar]
  11. Park W. Wei S. Kim B.S. Diversity and complexity of cell death: A historical review. Exp. Mol. Med. 2023 55 8 1573 1594 10.1038/s12276‑023‑01078‑x 37612413
    [Google Scholar]
  12. Galluzzi L. Vitale I. Aaronson S.A. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018 25 3 486 541 10.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  13. Nirmala J.G. Lopus M. Cell death mechanisms in eukaryotes. Cell Biol. Toxicol. 2020 36 2 145 164 10.1007/s10565‑019‑09496‑2 31820165
    [Google Scholar]
  14. Tischner D. Manzl C. Soratroi C. Villunger A. Krumschnabel G. Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 2012 17 11 1197 1209 10.1007/s10495‑012‑0756‑8 22971741
    [Google Scholar]
  15. D’Arcy M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019 43 6 582 592 10.1002/cbin.11137 30958602
    [Google Scholar]
  16. Liu J. Hong M. Li Y. Chen D. Wu Y. Hu Y. Programmed cell death tunes tumor immunity. Front. Immunol. 2022 13 847345 10.3389/fimmu.2022.847345 35432318
    [Google Scholar]
  17. Nguyen T.T. Wei S. Nguyen T.H. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp. Mol. Med. 2023 55 8 1595 1619 10.1038/s12276‑023‑01046‑5 37612409
    [Google Scholar]
  18. Yuan J. Ofengeim D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 2024 25 5 379 395 10.1038/s41580‑023‑00689‑6 38110635
    [Google Scholar]
  19. Bertheloot D. Latz E. Franklin B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021 18 5 1106 1121 10.1038/s41423‑020‑00630‑3 33785842
    [Google Scholar]
  20. Hu B. Shi D. Lv X. Prognostic and clinicopathological significance of MLKL expression in cancer patients: A meta-analysis. BMC Cancer 2018 18 1 736 10.1186/s12885‑018‑4655‑4 30005626
    [Google Scholar]
  21. Wang S. Wang A. Zhang Y. The role of MAPK11/12/13/14 (p38 MAPK) protein in dopamine agonist-resistant prolactinomas. BMC Endocr. Disord. 2021 21 1 235 10.1186/s12902‑021‑00900‑9 34814904
    [Google Scholar]
  22. Liu H. Zhou C. Lu J. Anlotinib enhances the efficacy of KRAS-G12C inhibitors through c-Myc/ORC2 axis inhibition in non-small cell lung cancer. Cell Death Dis. 2025 16 1 356 10.1038/s41419‑025‑07687‑w 40316534
    [Google Scholar]
  23. Matsuhashi S. Choisez A. Xu Y. Signaling balance of MCTs and GPR81 controls lactate-induced metabolic function and cell death in skeletal muscle cells through Ranbp3l/Nfat5 and Atf4. Cell. Signal. 2025 132 111852 10.1016/j.cellsig.2025.111852 40318798
    [Google Scholar]
  24. Wang Y Sun X Ma F Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med 2025 S2095-4964(25)00050-0 10.1016/j.joim.2025.04.006 40319008
  25. Xu W. Weng J. Zhao Y. FMO2 + cancer-associated fibroblasts sensitize anti-PD-1 therapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 2025 13 5 011648 10.1136/jitc‑2025‑011648 40316306
    [Google Scholar]
  26. Man S.M. Kanneganti T.D. Innate immune sensing of cell death in disease and therapeutics. Nat. Cell Biol. 2024 26 9 1420 1433 10.1038/s41556‑024‑01491‑y 39223376
    [Google Scholar]
  27. Kodous A.S. Eldin E.S. Mohamed H.E. Ghobashy M.M. EL-Maghraby DF. Targeting cell signaling pathway ALKBH5/Beclin1/ULK1 in lung cancer by 5-flurouracil- loaded P (AAm/SA) nanogel in rats. Apoptosis 2025 10.1007/s10495‑025‑02102‑3 40310576
    [Google Scholar]
  28. Liu Y. Zhang Y. Yang X. Reprogramming of radiation-deteriorated TME by liposomal nanomedicine to potentiate radio-immunotherapy. J. Control. Release 2025 383 113792 10.1016/j.jconrel.2025.113792 40311685
    [Google Scholar]
  29. Noto F. Mancini J. Gambardella A.R. Decitabine co-operates with the IL-33/ST2 axis modifying the tumor microenvironment and improving the response to PD-1 blockade in melanoma. J. Exp. Clin. Cancer Res. 2025 44 1 137 10.1186/s13046‑025‑03381‑z 40317004
    [Google Scholar]
  30. Chen H.T. Yuan X.Y. Wang Z.Y. Induction of apoptosis by oridonin in nonfunctioning pituitary adenoma cells. Drug Dev. Res. 2024 85 6 22251 10.1002/ddr.22251 39188035
    [Google Scholar]
