Skip to content
2000
image of Role of Exosomal miRNAs and Epigenetic Modifications in Diabetic Nephropathy: Insights into Novel Diagnostic and Therapeutic Strategies

Abstract

Introduction

Diabetic Nephropathy (DN) is a leading cause of chronic kidney disease and end-stage renal failure, highlighting the need for improved diagnostic and therapeutic strategies. This review examines the emerging roles of exosomal microRNAs (miRNAs) and epigenetic modifications in disease, with a focus on their diagnostic and therapeutic potential.

Methods

A comprehensive analysis of the current literature was conducted, focusing on exosomal miRNAs—particularly miR-21, miR-192, and miR-29—and their impact on inflammatory pathways, such as IL-6 and NF-κB. The role of epigenetic alterations, including DNA methylation, histone modification, and noncoding RNAs, in DN progression is also discussed. Techniques for miRNA detection and exosome isolation are briefly reviewed.

Results

Exosomal miRNAs contribute to DN pathophysiology by promoting oxidative stress, inflammation, and fibrosis. Their stability and noninvasive detectability make them promising early biomarkers. Epigenetic modifications further modulate gene expression relevant to disease progression.

Discussion

These molecular changes offer novel targets for early diagnosis and therapeutic intervention in DN. The interplay between miRNAs and epigenetic regulation may provide insights into disease heterogeneity and progression. However, limitations exist regarding the standardization of detection techniques and clinical translation, necessitating further research.

Conclusion

Exosomal miRNAs and epigenetic markers present valuable tools for advancing the diagnosis and personalized treatment of DN. Enhancing detection techniques and understanding their molecular roles could pave the way for more effective clinical applications.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232376803250815065514
2025-08-25
2025-10-14
Loading full text...

Full text loading...

