Skip to content
2000
image of Pathogens Association with Alzheimer Disease: Emerging Concepts and New Perspectives

Abstract

Alzheimer’s Disease (AD) represents a significant global health challenge, distinguished by a complex pathology that involves the accumulation of abnormal proteins in the brain, leading to neuronal loss and brain atrophy. Recent research has indicated a potential association between various pathogens and the development of AD, suggesting that infectious pathogens may play a role in its pathology. The study focuses on the exploration of pathogens linked to AD. It aims to enhance the understanding of the disease's etiopathogenesis, which refers to the causes and development of the condition. The findings from this analysis have the potential to contribute to improved diagnostic methods and treatment strategies for AD. Overall, the manuscript highlights the importance of exploring infectious pathogens relating to neurodegenerative disorders. This comprehensive literature review was conducted using databases such as PubMed and Scopus, focusing on research published up to March 2025. Articles were searched based on keywords related to reviews and research exploring the association/link between different pathogens and AD, emerging interventions, preventive strategies, and limitations in study design. This study indicates that various viruses, bacteria, and fungi are significant contributors to the condition, while parasites and prions play a lesser role. Notably, the variability in pathogen species among patients could provide insights into the evolution and severity of clinical symptoms associated with the disease. Additionally, some studies propose that after modification, certain fungi may actually reduce the amyloid burden in Alzheimer's patients. However, it is crucial to emphasize that there is currently no definitive evidence supporting the notion that treating infections alone can prevent or cure AD. The prevention and treatment of pathogens, including viruses, bacteria, and fungi, as well as infectious prions, may play a significant role in reducing the risk of AD. Effective management of these pathogens can help to control and prevent further damage in individuals who have already been diagnosed with AD. There is a pressing need for additional pre-clinical and clinical research to deepen the understanding of the pathophysiological connections between pathogens and AD.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232389348250722073721
2025-07-28
2025-09-13
Loading full text...

Full text loading...

References

  1. Dando S.J. Mackay-Sim A. Norton R. Pathogens penetrating the central nervous system: Infection pathways and the cellular and molecular mechanisms of invasion. Clin. Microbiol. Rev. 2014 27 4 691 726 10.1128/CMR.00118‑13 25278572
    [Google Scholar]
  2. Archibald L.K. Quisling R.G. Central nervous system infections. Textbook of Neurointensive Care. London Springer 2013 427 517 10.1007/978‑1‑4471‑5226‑2_22
    [Google Scholar]
  3. Kellett K.A.B. Hooper N.M. Prion protein and Alzheimer disease. Prion 2009 3 4 190 194 10.4161/pri.3.4.9980 19887909
    [Google Scholar]
  4. Kumar A. Sidhu J. Lui F. Alzheimer disease. In: StatPearls. Treasure Island, FL: StatPearls Publishing 2025. Internet
    [Google Scholar]
  5. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  6. Zhao M. Wang Y. Shen Y. Wei C. Zhang G. Sun L. A review of the roles of pathogens in Alzheimer’s disease. Front. Neurosci. 2024 18 1439055 10.3389/fnins.2024.1439055 39224577
    [Google Scholar]