  31. Che Y. Lee J. Abou-Taleb F. Induced B cell receptor diversity predicts PD-1 blockade immunotherapy response. Proc. Natl. Acad. Sci. USA 2025 122 18 2501269122 10.1073/pnas.2501269122 40314973
    [Google Scholar]
  32. Li D. Wu D. Li S. Transcriptomic profiling identifies differentially expressed genes associated with programmed cell death of nucellar cells in Ginkgo biloba L. BMC Plant Biol. 2019 19 1 91 10.1186/s12870‑019‑1671‑8 30819114
    [Google Scholar]
  33. Mazzio E.A. Lewis C.A. Soliman K.F.A. Transcriptomic profiling of MDA-MB-231 cells exposed to Boswellia Serrata and 3-o-acetyl-b-boswellic acid; ER/UPR mediated programmed cell death. Cancer Genomics Proteomics 2017 14 6 409 425 29109091
    [Google Scholar]
  34. Qin H. Abulaiti A. Maimaiti A. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J. Transl. Med. 2023 21 1 588 10.1186/s12967‑023‑04468‑x 37660060
    [Google Scholar]
  35. Chen B. Xie K. Zhang J. Comprehensive analysis of mitochondrial dysfunction and necroptosis in intracranial aneurysms from the perspective of predictive, preventative, and personalized medicine. Apoptosis 2023 28 9-10 1452 1468 10.1007/s10495‑023‑01865‑x 37410216
    [Google Scholar]
  36. Huang P. Yu X. Gao Z. Shenfu injection ameliorates hepatic ischemia-reperfusion injury through induction of ferroptosis via JAK2/STAT3 pathway. J. Ethnopharmacol. 2025 348 119889 10.1016/j.jep.2025.119889 40316154
    [Google Scholar]
  37. Wang P. Wang J. Fang Z. Novel metabolic subtypes in IDH-mutant gliomas: Implications for prognosis and therapy. BMC Cancer 2025 25 1 815 10.1186/s12885‑025‑14176‑y 40307749
    [Google Scholar]
  38. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  39. Huang S. Zhang J. He T. Zhou J. Liu Z. Midnolin correlates with anti‐tumour immunity and promotes liver cancer progression through β‐catenin. J. Cell. Mol. Med. 2025 29 6 70472 10.1111/jcmm.70472 40111059
    [Google Scholar]
  40. Liu R. Ye J. Wang J. Single-cell landscape of dynamic changes in CD8+ T cells, CD4+ T cells and exhausted T cells in hepatocellular carcinoma. Sci. Rep. 2025 15 1 4130 10.1038/s41598‑025‑88377‑7 39900964
    [Google Scholar]
  41. Yu J. Wu S. Gong J. Prediction of hepatocellular carcinoma prognosis and immunotherapy response using mitochondrial dysregulation features. J. Cell. Mol. Med. 2025 29 3 70389 10.1111/jcmm.70389 39910622
    [Google Scholar]
  42. Yu L. Shi Y. Zhi Z. Li S. Yu W. Zhang Y. Establishment of a lactylation‐related gene signature for hepatocellular carcinoma applying bulk and single‐cell RNA sequencing analysis. Int. J. Genomics 2025 2025 1 3547543 10.1155/ijog/3547543 39990773
    [Google Scholar]
  43. Zhang M. Zhou L. Zhao Y. Wang Y. Zhang Z. Liu Z. Comprehensive molecular analyses of an autoimmune-related gene predictive model and immune infiltrations using machine learning methods in intracranial aneurysma. Front. Immunol. 2025 16 1531930 10.3389/fimmu.2025.1531930 40313967
    [Google Scholar]
  44. Liu W. Liu L. Kuang T. Deng W. Cholesterol metabolism-related genes predict immune infiltration and prognosis in gastric cancer patients. J. Cancer 2025 16 7 2087 2102 10.7150/jca.104389 40302802
    [Google Scholar]
  45. Peng H. Chen Q. Ye L. Wang W. A senescence-associated gene signature for prognostic prediction and therapeutic targeting in adrenocortical carcinoma. Biomedicines 2025 13 4 894 10.3390/biomedicines13040894 40299539
    [Google Scholar]
  46. Zou Y. Xie J. Zheng S. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int. J. Surg. 2022 107 106936 10.1016/j.ijsu.2022.106936 36341760
    [Google Scholar]
  47. Tischler A.S. Pacak K. Eisenhofer G. The adrenal medulla and extra-adrenal paraganglia: Then and now. Endocr. Pathol. 2014 25 1 49 58 10.1007/s12022‑013‑9286‑3 24362581
    [Google Scholar]
  48. Chiloiro S. De Marinis L. From pituitary adenoma to pituitary neuroendocrine tumors: How molecular pathways may impact the therapeutic management? Endocr. Metab. Immune Disord. Drug Targets 2021 21 10 1744 1759 10.2174/1871530321666210226152901 34425741