References

  1. Zhao Y. Shen A. Guo F. Song Y. Jing N. Ding X. Pan M. Zhang H. Wang J. Wu L. Ma X. Feng L. Qin G. Urinary exosomal miRNA-4534 as a novel diagnostic biomarker for diabetic kidney disease. Front. Endocrinol. 2020 11 590 10.3389/fendo.2020.00590 32982978
    [Google Scholar]
  2. Umanath K. Lewis J.B. Update on diabetic nephropathy: Core curriculum 2018. Am. J. Kidney Dis. 2018 71 6 884 895 10.1053/j.ajkd.2017.10.026 29398179
    [Google Scholar]
  3. Cao Q. Chen X.M. Huang C. Pollock C.A. MicroRNA as novel biomarkers and therapeutic targets in diabetic kidney disease: An update. FASEB Bioadv. 2019 1 6 375 388 10.1096/fba.2018‑00064 32123840
    [Google Scholar]
  4. Chen J. Zhang Q. Liu D. Liu Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021 122 154834 10.1016/j.metabol.2021.154834 34217734
    [Google Scholar]
  5. Peng L. Chen Y. Shi S. Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res. Ther. 2022 13 1 25 10.1186/s13287‑021‑02696‑w 35073973
    [Google Scholar]
  6. Condrat C.E. Thompson D.C. Barbu M.G. Bugnar O.L. Boboc A. Cretoiu D. Suciu N. Cretoiu S.M. Voinea S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020 9 2 276 10.3390/cells9020276 31979244
    [Google Scholar]
  7. O’Reilly S. MicroRNAs in fibrosis: Opportunities and challenges. Arthritis Res. Ther. 2016 18 1 11 10.1186/s13075‑016‑0929‑x 26762516
    [Google Scholar]
  8. Gu Y.Y. Lu F.H. Huang X.R. Zhang L. Mao W. Yu X.Q. Liu X.S. Lan H.Y. Non-coding rnas as biomarkers and therapeutic targets for diabetic kidney disease. Front. Pharmacol. 2021 11 583528 10.3389/fphar.2020.583528 33574750
    [Google Scholar]
  9. Tsai Y.C. Kuo M.C. Hung W.W. Wu P.H. Chang W.A. Wu L.Y. Lee S.C. Hsu Y.L. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer. Cell Commun. Signal. 2023 21 1 10 10.1186/s12964‑022‑00997‑y 36639674
    [Google Scholar]
  10. Wei H. Chen Q. Lin L. Sha C. Li T. Liu Y. Yin X. Xu Y. Chen L. Gao W. Li Y. Zhu X. Regulation of exosome production and cargo sorting. Int. J. Biol. Sci. 2021 17 1 163 177 10.7150/ijbs.53671 33390841
    [Google Scholar]
  11. Liu S.L. Sun P. Li Y. Liu S.S. Lu Y. Exosomes as critical mediators of cell-to-cell communication in cancer pathogenesis and their potential clinical application. Transl. Cancer Res. 2019 8 1 298 311 10.21037/tcr.2019.01.03 35116759
    [Google Scholar]
  12. Alenquer M. Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015 7 9 5066 5083 10.3390/v7092862 26393640
    [Google Scholar]
  13. Li B. Cao Y. Sun M. Feng H. Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. FASEB J. 2021 35 10 21916 10.1096/fj.202100294RR 34510546
    [Google Scholar]
  14. Théry C. Zitvogel L. Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002 2 8 569 579 10.1038/nri855 12154376
    [Google Scholar]
  15. Tian T. Zhu Y.L. Zhou Y.Y. Liang G.F. Wang Y.Y. Hu F.H. Xiao Z.D. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem. 2014 289 32 22258 22267 10.1074/jbc.M114.588046 24951588
    [Google Scholar]
  16. Mulcahy L.A. Pink R.C. Carter D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014 3 1 24641 10.3402/jev.v3.24641 25143819
    [Google Scholar]
  17. Simons M. Raposo G. Exosomes – vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009 21 4 575 581 10.1016/j.ceb.2009.03.007 19442504
    [Google Scholar]
  18. Vickers K.C. Palmisano B.T. Shoucri B.M. Shamburek R.D. Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011 13 4 423 433 10.1038/ncb2210 21423178
    [Google Scholar]