  7. Rippee-Brooks M.D. Wu W. Dong J. Pappolla M. Fang X. Bao X. Viral infections, are they a trigger and risk factor of Alzheimer’s disease? Pathogens 2024 13 3 240 10.3390/pathogens13030240 38535583
    [Google Scholar]
  8. Dementia. 2025 Available from: https://www.who.int/news-room/fact-sheets/detail/dementia
  9. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  10. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024 20 5 3708 3821 10.1002/alz.13809 38689398
    [Google Scholar]
  11. Littman D.R. Pamer E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 2011 10 4 311 323 10.1016/j.chom.2011.10.004 22018232
    [Google Scholar]
  12. Belkaid Y. Hand T.W. Role of the microbiota in immunity and inflammation. Cell 2014 157 1 121 141 10.1016/j.cell.2014.03.011 24679531
    [Google Scholar]
  13. Shanmugam N.N.K. Eimer W.A. Kumar D.K.V. Tanzi R.E. The brain pathobiome in Alzheimer’s disease. Neurotherapeutics 2024 21 6 00475 10.1016/j.neurot.2024.e00475 39510900
    [Google Scholar]
  14. Wan J. Fan H. Oral microbiome and Alzheimer’s disease. Microorganisms 2023 11 10 2550 10.3390/microorganisms11102550 37894208
    [Google Scholar]
  15. Vojtechova I. Machacek T. Kristofikova Z. Stuchlik A. Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog. 2022 18 11 1010929 10.1371/journal.ppat.1010929 36395147
    [Google Scholar]
  16. Hosseininasab S.S.M. Ebrahimi R. Yaghoobpoor S. Alzheimer’s disease and infectious agents: A comprehensive review of pathogenic mechanisms and microRNA roles. Front. Neurosci. 2025 18 1513095 10.3389/fnins.2024.1513095 39840010
    [Google Scholar]
  17. Kaushik S. Singh M. Srivastava S. Sachan A.K. Verma S. Neuropharmacological mechanisms of SARS-CoV-2. In: Patil VM, Kumar D, Masand N, Eds. Molecular targets and therapeutic interventions against neurodegenerative diseases.Molecular targets and therapeutic interventions against neurodegenerative diseases. 1st ed Patil V.M. Kumar D. Masand N. CRC Press 2025 10.1201/9781003506317‑9
    [Google Scholar]
  18. Le Govic Y. Demey B. Cassereau J. Bahn Y.S. Papon N. Pathogens infecting the central nervous system. PLoS Pathog. 2022 18 2 1010234 10.1371/journal.ppat.1010234 35202445
    [Google Scholar]
  19. Coureuil M. Join-Lambert O. Lécuyer H. Bourdoulous S. Marullo S. Nassif X. Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 2012 3 2 164 172 10.4161/viru.18639 22366962
    [Google Scholar]
  20. Doran K.S. Fulde M. Gratz N. Host–pathogen interactions in bacterial meningitis. Acta Neuropathol. 2016 131 2 185 209 10.1007/s00401‑015‑1531‑z 26744349
    [Google Scholar]
  21. Hong S. Banks W.A. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav. Immun. 2015 45 1 12 10.1016/j.bbi.2014.10.008 25449672
    [Google Scholar]
  22. Li F. Wang Y. Yu L. Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during japanese encephalitis virus infection. J. Virol. 2015 89 10 5602 5614 10.1128/JVI.00143‑15 25762733
    [Google Scholar]
  23. Marano G. Mazza M. Lisci F.M. The microbiota–gut–brain axis: Psychoneuroimmunological insights. Nutrients 2023 15 6 1496 10.3390/nu15061496 36986226
    [Google Scholar]
  24. Mitrea L. Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts imbalance imbalances the brain: A review of gut microbiota association with neurological and psychiatric disorders. Front. Med. 2022 9 813204 10.3389/fmed.2022.813204 35433746
    [Google Scholar]
  25. Agarwal U. Pannu A. Tonk R.K. Foreign contaminants target brain health. CNS Neurol. Disord. Drug Targets 2025 24 5 353 374 10.2174/0118715273338071241213101016 39812065
