Skip to content
2000
image of Targeted Therapies and Computational Approaches in the Management of Crohn’s Disease

Abstract

Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract, presents significant challenges in clinical medicine due to its multifactorial etiology and varied therapeutic responses. This review examines the diverse causes of CD, including genetic predispositions identified through genome-wide association studies (GWAS), which involve scanning the genome for single-nucleotide polymorphisms associated with CD risk, as well as environmental triggers, such as diet and alterations in the microbiome. Biomarkers, such as fecal calprotectin and C-reactive protein (CRP), as well as genetic markers like NOD2 mutations, provide critical tools for diagnosis and treatment stratification. Advances in computational methodologies, including multi-omics analyses and machine learning, have enhanced our understanding of CD pathophysiology and therapeutic outcomes. Traditional treatments, including immunomodulators and biologics, such as anti-TNF agents, have laid the groundwork for novel cytokine-targeted therapies, such as IL-12/23 inhibitors (., ustekinumab) and integrin inhibitors (., vedolizumab), which aim to improve mucosal healing and reduce relapse rates. However, integrating personalized medicine into clinical practice remains challenging due to the heterogeneity of CD and limitations in biomarker validation. The integration of predictive biomarkers with computational tools enables clinicians to tailor therapy at the individual level, improving remission rates, minimizing adverse effects, and enhancing long-term disease control. These personalized strategies show promise in shifting CD management toward a more effective, patient-specific model of care. This review underscores the potential of personalized therapeutic strategies, leveraging molecular and computational insights, to optimize disease management and improve patient outcomes in CD.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232389255250818093932
2025-08-27
2025-10-29
Loading full text...

Full text loading...

References

  1. Zhang Y.Z. Li Y.Y. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 2023 8 7 638 648 10.1016/S2468‑1253(23)00089‑5
    [Google Scholar]
  2. Roda G. Chien Ng S. Kotze P.G. Crohn’s disease. Nat. Rev. Dis. Primers 2020 6 1 22 10.1038/s41572‑020‑0156‑2 32242028
    [Google Scholar]
  3. Kobayashi T. Siegmund B. Le Berre C. Ulcerative colitis. Nat. Rev. Dis. Primers 2020 6 1 74 10.1038/s41572‑020‑0205‑x 32913180
    [Google Scholar]
  4. Liu J.Z. van Sommeren S. Huang H. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 2015 47 9 979 986 10.1038/ng.3359 26192919
    [Google Scholar]
  5. Franke A. McGovern D.P.B. Barrett J.C. Meta-analysis increases to 71 the tally of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 2010 42 1118 1125 10.1038/ng.717 21102463
    [Google Scholar]
  6. Lee H.S. Oh H. Yang S.K. X chromosome-wide association study identifies a susceptibility locus for inflammatory bowel disease in Koreans. J. Crohn’s Colitis 2017 11 7 820 830 10.1093/ecco‑jcc/jjx023 28333213
    [Google Scholar]
  7. Zaidi D. Wine E. Regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) in inflammatory bowel diseases. Front Pediatr. 2018 6 317 10.3389/fped.2018.00317 30425977
    [Google Scholar]
  8. Gálvez J. Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014 2014 1 14 10.1155/2014/928461 25101191
    [Google Scholar]
  9. Targan S.R. Biology of inflammation in Crohn’s disease: Mechanisms of action of anti-TNF-a therapy. Can. J. Gastroenterol. Hepatol. 2000 14 409396 10.1155/2000/409396
    [Google Scholar]
  10. Kanai T. Watanabe M. Okazawa A. Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn’s disease. Gastroenterology 2000 119 6 1514 1523 10.1053/gast.2000.20260 11113073
    [Google Scholar]
  11. Bernstein C.N. Hitchon C.A. Walld R. Increased burden of psychiatric disorders in inflammatory bowel disease. Inflamm. Bowel Dis. 2019 25 2 360 368 10.1093/ibd/izy235 29986021
    [Google Scholar]
  12. Peterson L.W. Artis D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014 14 3 141 153 10.1038/nri3608 24566914
    [Google Scholar]