  19. Tabet F. Vickers K.C. Torres C.L.F. Wiese C.B. Shoucri B.M. Lambert G. Catherinet C. Prado-Lourenco L. Levin M.G. Thacker S. Sethupathy P. Barter P.J. Remaley A.T. Rye K.A. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 2014 5 1 3292 10.1038/ncomms4292 24576947
    [Google Scholar]
  20. Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. 2007 9 6 654 659 Available from: https://www.nature.com/articles/ncb1596
  21. Lv L.L. Cao Y.H. Ni H.F. Xu M. Liu D. Liu H. Chen P.S. Liu B.C. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am. J. Physiol. Renal Physiol. 2013 305 8 F1220 F1227 10.1152/ajprenal.00148.2013 23946286
    [Google Scholar]
  22. Jadli A.S. Ballasy N. Edalat P. Patel V.B. Inside(sight) of tiny communicator: Exosome biogenesis, secretion, and uptake. Mol. Cell. Biochem. 2020 467 1-2 77 94 10.1007/s11010‑020‑03703‑z 32088833
    [Google Scholar]
  23. Gurunathan S. Kang M.H. Kim J.H. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int. J. Nanomedicine 2021 16 1281 1312 10.2147/IJN.S291956 33628021
    [Google Scholar]
  24. Samuelson I. Vidal-Puig A.J. Fed-EXosome: Extracellular vesicles and cell–cell communication in metabolic regulation. Essays Biochem. 2018 62 2 165 175 10.1042/EBC20170087 29717059
    [Google Scholar]
  25. Bautista-Sánchez D. Arriaga-Canon C. Pedroza-Torres A. De La Rosa-Velázquez I.A. González-Barrios R. Contreras-Espinosa L. Montiel-Manríquez R. Castro-Hernández C. Fragoso-Ontiveros V. Álvarez-Gómez R.M. Herrera L.A. The promising role of mir-21 as a cancer biomarker and its importance in rna-based therapeutics. Mol. Ther. Nucleic Acids 2020 20 409 420 10.1016/j.omtn.2020.03.003 32244168
    [Google Scholar]
  26. Vukelić I. Šuša B. Klobučar S. Buljević S. Liberati Pršo A.M. Belančić A. Rahelić D. Detel D. Exosome-derived microRNAs: Bridging the gap between obesity and type 2 diabetes in diagnosis and treatment. Diabetology 2024 5 7 706 724 10.3390/diabetology5070052
    [Google Scholar]
  27. Gilyazova I. Asadullina D. Kagirova E. Sikka R. Mustafin A. Ivanova E. Bakhtiyarova K. Gilyazova G. Gupta S. Khusnutdinova E. Gupta H. Pavlov V. MiRNA-146a—A key player in immunity and diseases. Int. J. Mol. Sci. 2023 24 16 12767 10.3390/ijms241612767 37628949
    [Google Scholar]
  28. Zhou R. Wang L. Zhao G. Chen D. Song X. Momtazi-Borojeni A.A. Yuan H. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle. IUBMB Life 2020 72 12 2546 2562 10.1002/iub.2396 33053610
    [Google Scholar]
  29. Xia X. Wang Y. Huang Y. Zhang H. Lu H. Zheng J.C. Exosomal miRNAs in central nervous system diseases: Biomarkers, pathological mediators, protective factors and therapeutic agents. Prog. Neurobiol. 2019 183 101694 10.1016/j.pneurobio.2019.101694 31542363
    [Google Scholar]
  30. Tang J. Yao D. Yan H. Chen X. Wang L. Zhan H. The role of MicroRNAs in the pathogenesis of diabetic nephropathy. Int. J. Endocrinol. 2019 2019 1 8 10.1155/2019/8719060 31885563
    [Google Scholar]
  31. Dhas Y. Arshad N. Biswas N. Jones L. Ashili S. MicroRNA-21 silencing in diabetic nephropathy: Insights on therapeutic strategies. Biomedicines 2023 11 9 2583 10.3390/biomedicines11092583 37761024
    [Google Scholar]
  32. Chu Q. Yan X. Liu L. Xu T. The inducible microrna-21 negatively modulates the inflammatory response in teleost fish via targeting IRAK4. Front. Immunol. 2019 10 1623 10.3389/fimmu.2019.01623 31379828
    [Google Scholar]
