Skip to content
2000
image of Tailored Therapies for Hereditary Diabetes: Unraveling the Genetic Underpinnings of MODY and Neonatal Diabetes

Abstract

Introduction

Hereditary forms of diabetes, including Maturity-Onset Diabetes of the Young (MODY) and Neonatal Diabetes Mellitus (NDM), are rare monogenic disorders caused by mutations in genes involved in pancreatic development, beta-cell function, and insulin secretion. Unlike the polygenic nature of type 1 and type 2 diabetes, these forms provide a unique model for precision medicine.

Methods

A comprehensive literature review was conducted to explore the molecular genetics, clinical features, diagnostic advancements, and therapeutic strategies related to MODY and NDM. Particular focus was placed on genotype-phenotype correlations and responsiveness to targeted treatments.

Results

Distinct gene mutations such as , , and in MODY, and , , and in NDM are associated with specific clinical characteristics and treatment responses. Genetic testing plays a crucial role in early diagnosis and management. For instance, sulfonylurea therapy has effectively replaced insulin in some cases of NDMre with channel mutations. In MODY, accurate genetic classification helps guide the use of oral hypoglycemics or dietary interventions instead of unnecessary insulin therapy.

Discussion

Understanding the genetic basis of MODY and NDM has enabled clinicians to personalize treatment plans, improving disease outcomes. Genetic diagnosis not only facilitates better classification but also informs prognosis and guides family screening. Despite these advances, challenges remain in access to testing and awareness among healthcare providers.

Conclusion

Molecular insights into MODY and NDM have revolutionized their diagnosis and treatment. Gene-based therapeutic approaches enhance glycemic control and quality of life, marking a significant step toward precision medicine in diabetes care. Ongoing research will be key to further optimizing individualized treatment strategies.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232381943250825055516
2025-08-29
2025-10-29
Loading full text...

Full text loading...