    [Google Scholar]
  26. Yang J. Liang J. Hu N. The gut microbiota modulates neuroinflammation in Alzheimer’s disease: Elucidating crucial factors and mechanistic underpinnings. CNS Neurosci. Ther. 2024 30 10 70091 10.1111/cns.70091 39460538
    [Google Scholar]
  27. Van Eldik L.J. Carrillo M.C. Cole P.E. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. 2016 2 2 99 109 10.1016/j.trci.2016.05.001 29067297
    [Google Scholar]
  28. Akiyama H. Barger S. Barnum S. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000 21 3 383 421 10.1016/S0197‑4580(00)00124‑X 10858586
    [Google Scholar]
  29. Millán Solano M.V. Salinas Lara C. Sánchez-Garibay C. Effect of systemic inflammation in the CNS: A silent history of neuronal damage. Int. J. Mol. Sci. 2023 24 15 11902 10.3390/ijms241511902 37569277
    [Google Scholar]
  30. Sankowski R. Mader S. Valdés-Ferrer S.I. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front. Cell. Neurosci. 2015 9 28 10.3389/fncel.2015.00028 25698933
    [Google Scholar]
  31. Kumar D.K.V. Choi S.H. Washicosky K.J. Amyloid-& peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 2016 8 340 340ra72 10.1126/scitranslmed.aaf1059 27225182
    [Google Scholar]
  32. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  33. Filgueira L. Larionov A. Lannes N. The influence of virus infection on microglia and accelerated brain aging. Cells 2021 10 7 1836 10.3390/cells10071836 34360004
    [Google Scholar]
  34. What to know about Alzheimer’s disease. 2025 Available from: https://www.medicalnewstoday.com/articles/322223
  35. Wainberg M. Luquez T. Koelle D.M. The viral hypothesis: How herpesviruses may contribute to Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5476 5480 10.1038/s41380‑021‑01138‑6 33972690
    [Google Scholar]
  36. A common virus may play role in Alzheimer’s disease, study finds 2015 Available from: https://www.nytimes.com/2018/06/21/health/alzheimers-virus-herpes.html
  37. Onisiforou A Zanos P From viral infections to Alzheimer’s disease: Unveiling the mechanistic links through systems bioinformatics J Infec D 2024 230 S128 S140 Suppl. 2 10.1093/infdis/jiae242 39255398
    [Google Scholar]
  38. Tejeda M. Farrell J. Zhu C. DNA from multiple viral species is associated with Alzheimer’s disease risk. Alzheimers Dement. 2024 20 1 253 265 10.1002/alz.13414 37578203
    [Google Scholar]
  39. Lindblom N. Lindquist L. Westman J. Potential virus involvement in Alzheimer’s disease: Results from a phase IIa trial evaluating apovir, an antiviral drug combination. J. Alzheimers Dis. Rep. 2021 5 1 413 431 10.3233/ADR‑210301 34189413
    [Google Scholar]
  40. Cairns D.M. Itzhaki R.F. Kaplan D.L. Potential involvement of varicella zoster virus in Alzheimer’s disease via reactivation of quiescent herpes simplex virus type 1. J. Alzheimers Dis. 2022 88 3 1189 1200 10.3233/JAD‑220287 35754275
    [Google Scholar]
  41. Wang L. Davis P.B. Volkow N.D. Berger N.A. Kaelber D.C. Xu R. Association of covid-19 with new-onset Alzheimer’s disease. J. Alzheimers Dis. 2022 89 2 411 414 10.3233/JAD‑220717 35912749
    [Google Scholar]
  42. Zhou Y. Xu J. Hou Y. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. bioRxiv 2021 10.1101/2021.03.15.435423
    [Google Scholar]
  43. Beretti F. Gatti M. Ricchi F. Neurotoxic effects of coronavirus: Potential implications in Alzheimer’s onset and progression. Exp. Neurol. 2024 380 114908 10.1016/j.expneurol.2024.114908 39089439
    [Google Scholar]
  44. Vogt N.M. Kerby R.L. Dill-McFarland K.A. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017 7 1 13537 10.1038/s41598‑017‑13601‑y 29051531