  33. Wan X. Liao J. Lai H. Zhang S. Cui J. Chen C. Roles of microRNA-192 in diabetic nephropathy: The clinical applications and mechanisms of action. Front. Endocrinol. 2023 14 1179161 10.3389/fendo.2023.1179161 37396169
    [Google Scholar]
  34. Kato M. Natarajan R. MicroRNAs in diabetic nephropathy: Functions, biomarkers, and therapeutic targets. Ann. N. Y. Acad. Sci. 2015 1353 1 72 88 10.1111/nyas.12758 25877817
    [Google Scholar]
  35. Peter L.J. Floege J. Biessen E.A. Jankowski J. van der Vorst E.P. MicroRNAs in chronic kidney disease: Four candidates for clinical application. Int. J. Mol. Sci. 2020 21 8 6547 Available from: https://www.mdpi.com/1422-0067/21/18/6547
    [Google Scholar]
  36. Giordo R. Ahmed Y.M.A. Allam H. Abusnana S. Pappalardo L. Nasrallah G.K. Mangoni A.A. Pintus G. EndMT regulation by small rnas in diabetes-associated fibrotic conditions: Potential link with oxidative stress. Front. Cell Dev. Biol. 2021 9 683594 10.3389/fcell.2021.683594 34095153
    [Google Scholar]
  37. Gluba-Sagr A. Franczyk B. Rysz-Górzyńska M. Ławiński J. Rysz J. The Role of miRNA in renal fibrosis leading to chronic kidney disease. Biomedicines 2023 11 9 2358 10.3390/biomedicines11092358 37760798
    [Google Scholar]
  38. Kalaçay D. Hacişevki̇ A. The emerging roles of microRNAs as biomarkers in diabetic nephropathy. Turkish J. Diab. Obesity 2022 6 3 287 295 10.25048/tudod.1111845
    [Google Scholar]
  39. Fan Y. Chen H. Huang Z. Zheng H. Zhou J. Emerging role of miRNAs in renal fibrosis. RNA Biol. 2020 17 1 1 12 10.1080/15476286.2019.1667215 31550975
    [Google Scholar]
  40. Dewanjee S. Bhattacharjee N. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Biochem. Pharmacol. 2018 155 32 47 10.1016/j.bcp.2018.06.017 29940170
    [Google Scholar]
  41. Kato M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res. Clin. Pract. 2018 37 3 197 209 10.23876/j.krcp.2018.37.3.197 30254844
    [Google Scholar]
  42. Sasso C.V. Lhamyani S. Hevilla F. Padial M. Blanca M. Barril G. Jiménez-Salcedo T. Martínez E.S. Nogueira Á. Lago-Sampedro A.M. Olveira G. Modulation of miR-29a and miR-29b expression and their target genes related to inflammation and renal fibrosis by an oral nutritional supplement with probiotics in malnourished hemodialysis patients. Int. J. Mol. Sci. 2024 25 2 1132 10.3390/ijms25021132 38256206
    [Google Scholar]
  43. Fang Y. Yu X. Liu Y. Kriegel A.J. Heng Y. Xu X. Liang M. Ding X. miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-α activation. Am. J. Physiol. Renal Physiol. 2013 304 10 F1274 F1282 10.1152/ajprenal.00287.2012 23467423
    [Google Scholar]
  44. Liu Y. Bi X. Xiong J. Han W. Xiao T. Xu X. Yang K. Liu C. Jiang W. He T. Yu Y. Li Y. Zhang J. Zhang B. Zhao J. MicroRNA-34a promotes renal fibrosis by downregulation of klotho in tubular epithelial cells. Mol. Ther. 2019 27 5 1051 1065 10.1016/j.ymthe.2019.02.009 30853453
    [Google Scholar]
  45. Bhatt K. Lanting L.L. Jia Y. Yadav S. Reddy M.A. Magilnick N. Boldin M. Natarajan R. Anti-inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy. J. Am. Soc. Nephrol. 2016 27 8 2277 2288 10.1681/ASN.2015010111 26647423
    [Google Scholar]
  46. Wang Q. Wang Y. Minto A.W. Wang J. Shi Q. Li X. Quigg R.J. MicroRNA‐377 is up‐regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008 22 12 4126 4135 10.1096/fj.08‑112326 18716028
    [Google Scholar]
  47. Zubrzycka A. Migdalska-Sęk M. Jędrzejczyk S. Brzeziańska-Lasota E. Circulating miRNAs related to epithelial–mesenchymal transitions (EMT) as the new molecular markers in endometriosis. Curr. Issues Mol. Biol. 2021 43 2 900 916 10.3390/cimb43020064 34449536