References

  1. Bell G.I. Xiang K. Horita S. Sanz N. Karam J.H. The molecular genetics of diabetes mellitus. Ciba Found. Symp. 1987 130 167 183 2894928
    [Google Scholar]
  2. Fajans S.S. Bell G.I. Polonsky K.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 2001 345 13 971 980 10.1056/NEJMra002168 11575290
    [Google Scholar]
  3. Greeley S.A.W. Tucker S.E. Naylor R.N. Bell G.I. Philipson L.H. Neonatal diabetes mellitus: A model for personalized medicine. Trends Endocrinol. Metab. 2010 21 8 464 472 10.1016/j.tem.2010.03.004 20434356
    [Google Scholar]
  4. Anık A. Çatlı G. Abacı A. Böber E. Maturity-onset diabetes of the young (MODY): An update. J. Pediatr. Endocrinol. Metab. 2015 28 3-4 251 263 10.1515/jpem‑2014‑0384 25581748
    [Google Scholar]
  5. Beltrand J. Busiah K. Vaivre-Douret L. Neonatal diabetes mellitus. Front Pediatr. 2020 8 540718 10.3389/fped.2020.540718 33102403
    [Google Scholar]
  6. McDonald T.J. Colclough K. Brown R. Shields B. Shepherd M. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from Type 1 diabetes. Diabet. Med. 2011 28 1028
    [Google Scholar]
  7. Yahaya T.O. Ufuoma S.B. Genetics and pathophysiology of maturity-onset diabetes of the young (MODY): A Review of current trends. Oman Med. J. 2020 35 3 e126 10.5001/omj.2020.44 32489678
    [Google Scholar]
  8. Polak M. Cavé H. Neonatal diabetes mellitus: A disease linked to multiple mechanisms. Orphanet J. Rare Dis. 2007 2 1 12 10.1186/1750‑1172‑2‑12 17349054
    [Google Scholar]
  9. Chakera AJ Hattersley AT Monogenic disorders of the b cell. 2015
    [Google Scholar]
  10. Maestro M.A. Cardalda C. Boj S.F. Luco R.F. Servitja J.M. Ferrer J. Distinct roles of HNF1beta, HNF1α, and HNF4α in regulating pancreas development, beta-cell function and growth. Endocr. Dev. 2007 12 33 45 10.1159/000109603 17923767
    [Google Scholar]
  11. Molven A. Njølstad P.R. Role of molecular genetics in transforming diagnosis of diabetes mellitus. Expert Rev. Mol. Diagn. 2011 11 3 313 320 10.1586/erm.10.123 21463240
    [Google Scholar]
  12. Dwivedi M. Dwivedi J. Shen S. Dwivedi P. Guangli L. Xiarong X. Emerging Application of Nanocelluloses for Microneedle Devices. 2022 1 25
    [Google Scholar]
  13. Gardner R.J. Mackay D.J. Mungall A.J. An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 2000 9 4 589 596 10.1093/hmg/9.4.589 10699182
    [Google Scholar]
  14. Arima T. Drewell R.A. Arney K.L. A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus. Hum. Mol. Genet. 2001 10 14 1475 1483 10.1093/hmg/10.14.1475 11448939
    [Google Scholar]
  15. Docherty L.E. Kabwama S. Lehmann A. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype–phenotype correlation in an international cohort of patients. Diabetologia 2013 56 4 758 762 10.1007/s00125‑013‑2832‑1 23385738
    [Google Scholar]
  16. Mackay D.J.G. Callaway J.L.A. Marks S.M. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 2008 40 8 949 951 10.1038/ng.187 18622393
    [Google Scholar]
  17. Dwivedi J. Dwivedi M. Gupta S. Synthesized phytomolecular hybrids as natural interventions to manage hyperlipidemia and to ameliorate diabetes in streptozotocin induced mice. Polycycl. Aromat. Compd. 2022 42 9 6136 6154 10.1080/10406638.2021.1982731
    [Google Scholar]
  18. Rodrigo G. Standen N. ATP-sensitive potassium channels. Curr. Pharm. Des. 2005 11 15 1915 1940 10.2174/1381612054021015 15974968
    [Google Scholar]
  19. Gloyn A.L. Pearson E.R. Antcliff J.F. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 2004 350 18 1838 1849 10.1056/NEJMoa032922 15115830
    [Google Scholar]
  20. Babenko A.P. Polak M. Cavé H. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 2006 355 5 456 466 10.1056/NEJMoa055068 16885549
    [Google Scholar]
  21. Støy J. Edghill E.L. Flanagan S.E. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. USA 2007 104 38 15040 15044 10.1073/pnas.0707291104 17855560