    [Google Scholar]
  45. Moné Y. Earl J.P. Król J.E. Evidence supportive of a bacterial component in the etiology for Alzheimer’s disease and for a temporal-spatial development of a pathogenic microbiome in the brain. Front. Cell. Infect. Microbiol. 2023 13 1123228 10.3389/fcimb.2023.1123228 37780846
    [Google Scholar]
  46. Lehrer S. Rheinstein P.H. Klebsiella pneumoniae infection increases risk of Alzheimer’s Disease in the UK Biobank cohort. medRxiv 2024 10.1101/2024.11.21.24317739
    [Google Scholar]
  47. Park G Kadyan S Hochuli N An enteric bacterial infection triggers neuroinflammation and neurobehavioral impairment in 3xTg-AD transgenic mice J Infect Dis 2024 230 S95 S108 (Suppl. 2) 10.1093/infdis/jiae165 39255397
    [Google Scholar]
  48. Chu C.S. Liang C.S. Tsai S.J. Bacterial pneumonia and subsequent dementia risk: A nationwide cohort study. Brain Behav. Immun. 2022 103 12 18 10.1016/j.bbi.2022.04.002 35390468
    [Google Scholar]
  49. Chacko A. Delbaz A. Walkden H. Chlamydia pneumoniae can infect the central nervous system via the olfactory and trigeminal nerves and contributes to Alzheimer’s disease risk. Sci. Rep. 2022 12 1 2759 10.1038/s41598‑022‑06749‑9 35177758
    [Google Scholar]
  50. Ryder M.I. Porphyromonas gingivalis and Alzheimer disease: Recent findings and potential therapies. J. Periodontol. 2020 91 Suppl. 1 S45 S49 10.1002/JPER.20‑0104
    [Google Scholar]
  51. Lei S. Li J. Yu J. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. Int. J. Oral Sci. 2023 15 1 3 10.1038/s41368‑022‑00215‑y 36631446
    [Google Scholar]
  52. Díaz-Zúñiga J. More J. Melgar-Rodríguez S. Alzheimer’s disease-like pathology triggered by Porphyromonas gingivalis in wild type rats is serotype dependent. Front. Immunol. 2020 11 588036 10.3389/fimmu.2020.588036 33240277
    [Google Scholar]
  53. Kazemi N. Khorasgani M.R. Noorbakhshnia M. Razavi S.M. Narimani T. Naghsh N. Protective effects of a lactobacilli mixture against Alzheimer’s disease-like pathology triggered by Porphyromonas gingivalis. Sci. Rep. 2024 14 1 27283 10.1038/s41598‑024‑77853‑1 39516514
    [Google Scholar]
  54. Ding Y. Ren J. Yu H. Yu W. Zhou Y. Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice. Immun. Ageing 2018 15 6 10.1186/s12979‑017‑0110‑7
    [Google Scholar]
  55. Beydoun M.A. Beydoun H.A. Hossain S. El-Hajj Z.W. Weiss J. Zonderman A.B. Clinical and bacterial markers of periodontitis and their association with incident all-cause and Alzheimer’s disease dementia in a large national survey. J. Alzheimers Dis. 2020 75 1 157 172 10.3233/JAD‑200064 32280099
    [Google Scholar]
  56. Wu H. Qiu W. Zhu X. The periodontal pathogen Fusobacterium nucleatum exacerbates Alzheimer’s pathogenesis via specific pathways. Front. Aging Neurosci. 2022 14 912709 10.3389/fnagi.2022.912709 35813949
    [Google Scholar]
  57. Yan C. Diao Q. Zhao Y. Fusobacterium nucleatum infection-induced neurodegeneration and abnormal gut microbiota composition in Alzheimer’s disease-like rats. Front. Neurosci. 2022 16 884543 10.3389/fnins.2022.884543 36188448
    [Google Scholar]
  58. Studying the link between gum disease and Alzheimer’s disease. 2022. Available from: https://now.tufts.edu/2022/07/11/studying-link-between-gum-disease-and-alzheimers-disease
  59. Ko Y.K. Kim E. Lee E.J. Enrichment of infection-associated bacteria in the low biomass brain bacteriota of Alzheimer’s disease patients. PLoS One 2024 19 2 0296307 10.1371/journal.pone.0296307 38335187
    [Google Scholar]