  13. Mowat A.M. Agace W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014 14 10 667 685 10.1038/nri3738 25234148
    [Google Scholar]
  14. Ramanan D. Tang M.S. Bowcutt R. Loke P. Cadwell K. NOD2 helps control pathogens and protect commensals by regulating the ileal microbiota. Mucosal Immunol. 2014 7 3 1 10 10.1038/mi.2013.112
    [Google Scholar]
  15. Maloy K.J. Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011 474 7351 298 306 10.1038/nature10208 21677746
    [Google Scholar]
  16. Sarra M. Pallone F. MacDonald T.T. Monteleone G. IL-23/IL-17 axis in IBD. Inflamm. Bowel Dis. 2010 16 10 1808 1813 10.1002/ibd.21248 20222127
    [Google Scholar]
  17. Khor B. Gardet A. Xavier R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011 474 7351 307 317 10.1038/nature10209 21677747
    [Google Scholar]
  18. Ananthakrishnan A.N. Environmental risk factors for inflammatory bowel diseases: A review. Dig. Dis. Sci. 2015 60 2 290 298 10.1007/s10620‑014‑3350‑9 25204669
    [Google Scholar]
  19. Torres J. Mehandru S. Colombel J.F. Peyrin-Biroulet L. Crohn’s disease. Lancet 2017 389 10080 1741 1755 10.1016/S0140‑6736(16)31711‑1 27914655
    [Google Scholar]
  20. Piovani D. Danese S. Peyrin-Biroulet L. Nikolopoulos G.K. Lytras T. Bonovas S. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses. Gastroenterology 2019 157 3 647 659.e4 10.1053/j.gastro.2019.04.016 31014995
    [Google Scholar]
  21. Ng S.C. Tang W. Leong R.W. Environmental risk factors in inflammatory bowel disease: A population-based case-control study in Asia-Pacific. Gut 2015 64 7 1063 1071 10.1136/gutjnl‑2014‑307410 25217388
    [Google Scholar]
  22. Levine A. Sigall Boneh R. Wine E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut 2018 67 9 1726 1738 10.1136/gutjnl‑2017‑315866 29777041
    [Google Scholar]
  23. Ortizo R. Lee S.Y. Nguyen E.T. Jamal M.M. Bechtold M.M. Nguyen D.L. Exposure to oral contraceptives increases the risk for development of inflammatory bowel disease: A meta-analysis of case-controlled and cohort studies. Eur. J. Gastroenterol. Hepatol. 2017 29 9 1064 1070 10.1097/MEG.0000000000000915 28542115
    [Google Scholar]
  24. Ananthakrishnan A.N. Higuchi L.M. Huang E.S. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: A cohort study. Ann. Intern. Med. 2012 156 5 350 359 10.7326/0003‑4819‑156‑5‑201203060‑00007 22393130
    [Google Scholar]
  25. Moninuola O.O. Milligan W. Lochhead P. Khalili H. Systematic review with meta‐analysis: Association between acetaminophen and nonsteroidal anti‐inflammatory drugs (NSAID s) and risk of Crohn’s disease and ulcerative colitis exacerbation. Aliment. Pharmacol. Ther. 2018 47 11 1428 1439 10.1111/apt.14606 29620794
    [Google Scholar]
  26. Ungaro R. Chang H.L. Cote-Daigneaut J. Mehandru S. Atreja A. Colombel J.F. Statins associated with decreased risk of new onset inflammatory bowel disease. Am. J. Gastroenterol. 2016 111 10 1416 1423 10.1038/ajg.2016.233 27296939
    [Google Scholar]
  27. Zeng Z. Zhu Z. Yang Y. Incidence and clinical characteristics of inflammatory bowel disease in a developed region of G uangdong P rovince, C hina: A prospective population‐based study. J. Gastroenterol. Hepatol. 2013 28 7 1148 1153 10.1111/jgh.12164 23432198
    [Google Scholar]
  28. Ng S.C. Tang W. Ching J.Y. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology 2013 145 1 158 165.e2 10.1053/j.gastro.2013.04.007 23583432
    [Google Scholar]
  29. Kim H.J. Hann H.J. Hong S.N. Incidence and natural course of inflammatory bowel disease in Korea, 2006-2012: A nationwide population-based study. Inflamm. Bowel Dis. 2015 21 3 623 630 10.1097/MIB.0000000000000313 25647154
    [Google Scholar]
  30. Park S.H. Kim Y.J. Rhee K.H. A 30-year trend analysis in the epidemiology of inflammatory bowel disease in the Songpa-Kangdong district of Seoul, Korea in 1986–2015. J. Crohn’s Colitis 2019 13 11 1410 1417 10.1093/ecco‑jcc/jjz081 30989166
    [Google Scholar]
  31. Ananthakrishnan A.N. Bernstein C.N. Iliopoulos D. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018 15 1 39 49 10.1038/nrgastro.2017.136 29018271
    [Google Scholar]
  32. Halfvarson J. Bodin L. Tysk C. Lindberg E. Järnerot G. Inflammatory bowel disease in a Swedish twin cohort: A long-term follow-up of concordance and clinical characteristics. Gastroenterology 2003 124 7 1767 1773 10.1016/S0016‑5085(03)00385‑8 12806610