    [Google Scholar]
  49. Ho K.K.Y. Fleseriu M. Wass J. A proposed clinical classification for pituitary neoplasms to guide therapy and prognosis. Lancet Diabetes Endocrinol. 2024 12 3 209 214 10.1016/S2213‑8587(23)00382‑0 38301678
    [Google Scholar]
  50. Riley G. Scheyer N. Klein M. Prognostic indicators in pituitary adenoma surgery: A comprehensive analysis of surgical outcomes and complications. Front. Endocrinol. 2024 14 1327404 10.3389/fendo.2023.1327404 38274233
    [Google Scholar]
  51. Asioli S. Guaraldi F. Zoli M. Mazzatenta D. Villa C. How to standardize the diagnostic approach to pituitary neuroendocrine tumors. Minerva Endocrinol. 2024 49 3 283 292 10.23736/S2724‑6507.24.04079‑X 38656092
    [Google Scholar]
  52. Guaraldi F. Ambrosi F. Ricci C. Di Sciascio L. Asioli S. Histopathology of growth hormone-secreting pituitary tumors: State of the art and new perspectives. Best Pract. Res. Clin. Endocrinol. Metab. 2024 38 3 101894 10.1016/j.beem.2024.101894 38614953
    [Google Scholar]
  53. Terry M. Nguyen M.P. Tang V. High-grade progression, sarcomatous transformation, and/or metastasis of pituitary neuroendocrine neoplasms (PitNENs): The UCSF experience. Endocr. Pathol. 2024 35 4 338 348 10.1007/s12022‑024‑09829‑w 39388031
    [Google Scholar]
  54. Fang Q. Yu J. Luo J. Combination of baseline and variation of prognostic nutritional index enhances the survival predictive value of patients with advanced non-small cell lung cancer treated with programmed cell death protein 1 inhibitor. Clin. Med. Insights Oncol. 2022 16 11795549221137134 10.1177/11795549221137134 36408336
    [Google Scholar]
  55. Huang C. Li J. Wu R. Li Y. Zhang C. Targeting pyroptosis for cancer immunotherapy: Mechanistic insights and clinical perspectives. Mol. Cancer 2025 24 1 131 10.1186/s12943‑025‑02344‑4 40319304
    [Google Scholar]
  56. Li J. Jiang Y. Nong S. Liang L. Chen L. Gong Q. Development of a machine learning-derived programmed cell death index for prognostic prediction and immune insights in colorectal cancer. Discov. Oncol. 2025 16 1 608 10.1007/s12672‑025‑02323‑7 40274671
    [Google Scholar]
  57. Wang W. Chen P. Yuan S. Programmed cell death-index (PCDi) as a prognostic biomarker and predictor of drug sensitivity in cervical cancer: A machine learning-based analysis of mRNA signatures. J. Cancer 2024 15 5 1378 1396 10.7150/jca.91798 38356704
    [Google Scholar]
  58. Huang C. Zeng Q. Chen J. TMEM160 inhibits KEAP1 to suppress ferroptosis and induce chemoresistance in gastric cancer. Cell Death Dis. 2025 16 1 287 10.1038/s41419‑025‑07621‑0 40223081
    [Google Scholar]
  59. Zhang F. Chen X. Qiao C. Exploring the anti-colorectal cancer mechanism of norcantharidin through TRAF5/NF-κB pathway regulation and folate-targeted liposomal delivery. Int. J. Mol. Sci. 2025 26 4 1450 10.3390/ijms26041450
    [Google Scholar]
  60. Wang Y. Cheng T. Lu M. TMT-based quantitative proteomics revealed follicle-stimulating hormone (FSH)-related molecular characterizations for potentially prognostic assessment and personalized treatment of FSH-positive non-functional pituitary adenomas. EPMA J. 2019 10 4 395 414 10.1007/s13167‑019‑00187‑w 31832114
    [Google Scholar]
  61. Aihara Y. Watanabe S. Amano K. Placental alkaline phosphatase levels in cerebrospinal fluid can have a decisive role in the differential diagnosis of intracranial germ cell tumors. J. Neurosurg. 2019 131 3 687 694 10.3171/2018.3.JNS172520 30265190
    [Google Scholar]
  62. Huang C.E. Ma G.C. Jou H.J. Noninvasive prenatal diagnosis of fetal aneuploidy by circulating fetal nucleated red blood cells and extravillous trophoblasts using silicon-based nanostructured microfluidics. Mol. Cytogenet. 2017 10 1 44 10.1186/s13039‑017‑0343‑3 29213331
    [Google Scholar]
  63. Ishida S. Higashino F. Aoyagi M. Genomic structure and promoter activity of the E1AF gene, a member of the ETS oncogene family. Biochem. Biophys. Res. Commun. 2006 339 1 325 330 10.1016/j.bbrc.2005.11.024 16297865