  60. Leitao R. Wan I.U. Chown H. Williams T.J. Fisher M.C. Rhodes J. Detection of fungal sequences in human brain: RDNA locus amplification and deep sequencing. Sci. Rep. 2024 14 1 31790 10.1038/s41598‑024‑82840‑7 39738312
    [Google Scholar]
  61. Alonso R. Pisa D. Aguado B. Carrasco L. Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J. Alzheimers Dis. 2017 58 1 55 67 10.3233/JAD‑170058 28387676
    [Google Scholar]
  62. Pisa D. Alonso R. Rábano A. Rodal I. Carrasco L. Different brain regions are infected with fungi in Alzheimer’s disease. Sci. Rep. 2015 5 1 15015 10.1038/srep15015 26468932
    [Google Scholar]
  63. Pisa D. Alonso R. Fernández-Fernández A.M. Rábano A. Carrasco L. Polymicrobial infections in brain tissue from Alzheimer’s disease patients. Sci. Rep. 2017 7 1 5559 10.1038/s41598‑017‑05903‑y 28717130
    [Google Scholar]
  64. New Study Reveals Fungal Link to Alzheimer’s Disease Development Available from:https://www.geneonline.com/new-study-reveals-fungal-link-to-alzheimers-disease-development/ 2023
  65. Parady B. Innate immune and fungal model of Alzheimer’s disease. J. Alzheimers Dis. Rep. 2018 2 1 139 152 10.3233/ADR‑180073
    [Google Scholar]
  66. Alonso R. Pisa D. Fernández-Fernández A.M. Carrasco L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 2018 10 159 10.3389/fnagi.2018.00159 29881346
    [Google Scholar]
  67. Bimler L. Developing a chronic model of Candida albicans cerebral mycosis through gut colonization. J. Allergy Clin. Immunol. 2023 151 2 AB197 10.1016/j.jaci.2022.12.615
    [Google Scholar]
  68. Wu Y. Du S. Johnson J.L. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun. 2019 10 1 58 10.1038/s41467‑018‑07991‑4 30610193
    [Google Scholar]
  69. Wu Y. Du S. Bimler L.H. Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis. Cell Rep. 2023 42 10 113240 10.1016/j.celrep.2023.113240 37819761
    [Google Scholar]
  70. Ling Z. Zhu M. Liu X. Fecal fungal dysbiosis in chinese patients with Alzheimer’s disease. Front. Cell Dev. Biol. 2021 8 631460 10.3389/fcell.2020.631460 33585471
    [Google Scholar]
  71. Brogan Jen Researchers reveal brain parasites could be used to treat cognitive disorders PharmaTimes 2024 Available from: https://pharmatimes.com/news/researchers-reveal-brain-parasites-could-be-used-to-treat-cognitive-disorders/#:~:text=Researchers%20reveal%20brain%20parasites%20could%20be%20used%20to%20treat%20cognitive%20disorders,-by%20Jen%20Brogan&text=Researchers%20from%20the%20University%20of,brain%20to%20treat%20cognitive%20disorders.
    [Google Scholar]
  72. Barati N. Shojaeian A. Ramezani M. Investigating the effect of parasites (toxoplasma gondii RH strain, Leishmania major (MRHO/IR/75/ER), and hydatid cyst) antigens on Alzheimer’s disease: An in vivo evaluation. Exp. Neurol. 2024 377 114813 10.1016/j.expneurol.2024.114813 38735456
    [Google Scholar]
  73. Yang H.Y. Chien W.C. Chung C.H. Risk of dementia in patients with toxoplasmosis: A nationwide, population-based cohort study in Taiwan. Parasit. Vectors 2021 14 1 435 10.1186/s13071‑021‑04928‑7 34454590
    [Google Scholar]
  74. Yanes KJO Guanzon NA Azevedo R Wheeler DG Gandhi SP Lodoen MB Toxoplasma gondii infection of Alzheimer’s disease mice reduces brain amyloid density globally and regionally J Infect Dis 2024 230 S165 72 (Suppl. 2) 10.1093/infdis/jiae227 39255396
    [Google Scholar]
  75. McGovern K.E. Cabral C.M. Morrison H.W. Koshy A.A. Aging with Toxoplasma gondii results in pathogen clearance, resolution of inflammation, and minimal consequences to learning and memory. Sci. Rep. 2020 10 1 7979 10.1038/s41598‑020‑64823‑6 32409672