    [Google Scholar]
  33. Hugot J.P. Chamaillard M. Zouali H. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001 411 6837 599 603 10.1038/35079107 11385576
    [Google Scholar]
  34. Ogura Y. Bonen D.K. Inohara N. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001 411 6837 603 606 10.1038/35079114 11385577
    [Google Scholar]
  35. Yamazaki K. McGovern D. Ragoussis J. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum. Mol. Genet. 2005 14 22 3499 3506 10.1093/hmg/ddi379 16221758
    [Google Scholar]
  36. Huang H. Fang M. Jostins L. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 2017 547 7662 173 178 10.1038/nature22969 28658209
    [Google Scholar]
  37. Ellinghaus D. Jostins L. Spain S.L. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 2016 48 5 510 518 10.1038/ng.3528 26974007
    [Google Scholar]
  38. Jostins L. Ripke S. Weersma R.K. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012 491 7422 119 124 10.1038/nature11582 23128233
    [Google Scholar]
  39. Ogura Y. Lala S. Xin W. Expression of NOD2 in Paneth cells: A possible link to Crohn’s ileitis. Gut 2003 52 11 1591 1597 10.1136/gut.52.11.1591 14570728
    [Google Scholar]
  40. Sidiq T. Yoshihama S. Downs I. Kobayashi K.S. NOD2: A critical regulator of ileal microbiota and Crohn’s disease. Front. Immunol. 2016 7 367 10.3389/fimmu.2016.00367 27703457
    [Google Scholar]
  41. Uniken Venema W.T.C. Voskuil M.D. Dijkstra G. Weersma R.K. Festen E.A.M. The genetic background of inflammatory bowel disease: From correlation to causality. J. Pathol. 2017 241 2 146 158 10.1002/path.4817 27785786
    [Google Scholar]
  42. Cleynen I. Boucher G. Jostins L. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: A genetic association study. Lancet 2016 387 10014 156 167 10.1016/S0140‑6736(15)00465‑1 26490195
    [Google Scholar]
  43. Chan I.S. Ginsburg G.S. Personalized medicine: Progress and promise. Annu. Rev. Genomics Hum. Genet. 2011 12 1 217 244 10.1146/annurev‑genom‑082410‑101446 21721939
    [Google Scholar]
  44. Hedin C.R. Stagg A.J. Whelan K. Lindsay J.O. Family studies in Crohn’s disease: New horizons in understanding disease pathogenesis, risk and prevention: Figure 1. Gut 2012 61 2 311 318 10.1136/gut.2011.238568 21561876
    [Google Scholar]
  45. Collins F.S. Shattuck lecture--medical and societal consequences of the human genome project. N. Engl. J. Med. 1999 341 1 28 37 10.1056/NEJM199907013410106 10387940
    [Google Scholar]
  46. Ginsburg G.S. Willard H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009 154 6 277 287 10.1016/j.trsl.2009.09.005 19931193
    [Google Scholar]
  47. Secretary’s Advisory Committee on Genetics Health and Society. U.S. system of oversight of genetic testing: A response to the charge of the secretary of health and human services. 2008 Available from: https://www.genome.gov/sites/default/files/genome-old/pages/About/NACHGR/May2008AgendaDocuments/GenOver sightReccs.pdf
  48. Vermeire S. Ferrante M. Rutgeerts P. Recent advances: Personalised use of current Crohn’s disease therapeutic options. Gut 2013 62 10 1511 1515 10.1136/gutjnl‑2012‑303958 24037876
    [Google Scholar]
  49. Colombel J.F. Sandborn W.J. Reinisch W. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 2010 362 15 1383 1395 10.1056/NEJMoa0904492 20393175
    [Google Scholar]
  50. Porter A.C. Aubrecht J. Birch C. Biomarkers of Crohn’s disease to support the development of new therapeutic interventions. Inflamm. Bowel Dis. 2020 26 10 1498 1508 10.1093/ibd/izaa215 32840322
    [Google Scholar]
  51. Koukos G. Polytarchou C. Kaplan J.L. Oikonomopoulos A. Hommes D.W. Iliopoulos D. MicroRNA biomarkers in inflammatory bowel diseases. Trends Mol. Med. 2021 27 2 145 159 10.1016/j.molmed.2020.09.005
    [Google Scholar]
  52. Fournier B.M. Parkos C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012 5 4 354 366 10.1038/mi.2012.24 22491176
    [Google Scholar]
  53. van Rheenen PF Van de Vijver E Fidler V Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: Diagnostic meta-analysis. BMJ 2010 341 jul15 1 c3369 10.1136/bmj.c3369 20634346
    [Google Scholar]