    [Google Scholar]
  22. Balboa D. Saarimäki-Vire J. Borshagovski D. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. eLife 2018 7 e38519 10.7554/eLife.38519 30412052
    [Google Scholar]
  23. Garin I. Edghill E.L. Akerman I. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl. Acad. Sci. USA 2010 107 7 3105 3110 10.1073/pnas.0910533107 20133622
    [Google Scholar]
  24. Bonnefond A. Lomberk G. Buttar N. Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus. J. Biol. Chem. 2011 286 32 28414 28424 10.1074/jbc.M110.215822 21592955
    [Google Scholar]
  25. Wal P. Dwivedi J. Wal A. Kushwaha S. Diabetic patients with COVID-19 complications: Insights into prevalence, prognosis, combination medications, and underlying mechanisms. Curr. Diabetes Rev. 2023 19 7 e250822208008 10.2174/1573399819666220825164056 36028964
    [Google Scholar]
  26. Njølstad P.R. Søvik O. Cuesta-Muñoz A. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Engl. J. Med. 2001 344 21 1588 1592 10.1056/NEJM200105243442104 11372010
    [Google Scholar]
  27. Gloyn A.L. Ellard S. Shield J.P. Complete glucokinase deficiency is not a common cause of permanent neonatal diabetes. Diabetologia 2002 45 2 290 10.1007/s00125‑001‑0746‑9 11942315
    [Google Scholar]
  28. Vaxillaire M. Samson C. Cavé H. Metz C. Froguel P. Polak M. Glucokinase gene mutations are not a common cause of permanent neonatal diabetes in France. Diabetologia 2002 45 3 454 455 10.1007/s00125‑001‑0741‑1 11914755
    [Google Scholar]
  29. Johnson M.B. De Franco E. Greeley S.A.W. Trisomy 21 is a cause of permanent neonatal diabetes that is autoimmune but not HLA associated. Diabetes 2019 68 7 1528 1535 10.2337/db19‑0045 30962220
    [Google Scholar]
  30. Shields B.M. Hicks S. Shepherd M.H. Colclough K. Hattersley A.T. Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 2010 53 12 2504 2508 10.1007/s00125‑010‑1799‑4 20499044
    [Google Scholar]
  31. Pearson E.R. Starkey B.J. Powell R.J. Gribble F.M. Clark P.M. Hattersley A.T. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003 362 9392 1275 1281 10.1016/S0140‑6736(03)14571‑0 14575972
    [Google Scholar]
  32. Amed S. Oram R. Maturity-onset diabetes of the young (MODY): Making the right diagnosis to optimize treatment. Can. J. Diabetes 2016 40 5 449 454 10.1016/j.jcjd.2016.03.002 27130141
    [Google Scholar]
  33. Hattersley A Bruining J Shield J Njolstad P Donaghue KC The diagnosis and management of monogenic diabetes in children and adolescents 10 2009 10.1111/j.1399‑5448.2009.00571.x
  34. Johansson S. Irgens H. Chudasama K.K. Exome sequencing and genetic testing for MODY. PLoS One 2012 7 5 e38050 10.1371/journal.pone.0038050 22662265
    [Google Scholar]
  35. Alkorta-Aranburu G Sukhanova M Carmody D Hoffman T Wysinger L Keller-Ramey J Improved molecular diagnosis of patients with neonatal diabetes using a combined next-generation sequencing and MS-MLPA approach. J Pediatr Endocrinol Metab 201629 0341 10.1515/jpem‑2015‑0341
    [Google Scholar]
  36. What are the types of genetic tests? 2019. 2019 Available from:https://ghr.nlm.nih.gov/primer/testing/uses
  37. Schnyder S. Mullis P.E. Ellard S. Hattersley A.T. Flück C.E. Genetic testing for glucokinase mutations in clinically selected patients with MODY: A worthwhile investment. Swiss Med. Wkly. 2005 135 23 352 10.7892/boris.45687
    [Google Scholar]
  38. Naylor R.N. John P.M. Winn A.N. Cost-effectiveness of MODY genetic testing: Translating genomic advances into practical health applications. Diabetes Care 2014 37 1 202 209 10.2337/dc13‑0410 24026547
    [Google Scholar]
  39. Wu C. Löfqvist C. Smith L.E.H. VanderVeen D.K. Hellström A. WINROP Consortium. Importance of early postnatal weight gain for normal retinal angiogenesis in very preterm infants: A multicenter study analyzing weight velocity deviations for the prediction of retinopathy of prematurity. Arch. Ophthalmol. 2012 130 8 992 999 10.1001/archophthalmol.2012.243 22491391