    [Google Scholar]
  64. Martínez-Gil N. Roca-Ayats N. Cozar M. Genetics and genomics of SOST: Functional analysis of variants and genomic regulation in osteoblasts. Int. J. Mol. Sci. 2021 22 2 489 10.3390/ijms22020489 33419004
    [Google Scholar]
  65. Zhou Z. Wu B. Chen J. ETV4 facilitates proliferation, migration, and invasion of liver cancer by mediating TGF-β signal transduction through activation of B3GNT3. Genes Genomics 2023 45 11 1433 1443 10.1007/s13258‑023‑01428‑z 37523127
    [Google Scholar]
  66. Jiang Q. Lei Z. Wang Z. Tumor-associated fibroblast-derived exosomal circDennd1b promotes pituitary adenoma progression by modulating the miR-145-5p/ONECUT2 axis and activating the MAPK pathway. Cancers 2023 15 13 3375 10.3390/cancers15133375 37444485
    [Google Scholar]
  67. Gentilin E. Borges De Souza P. Ambrosio M.R. Bondanelli M. Gagliardi I. Zatelli M.C. Protein kinase C delta mediates Pasireotide effects in an ACTH-secreting pituitary tumor cell line. J. Endocrinol. Invest. 2023 46 12 2609 2616 10.1007/s40618‑023‑02117‑0 37233978
    [Google Scholar]
  68. Konishi H. Fujiya M. Kashima S. A tumor-specific modulation of Heterogeneous ribonucleo protein A0 promotes excessive mitosis and growth in colorectal cancer cells. Cell Death Dis. 2020 11 4 245 10.1038/s41419‑020‑2439‑7 32303675
    [Google Scholar]
  69. Gui S. Yu W. Xie J. SLC7A11 promotes EMT and metastasis in invasive pituitary neuroendocrine tumors by activating the PI3K/AKT signaling pathway. Endocr. Connect. 2024 13 7 240097 10.1530/EC‑24‑0097 38722255
    [Google Scholar]
  70. Dong C. Zhang Y. Zeng J. FUT2 promotes colorectal cancer metastasis by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1. Commun. Biol. 2024 7 1 1297 10.1038/s42003‑024‑06993‑x 39390072
    [Google Scholar]
  71. Zou B. Li M. Zhang J. Application of a risk score model based on glycosylation-related genes in the prognosis and treatment of patients with low-grade glioma. Front. Immunol. 2024 15 1467858 10.3389/fimmu.2024.1467858 39445005
    [Google Scholar]
  72. Zhou Y.F. Li J.T. Zheng Q.L. Ren K.L. Yi C.C. METTL3 ‐mediated m6A methylation of TRAF5 inhibits lung adenocarcinoma cell metastasis via activation of the PI3K/AKT/NF‐κB signaling pathway. Kaohsiung J. Med. Sci. 2024 40 2 150 160 10.1002/kjm2.12791 38088510
    [Google Scholar]
  73. Abu Laban D. Alsharif A. Al-Hussaini M. BRAF/MEK inhibitors use for pediatric gliomas; Real world experience from a resource-limited country. Front. Oncol. 2024 14 1417484 10.3389/fonc.2024.1417484 39399174
    [Google Scholar]
  74. Aleksakhina S.N. Ivantsov A.O. Imyanitov E.N. Agnostic administration of targeted anticancer drugs: Looking for a balance between hype and caution. Int. J. Mol. Sci. 2024 25 7 4094 10.3390/ijms25074094 38612902
    [Google Scholar]
  75. Biersack B. Nitzsche B. Höpfner M. Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers. Cancer Drug Resist. 2025 8 6 10.20517/cdr.2024.125 39935431
    [Google Scholar]
  76. Jafari P. Forrest M.E. Segal J. Wang P. Tjota M.Y. Pan-cancer molecular biomarkers: Practical considerations for the surgical pathologist. Mod. Pathol. 2025 38 6 100752 10.1016/j.modpat.2025.100752 40058460
    [Google Scholar]
  77. Dumitriu-Stan R.I. Burcea I.F. Dobre R. Navigating prognostic strategies for GH- and PRL-secreting pituitary neuroendocrine tumors: Key insights from a clinicopathological study. Front. Endocrinol. 2025 16 1541514 10.3389/fendo.2025.1541514 40276548
    [Google Scholar]
  78. Ferraù F. Giuffrida G. Casablanca R. Clinical and prognostic implications of pituitary macroadenomas (PitNets) grading: A monocentric experience. Pituitary 2025 28 2 41 10.1007/s11102‑025‑01508‑1 40082275
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232399193250529074831
Loading
/content/journals/cgt/10.2174/0115665232399193250529074831
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test