  54. Vernia F. Di Ruscio M. Stefanelli G. Viscido A. Frieri G. Latella G. Is fecal calprotectin an accurate marker in the management of Crohn’s disease? J. Gastroenterol. Hepatol. 2020 35 3 390 400 10.1111/jgh.14950 31795013
    [Google Scholar]
  55. Kennedy N.A. Jones G.R. Plevris N. Patenden R. Arnott I.D. Lees C.W. Association between level of fecal calprotectin and progression of Crohn’s disease. Clin. Gastroenterol. Hepatol. 2019 17 11 2269 2276.e4 10.1016/j.cgh.2019.02.017 30772585
    [Google Scholar]
  56. Foster A.J. Smyth M. Lakhani A. Jung B. Brant R.F. Jacobson K. Consecutive fecal calprotectin measurements for predicting relapse in pediatric Crohn’s disease patients. World J. Gastroenterol. 2019 25 10 1266 1277 10.3748/wjg.v25.i10.1266 30886509
    [Google Scholar]
  57. D’Amico F. Bonovas S. Danese S. Peyrin-Biroulet L. Review article: faecal calprotectin and histologic remission in ulcerative colitis. Aliment. Pharmacol. Ther. 2020 51 7 689 698 10.1111/apt.15662 32048751
    [Google Scholar]
  58. Røseth A.G. Schmidt P.N. Fagerhol M.K. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 1999 34 1 50 54 10.1080/00365529950172835 10048733
    [Google Scholar]
  59. Iskandar H.N. Ciorba M.A. Biomarkers in inflammatory bowel disease: Current practices and recent advances. Transl. Res. 2012 159 4 313 325 10.1016/j.trsl.2012.01.001 22424434
    [Google Scholar]
  60. Honap S. Chee D. Chapman T.P. Real-world effectiveness of tofacitinib for moderate to severe ulcerative colitis: A multi-centre UK experience. J. Crohn’s Colitis 2020 14 10 1385 1393 10.1093/ecco‑jcc/jjaa075
    [Google Scholar]
  61. Bhat S. Altajar S. Shankar D. Process and clinical outcomes of a biosimilar adoption program with infliximab-Dyyb. J. Manag. Care Spec. Pharm. 2020 26 4 410 416 10.18553/jmcp.2020.26.4.410 32223602
    [Google Scholar]
  62. Nikolaus S. Waetzig G.H. Butzin S. Evaluation of interleukin-6 and its soluble receptor components sIL-6R and sgp130 as markers of inflammation in inflammatory bowel diseases. Int. J. Colorectal Dis. 2018 33 7 927 936 10.1007/s00384‑018‑3069‑8 29748708
    [Google Scholar]
  63. Caviglia G. Rosso C. Stalla F. On-treatment decrease of serum interleukin-6 as a predictor of clinical response to biologic therapy in patients with inflammatory bowel diseases. J. Clin. Med. 2020 9 3 800 10.3390/jcm9030800 32183476
    [Google Scholar]
  64. Mizoguchi A. Yano A. Himuro H. Ezaki Y. Sadanaga T. Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J. Gastroenterol. 2018 53 4 465 474 10.1007/s00535‑017‑1401‑7 29075900
    [Google Scholar]
  65. Sands B.E. Chen J. Feagan B.G. Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn’s disease: A phase 2a study. Gastroenterology 2017 153 1 77 86.e6 10.1053/j.gastro.2017.03.049 28390867
    [Google Scholar]
  66. Schmechel S. Konrad A. Diegelmann J. Linking genetic susceptibility to Crohn’s disease with Th17 cell function: IL-22 serum levels are increased in Crohn’s disease and correlate with disease activity and IL23R genotype status. Inflamm. Bowel Dis. 2008 14 2 204 212 10.1002/ibd.20315 18022867
    [Google Scholar]
  67. Nielsen O.H. Gionchetti P. Ainsworth M. Rectal dialysate and fecal concentrations of neutrophil gelatinase-associated lipocalin, interleukin-8, and tumor necrosis factor-alpha in ulcerative colitis. Am. J. Gastroenterol. 1999 94 10 2923 2928 10.1111/j.1572‑0241.1999.01439.x 10520846
    [Google Scholar]
  68. Thorsvik S. Damås J.K. Granlund A. Fecal neutrophil gelatinase‐associated lipocalin as a biomarker for inflammatory bowel disease. J. Gastroenterol. Hepatol. 2017 32 1 128 135 10.1111/jgh.13598 27640344
    [Google Scholar]
  69. Thorsvik S. Bakke I. van Beelen Granlund A. Expression of neutrophil gelatinase-associated lipocalin (NGAL) in the gut in Crohn’s disease. Cell Tissue Res. 2018 374 2 339 348 10.1007/s00441‑018‑2860‑8 29869714
    [Google Scholar]
  70. Hasin Y. Seldin M. Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 18 1 83 10.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  71. Mosli M.H. Zou G. Garg S.K. C-reactive protein, fecal calprotectin, and stool lactoferrin for detection of endoscopic activity in Crohn’s disease. Cochrane Database Syst. Rev. 2015 7 CD012042 10.1002/14651858.CD012042
    [Google Scholar]