    [Google Scholar]
  40. Ogilvy-Stuart A.L. Beardsall K. Management of hyperglycaemia in the preterm infant. Arch. Dis. Child. Fetal Neonatal Ed. 2010 95 2 F126 F131 10.1136/adc.2008.154716 20231218
    [Google Scholar]
  41. Dwivedi J. Wal P. Dash B. Ovais M. Sachan P. Verma V. Diabetic pneumopathy-a novel diabetes-associated complication: pathophysiology, the underlying mechanism and combination medication. Endocr. Metab. Immune Disord. Drug Targets 2024 24 9 1027 10.2174/0118715303265960230926113201
    [Google Scholar]
  42. Beardsall K. Vanhaesebrouck S. Ogilvy-Stuart A.L. Prevalence and determinants of hyperglycemia in very low birth weight infants: Cohort analyses of the NIRTURE study. J. Pediatr. 2010 157 715 719 10.1016/j.jpeds.2010.04.032
    [Google Scholar]
  43. Iafusco D. Stazi M. Cotichini R. Permanent diabetes mellitus in the first year of life. Diabetologia 2002 45 6 798 804 10.1007/s00125‑002‑0837‑2 12107723
    [Google Scholar]
  44. Rubio‐Cabezas O. Klupa T. Malecki M.T. CEED3 Consortium. Permanent neonatal diabetes mellitus–the importance of diabetes differential diagnosis in neonates and infants. Eur. J. Clin. Invest. 2011 41 3 323 333 10.1111/j.1365‑2362.2010.02409.x 21054355
    [Google Scholar]
  45. Kataria A. Gopi R.P. Mally P. Shah B. Neonatal diabetes mellitus: Current perspective. Res. Rep. Neonatol. 2014 ••• 55 64
    [Google Scholar]
  46. Hattersley A.T. Patel K.A. Precision diabetes: Learning from monogenic diabetes. Diabetologia 2017 60 5 769 777 10.1007/s00125‑017‑4226‑2 28314945
    [Google Scholar]
  47. Kamiya M. Judson H. Okazaki Y. The cell cycle control gene ZAC/PLAGL1 is imprinted: A strong candidate gene for transient neonatal diabetes. Hum. Mol. Genet. 2000 9 3 453 460 10.1093/hmg/9.3.453 10655556
    [Google Scholar]
  48. Gardner R.J. Mackay D.J. Mungall A.J. An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 2000 9 4 589 596 10.1093/hmg/9.4.589 10699182
    [Google Scholar]
  49. Abdollahi A. LOT1 (ZAC1/PLAGL1) and its family members: Mechanisms and functions. J. Cell. Physiol. 2007 210 1 16 25 10.1002/jcp.20835 17063461
    [Google Scholar]
  50. Mackay D.J.G. Temple I.K. Transient neonatal diabetes mellitus type 1. Am. J. Med. Genet. C. Semin. Med. Genet. 2010 154C 3 335 342 10.1002/ajmg.c.30272 20803656
    [Google Scholar]
  51. Flanagan S.E. Patch A.M. Mackay D.J.G. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 2007 56 7 1930 1937 10.2337/db07‑0043 17446535
    [Google Scholar]
  52. Yorifuji T. Kurokawa K. Mamada M. Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: Phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicism. J. Clin. Endocrinol. Metab. 2004 89 6 2905 2908 10.1210/jc.2003‑031828 15181075
    [Google Scholar]
  53. Mackay D.J.G. Temple I.K. Transient neonatal diabetes mellitus type 1. Am. J. Med. Genet. C. Semin. Med. Genet. 2010 154C 3 335 342 10.1002/ajmg.c.30272 20803656
    [Google Scholar]
  54. Murphy R. Ellard S. Hattersley A.T. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab. 2008 4 4 200 213 10.1038/ncpendmet0778 18301398
    [Google Scholar]
  55. Babenko A.P. Polak M. Cavé H. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 2006 355 5 456 466 10.1056/NEJMoa055068 16885549
    [Google Scholar]
  56. Hattersley A.T. Ashcroft F.M. Activating mutations in Kir6.2 and neonatal diabetes: New clinical syndromes, new scientific insights, and new therapy. Diabetes 2005 54 9 2503 2513 10.2337/diabetes.54.9.2503 16123337
    [Google Scholar]
  57. Shah B. Breidbart E. Pawelczak M. Lam L. Kessler M. Franklin B. Improved long-term glucose control in neonatal diabetes mellitus after early sulfonylurea allergy. J. Pediatr. Endocrinol. Metab. 2012 25 3-4 353 356 10.1515/jpem‑2011‑0449 22768668