    [Google Scholar]
  76. Saresella M. Basilico N. Marventano I. Leishmania infantum infection reduces the amyloid &42-stimulated NLRP3 inflammasome activation. Brain Behav. Immun. 2020 88 597 605 10.1016/j.bbi.2020.04.058 32335194
    [Google Scholar]
  77. Baiardi S. Rossi M. Capellari S. Parchi P. Recent advances in the histo‐molecular pathology of human prion disease. Brain Pathol. 2019 29 2 278 300 10.1111/bpa.12695 30588685
    [Google Scholar]
  78. Poggiolini I. Saverioni D. Parchi P. Prion protein misfolding, strains, and neurotoxicity: An update from studies on Mammalian prions. Int. J. Cell Biol. 2013 2013 1 24 10.1155/2013/910314 24454379
    [Google Scholar]
  79. Wells C. Brennan S.E. Keon M. Saksena N.K. Prionoid proteins in the pathogenesis of neurodegenerative diseases. Front. Mol. Neurosci. 2019 12 271 10.3389/fnmol.2019.00271 31780895
    [Google Scholar]
  80. Aguzzi A. Heikenwalder M. Polymenidou M. Insights into prion strains and neurotoxicity. Nat. Rev. Mol. Cell Biol. 2007 8 7 552 561 10.1038/nrm2204 17585315
    [Google Scholar]
  81. Spagnolli G. Requena J.R. Biasini E. Understanding prion structure and conversion. Prog. Mol. Biol. Transl. Sci. 2020 175 19 30 10.1016/bs.pmbts.2020.07.005 32958233
    [Google Scholar]
  82. Kumar V. 10th ed Elsevier 2021
    [Google Scholar]
  83. Jucker M. Walker L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013 501 7465 45 51 10.1038/nature12481 24005412
    [Google Scholar]
  84. Crozet C. Lezmi S. Flamant F. Samarut J. Baron T. Bencsik A. Peripheral circulation of the prion infectious agent in transgenic mice expressing the ovine prion protein gene in neurons only. J. Infect. Dis. 2007 195 7 997 1006 10.1086/512085 17330790
    [Google Scholar]
  85. Pan K.M. Baldwin M. Nguyen J. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 1993 90 23 10962 10966 10.1073/pnas.90.23.10962 7902575
    [Google Scholar]
  86. Telling G.C. Parchi P. DeArmond S.J. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 1996 274 5295 2079 2082 10.1126/science.274.5295.2079 8953038
    [Google Scholar]
  87. Prusiner S.B. Woerman A.L. Mordes D.A. Evidence for &-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. USA 2015 112 38 E5308 E5317 10.1073/pnas.1514475112 26324905
    [Google Scholar]
  88. Laurén J. Gimbel D.A. Nygaard H.B. Gilbert J.W. Strittmatter S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-& oligomers. Nature 2009 457 7233 1128 1132 10.1038/nature07761 19242475
    [Google Scholar]
  89. Olanow C.W. Brundin P. Parkinson’s disease and alpha synuclein: Is Parkinson’s disease a prion-like disorder? Mov. Disord. 2013 28 1 31 40 10.1002/mds.25373
    [Google Scholar]
  90. Dobson C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001 356 1406 133 145 10.1098/rstb.2000.0758 11260793
    [Google Scholar]
  91. Watt N.T. Hooper N.M. Prion protein in Alzheimer’s disease. Future Neurol. 2007 2 6 587 590 10.2217/14796708.2.6.587 25364748
    [Google Scholar]
  92. Eisenberg D. Jucker M. The amyloid state of proteins in human diseases. Cell 2012 148 6 1188 1203 10.1016/j.cell.2012.02.022 22424229
    [Google Scholar]
  93. Ayers J.I. Prusiner S.B. Prion protein – mediator of toxicity in multiple proteinopathies. Nat. Rev. Neurol. 2020 16 4 187 188 10.1038/s41582‑020‑0332‑8
    [Google Scholar]
  94. Maheshwari P. Eslick G.D. Bacterial infection and Alzheimer’s disease: A meta-analysis. J. Alzheimers Dis. 2014 43 3 957 966 10.3233/JAD‑140621 25182736
    [Google Scholar]