  72. Alghoul Z. Yang C. Merlin D. The current status of molecular biomarkers for inflammatory bowel disease. Biomedicines 2022 10 7 1492 10.3390/biomedicines10071492 35884797
    [Google Scholar]
  73. Sharma S. Role of biomarkers in monitoring and management of inflammatory bowel disease. Inflamm Bowel Dis J 2021
    [Google Scholar]
  74. Faubion W.A. Loftus E.V. Harmsen W.S. Zinsmeister A.R. Sandborn W.J. The natural history of corticosteroid therapy for inflammatory bowel disease: A population-based study. Gastroenterology 2001 121 2 255 260 10.1053/gast.2001.26279 11487534
    [Google Scholar]
  75. Kopylov U. Afif W. Cohen A. Subcutaneous ustekinumab for the treatment of anti-TNF resistant Crohn’s disease—The McGill experience. J. Crohn’s Colitis 2014 8 11 1516 1522 10.1016/j.crohns.2014.06.005 24996483
    [Google Scholar]
  76. Lamb CA Kennedy NA Raine T British society of gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019 68 s1-s106.(Suppl. 3) 10.1136/gutjnl‑2019‑318484 31562236
    [Google Scholar]
  77. Clinton J.W. Cross R.K. Personalized treatment for Crohn’s disease: Current approaches and future directions. Clin. Exp. Gastroenterol. 2023 16 249 276 10.2147/CEG.S360248 38111516
    [Google Scholar]
  78. Kim K.U. Kim J. Kim W.H. Min H. Choi C.H. Treatments of inflammatory bowel disease toward personalized medicine. Arch. Pharm. Res. 2021 44 3 293 309 10.1007/s12272‑021‑01318‑6 33763844
    [Google Scholar]
  79. Iacucci M. de Silva S. Ghosh S. Mesalazine in inflammatory bowel disease: A trendy topic once again? Can. J. Gastroenterol. 2010 24 2 127 133 10.1155/2010/586092 20151072
    [Google Scholar]
  80. Pithadia A.B. Jain S. Treatment of inflammatory bowel disease (IBD). Pharmacol. Rep. 2011 63 3 629 642 10.1016/S1734‑1140(11)70575‑8 21857074
    [Google Scholar]
  81. Sartori N. Stolf S.C. Silva S.B. Lopes G.C. Carrilho M. Influence of chlorhexidine digluconate on the clinical performance of adhesive restorations: A 3-year follow-up. J. Dent. 2013 41 12 1188 1195 10.1016/j.jdent.2013.09.004 24076103
    [Google Scholar]
  82. Ramamoorthy S. Cidlowski J.A. Corticosteroids. Rheum. Dis. Clin. North Am. 2016 42 1 15 31 10.1016/j.rdc.2015.08.002 26611548
    [Google Scholar]
  83. Dubois-Camacho K. Ottum P.A. Franco-Muñoz D. Glucocorticosteroid therapy in inflammatory bowel diseases: From clinical practice to molecular biology. World J. Gastroenterol. 2017 23 36 6628 6638 10.3748/wjg.v23.i36.6628 29085208
    [Google Scholar]
  84. Kemp R. Dunn E. Schultz M. Immunomodulators in inflammatory bowel disease: An emerging role for biologic agents. BioDrugs 2013 27 6 585 590 10.1007/s40259‑013‑0045‑2 23749336
    [Google Scholar]
  85. Nielsen O.H. Bjerrum J.T. Herfarth H. Rogler G. Recent advances using immunomodulators for inflammatory bowel disease. J. Clin. Pharmacol. 2013 53 6 575 588 10.1002/jcph.2 23408468
    [Google Scholar]
  86. Nielsen O.H. Vainer B. Rask-Madsen J. The treatment of inflammatory bowel disease with 6‐mercaptopurine or azathioprine. Aliment. Pharmacol. Ther. 2001 15 11 1699 1708 10.1046/j.1365‑2036.2001.01102.x 11683683
    [Google Scholar]
  87. Nielsen O.H. Ainsworth M.A. Tumor necrosis factor inhibitors for inflammatory bowel disease. N. Engl. J. Med. 2013 369 8 754 762 10.1056/NEJMct1209614 23964937
    [Google Scholar]
  88. Neurath M. Thiopurines in IBD: What is their mechanism of action? Gastroenterol. Hepatol. 2010 6 7 435 436 20827366
    [Google Scholar]
  89. Nielsen O.H. Ainsworth M.A. Steenholdt C. Methotrexate for inflammatory bowel disease: Time for reconsideration. Expert Rev. Gastroenterol. Hepatol. 2019 13 5 407 409 10.1080/17474124.2019.1596797 30895827
    [Google Scholar]
  90. Li P. Zheng Y. Chen X. Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics. Front. Pharmacol. 2017 8 460 10.3389/fphar.2017.00460 28785220
    [Google Scholar]
  91. Rutgeerts P. Sandborn W.J. Feagan B.G. Reinisch W. Olson A. Johanns J. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2005 353 23 2462 2476 10.1056/NEJMoa050516 16339095
    [Google Scholar]
  92. Dige A. Støy S. Thomsen K.L. Increased numbers of lamina propria Th17 cells in active inflammatory bowel disease. Inflamm. Bowel Dis. 2013 19 12 2437 2444
    [Google Scholar]