    [Google Scholar]
  58. Zwaveling-Soonawala N. Hagebeuk E.E. Slingerland A.S. Ris-Stalpers C. Vulsma T. van Trotsenburg A.S. Successful transfer to sulfonylurea therapy in an infant with developmental delay, epilepsy and neonatal diabetes (DEND) syndrome and a novel ABCC8 gene mutation. Diabetologia 2011 54 2 469 471 10.1007/s00125‑010‑1981‑8 21109997
    [Google Scholar]
  59. Ellard S. Colclough K. Mutations in the genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in neonatal diabetes. Hum. Mutat. 2016 27 3 220 229
    [Google Scholar]
  60. Shepherd M. Hattersley A.T. Pharmacogenetics and monogenic diabetes. Nat. Rev. Endocrinol. 2020 16 339 350
    [Google Scholar]
  61. Gloyn A.L. Pearson E.R. Genetic insights into beta-cell dysfunction in diabetes. Lancet Diabetes Endocrinol. 2014 2 3 223 234
    [Google Scholar]
  62. Bonnefond A. Unnikrishnan R. Doria A. Monogenic diabetes. Nat. Rev. Dis. Primers 2023 9 1 12 10.1038/s41572‑023‑00421‑w 36894549
    [Google Scholar]
  63. Smith K. Deutsch A.J. McGrail C. Multi-ancestry polygenic mechanisms of type 2 diabetes. Nat. Med. 2024 30 4 1065 1074 10.1038/s41591‑024‑02865‑3 38443691
    [Google Scholar]
  64. Messer L.H. Addala A. Weinzimer S.A. Real-world diabetes technology: overcoming barriers and disparities. Diabetes Technol. Ther. 2023 25 S1 S-176 S-190 10.1089/dia.2023.2511 36802191
    [Google Scholar]
  65. Pagliuca F.W. Millman J.R. Gürtler M. Generation of functional human pancreatic beta cells in vitro. Nat. Biotechnol. 2014 159 2 428 439
    [Google Scholar]
  66. Hattersley A.T. Patel K.A. Precision diabetes: Learning from monogenic diabetes. Diabetologia 2017 60 5 769 777 10.1007/s00125‑017‑4226‑2 28314945
    [Google Scholar]
  67. Froguel P. Vaxillaire M. Genetics of MODY and other monogenic diabetes: Implications for diagnosis and treatment. Best Pract. Res. Clin. Endocrinol. Metab. 2018 32 4 369 383
    [Google Scholar]
  68. D Mruthyunjaya M D Mruthyunjaya M, Chapla A, Hesarghatta Shyamasunder A, Varghese D, Varshney M, Paul J, Inbakumari M, Christina F, Varghese RT, Kuruvilla KA, V. Paul T. Comprehensive maturity onset diabetes of the young (MODY) gene screening in pregnant women with diabetes in India. PLoS One 2017 12 1 e0168656
    [Google Scholar]
  69. Yan Q. Li D. Jia S. Yang J. Ma J. Novel gene-based therapeutic approaches for the management of hepatic complications in diabetes: Reviewing recent advances. J. Diabetes Complications 2024 38 2 108688 10.1016/j.jdiacomp.2024.108688 38281457
    [Google Scholar]
  70. Naylor R.N. Patel K.A. Kettunen J.L.T. Precision treatment of beta-cell monogenic diabetes: A systematic review. Commun Med (Lond) 2024 4 1 145 10.1038/s43856‑024‑00556‑1 39025920
    [Google Scholar]
  71. Htun H.L. Lian W. Phua H.P. Lim MY, Quek TP, Chew DE, Lim WY Glycated haemoglobin trajectories and one-year risk of potentially avoidable hospitalisations among adult patients with type 2 diabetes from specialist outpatient clinics of a tertiary hospital: A cohort study. Diabetes Research and Clinical Practice 2023 202 110737
    [Google Scholar]
  72. Sugandh F.N.U. Chandio M. Raveena F.N.U. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 e43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  73. Broome D.T. Pantalone K.M. Kashyap S.R. Philipson L.H. Approach to the patient with MODY-monogenic diabetes. J. Clin. Endocrinol. Metab. 2021 106 1 237 250 10.1210/clinem/dgaa710 33034350
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232381943250825055516
Loading
/content/journals/cgt/10.2174/0115665232381943250825055516
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: genetics ; NDM ; neonatal ; MODY ; diabetes mellitus ; Hereditary diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test