  95. Nayeri Chegeni T. Sarvi S. Moosazadeh M. Is Toxoplasma gondii a potential risk factor for Alzheimer’s disease? A systematic review and meta-analysis. Microb. Pathog. 2019 137 103751 10.1016/j.micpath.2019.103751 31536800
    [Google Scholar]
  96. Pruntel S.M. van Munster B.C. de Vries J.J. Vissink A. Visser A. Oral health as a risk factor for Alzheimer disease. J. Prev. Alzheimers Dis. 2024 11 1 249 258 10.14283/jpad.2023.82 38230738
    [Google Scholar]
  97. Caradonna A. Patel T. Toleska M. Alabed S. Chang S.L. Meta-analysis of APP expression modulated by SARS-CoV-2 infection via the ACE2 receptor. Int. J. Mol. Sci. 2022 23 3 1182 10.3390/ijms23031182 35163117
    [Google Scholar]
  98. Mahin A. Soman S.P. Modi P.K. Raju R. Prasad T.S.K. Abhinand C.S. Meta-analysis of the serum/plasma proteome identifies significant associations between COVID-19 with Alzheimer’s/Parkinson’s diseases. J. Neurovirol. 2024 30 1 57 70 10.1007/s13365‑023‑01191‑7 38167982
    [Google Scholar]
  99. Talwar P. Gupta R. Kushwaha S. Viral induced oxidative and inflammatory response in Alzheimer’s disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach. Curr. Neuropharmacol. 2019 17 4 352 365 10.2174/1570159X16666180419124508 29676229
    [Google Scholar]
  100. Elwishahy A. Antia K. Bhusari S. Ilechukwu N.C. Horstick O. Winkler V. Porphyromonas gingivalis as a risk factor to Alzheimer’s disease: A systematic review. J. Alzheimers Dis. Rep. 2021 5 1 721 732 10.3233/ADR‑200237 34755046
    [Google Scholar]
  101. Salhi L. Al Taep Y. Salmon E. Van Hede D. Lambert F. How periodontitis or periodontal bacteria can influence Alzheimer’s disease features? A systematic review of pre-clinical studies. J. Alzheimers Dis. 2023 96 3 979 1010 10.3233/JAD‑230478 37927257
    [Google Scholar]
  102. Zang Y. Lai X. Li C. Ding D. Wang Y. Zhu Y. The role of gut microbiota in various neurological and psychiatric disorders—an evidence mapping based on quantified evidence. Mediators Inflamm. 2023 2023 1 16 10.1155/2023/5127157 36816743
    [Google Scholar]
  103. Zhang Z.B. Zeng Q.G. Yan R.M. Wang Y. Zou Z.R. Zhu D. Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J. Microbiol. Biotechnol. 2011 27 3 479 486 10.1007/s11274‑010‑0476‑6
    [Google Scholar]
  104. Popli D Anil V Subramanyam A B Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol 2018 46 (sup1) 373 83 10.1080/21691401.2018.1434188
    [Google Scholar]
  105. WHO infection-prevention control report. 2025. Available from: https://www.who.int/teams/integrated-health-services/infection-prevention-control/core-components
  106. WHO Training resources on IPC report. 2025 Available from: https://www.who.int/teams/integrated-health-services/infection-prevention-control/ipc-training-resources#CAUTI
  107. WHO report, Injection safety. 2025 Available from: https:// www.who.int/teams/integra ted-health-services/infection-prevention-control/injection-safety
  108. WHO, IPC and antimicrobial resistance (AMR). 2025 Available from:[https://www.who.int/teams/integrated-health-services /infection-prevention-control/ipc-and-antimicrobial-resistance
    [Google Scholar]
  109. Training resources on IPC. 2025 Available from: https://www.who.int/teams/integrated-health-services/infection-prevention-control/ipc-training-resources#environment
/content/journals/cgt/10.2174/0115665232389348250722073721
Loading
/content/journals/cgt/10.2174/0115665232389348250722073721
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bacteria ; AD ; virus ; WHO guidelines ; fungi ; Pathogens
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test