  93. Bogaert S. Van Steen K. Vermeire S. Rutgeerts P. Ferrante M. Van Assche G. Differential mucosal expression of Th17-related genes between the ileum and colon in inflammatory bowel disease. BMC Immunol. 2010 11 61 10.1186/1471‑2172‑11‑61 21144017
    [Google Scholar]
  94. Benson J.M. Peritt D. Scallon B.J. Discovery and mechanism of ustekinumab. MAbs 2011 3 6 535 545 10.4161/mabs.3.6.17815 22123062
    [Google Scholar]
  95. Sandborn W.J. Gasink C. Gao L.L. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N. Engl. J. Med. 2012 367 16 1519 1528 10.1056/NEJMoa1203572 23075178
    [Google Scholar]
  96. Feagan B.G. Sandborn W.J. Gasink C. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 2016 375 20 1946 1960 10.1056/NEJMoa1602773 27959607
    [Google Scholar]
  97. Bek S. Nielsen J.V. Bojesen A.B. Systematic review: Genetic biomarkers associated with anti‐TNF treatment response in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2016 44 6 554 567 10.1111/apt.13736 27417569
    [Google Scholar]
  98. Tong X. Zhang Y. Zhang Y. Association between TNF-α promoter polymorphisms and anti-TNF therapy response in patients with inflammatory bowel disease: a meta-analysis. J. Crohn’s Colitis 2013 7 6 e201 e208
    [Google Scholar]
  99. Hlavaty T. Vermeire S. Noman M. Polymorphisms in apoptosis genes predict response to infliximab in Crohn’s disease. Gut 2005 54 8 1053 1057 10.1111/j.1365‑2036.2005.02635.x 16181301
    [Google Scholar]
  100. Xiao Q. Sun J. Zhang S. Precision medicine in inflammatory bowel disease: genetic signatures, microbiome, and pharmacogenetic insights. J. Crohn’s Colitis 2023 17 4 445 460
    [Google Scholar]
  101. Linares-Pineda T.M. Cañadas-Garre M. Sánchez-Pozo A. Calleja-Hernández M.Á. Pharmacogenetic biomarkers of response in Crohn’s disease. Pharmacogenomics J. 2018 18 1 1 13 10.1038/tpj.2017.27 28631723
    [Google Scholar]
  102. Dideberg V. Théâtre E. Farnir F. The TNF/ADAM 17 system: Implication of an ADAM 17 haplotype in the clinical response to infliximab in Crohn’s disease. Pharmacogenet. Genomics 2006 16 10 727 734 10.1097/01.fpc.0000230117.26581.a4 17001292
    [Google Scholar]
  103. Tadbiri S. Peyrin-Biroulet L. Serrero M. Impact of vedolizumab therapy on extra‐intestinal manifestations in patients with inflammatory bowel disease: A multicentre cohort study nested in the Observ ‐ IBD cohort. Aliment. Pharmacol. Ther. 2018 47 4 485 493 10.1111/apt.14419 29250803
    [Google Scholar]
  104. Chateau T. Bonovas S. Le Berre C. Mathieu N. Danese S. Peyrin-Biroulet L. Vedolizumab treatment in extra-intestinal manifestations in inflammatory bowel disease: A systematic review. J. Crohn’s Colitis 2019 13 12 1569 1577 10.1093/ecco‑jcc/jjz095 31076751
    [Google Scholar]
  105. Liefferinckx C. Verstockt B. Gils A. Long-term clinical effectiveness of ustekinumab in patients with Crohn’s disease who failed biologic therapies: A national cohort study. J. Crohn’s Colitis 2019 13 11 1401 1409 10.1093/ecco‑jcc/jjz080 30989232
    [Google Scholar]
  106. Pugliese D. Daperno M. Fiorino G. Real-life effectiveness of ustekinumab in inflammatory bowel disease patients with concomitant psoriasis or psoriatic arthritis: An IG-IBD study. Dig. Liver Dis. 2019 51 7 972 977 10.1016/j.dld.2019.03.007 30992173
    [Google Scholar]
  107. Gecse K.B. Lovász B.D. Farkas K. Efficacy and safety of biosimilar infliximab in inflammatory bowel diseases: A prospective, multicentre, nationwide cohort. J. Crohn’s Colitis 2016 10 2 133 140 10.1093/ecco‑jcc/jjv220 26661272
    [Google Scholar]
  108. Wong S. Cross R.K. Loss of response to anti-TNF therapy in inflammatory bowel disease: Mechanisms, risk factors, and management strategies. Curr. Gastroenterol. Rep. 2017 19 8 42 28733944
    [Google Scholar]
  109. Greuter T. Biedermann L. Vavricka S.R. Loss of response to anti-TNF therapy in inflammatory bowel disease: Definition, epidemiology, and management. J. Crohn’s Colitis 2020 14 4 577 588
    [Google Scholar]
  110. Fine K.D. Kamm M.A. Baumgart D.C. Management of non-response and loss of response to anti-tumor necrosis factor therapy in inflammatory bowel disease: A systematic review. J. Crohn’s Colitis 2019 13 3 309 322
    [Google Scholar]
  111. Kennedy N.A. Heap G.A. Green H.D. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: Results from the UK inflammatory bowel disease bioresource. Gut 2019 68 2 250 258
    [Google Scholar]
  112. Dotan I. Ron Y. Yanai H. Patient factors that increase infliximab clearance and shorten half-life in inflammatory bowel disease: A prospective cohort study. Gut 2015 64 6 1028 1035
    [Google Scholar]
  113. Zhou Y. Zhan C. Huang Y. Liu H. Comprehensive bioinformatics analyses of Crohn’s disease. Mol. Med. Rep. 2017 15 4 2267 2272 10.3892/mmr.2017.6250 28260036
    [Google Scholar]
  114. Beam A.L. Kohane I.S. Big data and machine learning in health care. JAMA 2018 319 13 1317 1318 10.1001/jama.2017.18391 29532063
    [Google Scholar]
  115. Chen L. Cai C. Chen V. Lu X. Learning a deep representation from multi-omics data for predicting patient survival outcomes. Brief. Bioinform. 2022 23 1 bbab389 10.1093/bib/bbab389 34571531
    [Google Scholar]
  116. Wendelsdorf K. Bassaganya-Riera J. Hontecillas R. Eubank S. Model of colonic inflammation: Immune modulatory mechanisms in inflammatory bowel disease. J. Theor. Biol. 2010 264 4 1225 1239 10.1016/j.jtbi.2010.03.027 20362587
    [Google Scholar]
  117. Polat I.H. Gunaydin D. Kandemir B. A systems immunology approach to modeling inflammatory bowel disease. Front. Physiol. 2021 12 636709
    [Google Scholar]
  118. de Lange K.M. Moutsianas L. Lee J.C. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017 49 2 256 261 10.1038/ng.3760 28067908
    [Google Scholar]
  119. Pasini G. Zedda G. Monteleone G. Pallone F. Zorzi F. Machine learning analysis of transcriptomic data for the identification of IBD molecular subtypes. Front. Med. 2021 8 661544
    [Google Scholar]
  120. Li J. Wei Z. Hakonarson H. Application of computational methods in genetic study of inflammatory bowel disease. World J. Gastroenterol. 2016 22 3 949 960 10.3748/wjg.v22.i3.949 26811639
    [Google Scholar]
  121. Zhernakova A. van Diemen C.C. Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 2015 16 10 618 632 10.1038/nrg4004 19092835
    [Google Scholar]
  122. McGovern D.P.B. Kugathasan S. Cho J.H. Genetics of inflammatory bowel diseases. Gastroenterology 2015 149 5 1163 1176.e2 10.1053/j.gastro.2015.08.001 26255561
    [Google Scholar]
  123. Läll K. Mägi R. Morris A. Metspalu A. Fischer K. Personalized risk prediction for type 2 diabetes: The potential of genetic risk scores. Genet. Med. 2017 19 3 322 329 10.1038/gim.2016.103 27513194
    [Google Scholar]
  124. Chatterjee N. Shi J. García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 2016 17 7 392 406 10.1038/nrg.2016.27 27140283
    [Google Scholar]
  125. Martin A.R. Kanai M. Kamatani Y. Okada Y. Neale B.M. Daly M.J. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 2019 51 4 584 591 10.1038/s41588‑019‑0379‑x 30926966
    [Google Scholar]
  126. Farh K.K.H. Marson A. Zhu J. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015 518 7539 337 343 10.1038/nature13835 25363779
    [Google Scholar]
  127. Dixon J.R. Selvaraj S. Yue F. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012 485 7398 376 380 10.1038/nature11082 22495300
    [Google Scholar]
  128. Li Y.I. Wong G. Humphrey J. Raj T. Gerstein M. Understanding disease risk through integration of genetics and epigenetics. Cold Spring Harb. Perspect. Med. 2017 8 6 a024817 10.1101/cshperspect.a024817
    [Google Scholar]
  129. Argelaguet R. Velten B. Arnol D. Dietrich S. Zenz T. Marioni J.C. Multi-omics factor analysis-A framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 2020 16 6 e9120 10.15252/msb.20199120 29925568
    [Google Scholar]
  130. Proctor L.M. Creasy H.H. Fettweis J.M. The integrative human microbiome project. Nature 2019 569 7758 641 648 10.1038/s41586‑019‑1238‑8 31142853
    [Google Scholar]
  131. Franzosa E.A. Sirota-Madi A. Avila-Pacheco J. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 2018 4 2 293 305 10.1038/s41564‑018‑0306‑4 30531976
    [Google Scholar]
  132. Huang S.C. Chen S.T. Hsieh H.Y. Chen C.M. Artificial intelligence in inflammatory bowel disease: Current and future applications. World J. Gastroenterol. 2021 27 23 3452 3467 10.3748/wjg.v27.i23.3452
    [Google Scholar]
  133. Ungaro R. Mehandru S. Allen P.B. Peyrin-Biroulet L. Colombel J.F. Ulcerative colitis. Lancet 2017 389 10080 1756 1770 10.1016/S0140‑6736(16)32126‑2 27914657
    [Google Scholar]
  134. West N.R. Hegazy A.N. Owens B.M.J. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 2017 23 5 579 589 10.1038/nm.4307 28368383
    [Google Scholar]
  135. Schwalbe N. Wahl B. Artificial intelligence and the future of global health. Lancet 2020 395 10236 1579 1586 10.1016/S0140‑6736(20)30226‑9 32416782
    [Google Scholar]
  136. Purcell S. Neale B. Todd-Brown K. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007 81 3 559 575 10.1086/519795 17701901
    [Google Scholar]
  137. Kang H.M. Sul J.H. Service S.K. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010 42 4 348 354 10.1038/ng.548 20208533
    [Google Scholar]
  138. Zhou X. Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 2014 11 4 407 409 10.1038/nmeth.2848 24531419
    [Google Scholar]
  139. Delaneau O. Marchini J. Zagury J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 2012 9 2 179 181 10.1038/nmeth.1785 22138821
    [Google Scholar]
  140. Scheet P. Stephens M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 2006 78 4 629 644 10.1086/502802 16532393
    [Google Scholar]
  141. Wang K. Li M. Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 2007 81 6 1278 1283 10.1086/522374 17966091
    [Google Scholar]
  142. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  143. Shannon P. Markiel A. Ozier O. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  144. Franceschini A. Szklarczyk D. Frankild S. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012 41 D1 D808 D815 10.1093/nar/gks1094 23203871
    [Google Scholar]
  145. Vogel C.L. Cobleigh M.A. Tripathy D. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 2002 20 3 719 726 10.1200/JCO.2002.20.3.719 11821453
    [Google Scholar]
  146. Peng S. Xu H. Ding M. Zhang H. Chen C. Spatial transcriptomics in gastrointestinal diseases: A new frontier in mucosal immunology. Gut 2023 72 1 25 34
    [Google Scholar]
  147. Martin J.C. Chang C. Boschetti G. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 2019 178 6 1493 1508.e20 10.1016/j.cell.2019.08.008 31474370
    [Google Scholar]
  148. Viceconti M. Henney A. Morley-Fletcher E. In silico clinical trials: How computer simulation will transform the biomedical industry. Int. J. Clin. Trials 2016 3 2 37 46 10.18203/2349‑3259.ijct20161408
    [Google Scholar]
  149. Graham D.B. Xavier R.J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020 578 7796 527 539 10.1038/s41586‑020‑2025‑2 32103191
    [Google Scholar]
  150. Verstockt B. Verstockt S. Veny M. Expression levels of 4 genes in colon tissue might be used to predict which patients will enter endoscopic remission after vedolizumab therapy for inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2020 18 5 1142 1151.e10 10.1016/j.cgh.2019.08.030 31446181
    [Google Scholar]
  151. Ananthakrishnan A.N. Luo C. Yajnik V. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 2017 21 5 603 610.e3 10.1016/j.chom.2017.04.010 28494241
    [Google Scholar]
  152. De Souza H.S. Fiocchi C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2018 15 7 400 418 26627550
    [Google Scholar]
  153. Matsuoka K. Biomarkers in inflammatory bowel disease: Current position and future perspective. Clin. J. Gastroenterol. 2018 11 1 1 10 10.1007/s12328‑017‑0813‑5 29285689
    [Google Scholar]
  154. Zhang H. Zhang X. Ethics and governance in precision medicine: Balancing scientific progress and patient rights. J. Med. Ethics 2020 46 7 471 476 10.1136/medethics‑2019‑105756
    [Google Scholar]
  155. Terry S.F. Equity and inclusion in precision medicine: Bridging the genomics divide. Genet. Med. 2021 23 5 812 816 10.1038/s41436‑021‑01070‑y
    [Google Scholar]
  156. Lloyd-Price J. Arze C. Ananthakrishnan A.N. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019 569 7758 655 662 10.1038/s41586‑019‑1237‑9 31142855
    [Google Scholar]
  157. Ungaro R. A strategic roadmap for achieving precision medicine in IBD. Gastroenterology 2020 158 4 891 900
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232389255250818093932
Loading
/content/journals/cgt/10.2174/0115665232389255250818093932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test