    [Google Scholar]
  48. Sun J. Li Z.P. Zhang R.Q. Zhang H.M. Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway. Biochem. Biophys. Res. Commun. 2017 483 1 318 324 10.1016/j.bbrc.2016.12.145 28017719
    [Google Scholar]
  49. Li Q. Zhang Z. Yin M. Cui C. Zhang Y. Wang Y. Liu F. What do we actually know about exosomal microRNAs in kidney diseases? Front. Physiol. 2022 13 941143 10.3389/fphys.2022.941143 36105281
    [Google Scholar]
  50. Zhang W. Yi B. Yang S.K. Li A. Wang J. Zhang H. Extracellular vesicles carrying miRNAs in kidney diseases: A systemic review. Clin. Exp. Nephrol. 2020 24 12 1103 1121 10.1007/s10157‑020‑01947‑z 32767135
    [Google Scholar]
  51. Pawluczyk I. Nicholson M. Barbour S. Er L. Selvaskandan H. Bhachu J.S. Barratt J. A pilot study to predict risk of iga nephropathy progression based on miR-204 expression. Kidney Int. Rep. 2021 6 8 2179 2188 10.1016/j.ekir.2021.05.018 34386667
    [Google Scholar]
  52. Perez-Hernandez J. Forner M.J. Pinto C. Chaves F.J. Cortes R. Redon J. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS One 2015 10 9 0138618 10.1371/journal.pone.0138618 26390437
    [Google Scholar]
  53. Li J. Ma L. Yu H. Yao Y. Xu Z. Lin W. Wang L. Wang X. Yang H. MicroRNAs as potential biomarkers for the diagnosis of chronic kidney disease: A systematic review and meta-analysis. Front. Med. 2022 8 782561 10.3389/fmed.2021.782561 35198569
    [Google Scholar]
  54. Li J. Yan X. Wu Z. Shen J. Li Y. Zhao Y. Du F. Li M. Wu X. Chen Y. Xiao Z. Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr. Nephrol. 2024 39 12 3397 3410 10.1007/s00467‑024‑06414‑5 38801452
    [Google Scholar]
  55. Klisic A. Radoman Vujacic I. Munjas J. Ninic A. Kotur-Stevuljevic J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus – a review article. Arch. Med. Sci. 2022 18 4 870 880 10.5114/aoms/146796 35832702
    [Google Scholar]
  56. He Q. Ye A. Ye W. Liao X. Qin G. Xu Y. Yin Y. Luo H. Yi M. Xian L. Zhang S. Qin X. Zhu W. Li Y. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis. 2021 12 6 576 10.1038/s41419‑021‑03803‑8 34088891
    [Google Scholar]
  57. Song N. Zhang T. Xu X. Lu Z. Yu X. Fang Y. Hu J. Jia P. Teng J. Ding X. miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation. Front. Physiol. 2018 9 790 10.3389/fphys.2018.00790 30013485
    [Google Scholar]
  58. Fu D. Dong J. Li P. Tang C. Cheng W. Xu Z. Zhou W. Ge J. Xia C. Zhang Z. MiRNA-21 has effects to protect kidney injury induced by sepsis. Biomed. Pharmacother. 2017 94 1138 1144 10.1016/j.biopha.2017.07.098 28821165
    [Google Scholar]
  59. Chien H.Y. Chen C.Y. Chiu Y.H. Lin Y.C. Li W.C. Differential microRNA profiles predict diabetic nephropathy progression in taiwan. Int. J. Med. Sci. 2016 13 6 457 465 10.7150/ijms.15548 27279796
    [Google Scholar]
  60. Chen A. Wang H. Su Y. Zhang C. Qiu Y. Zhou Y. Wan Y. Hu B. Li Y. Exosomes: Biomarkers and therapeutic targets of diabetic vascular complications. Front. Endocrinol. 2021 12 720466 10.3389/fendo.2021.720466 34456875
    [Google Scholar]
  61. Bure I.V. Nemtsova M.V. Kuznetsova E.B. Histone modifications and non-coding rnas: Mutual epigenetic regulation and role in pathogenesis. Int. J. Mol. Sci. 2022 23 10 5801 10.3390/ijms23105801 35628612
    [Google Scholar]
  62. Sugita E. Hayashi K. Hishikawa A. Itoh H. Epigenetic alterations in podocytes in diabetic nephropathy. Front. Pharmacol. 2021 12 759299 10.3389/fphar.2021.759299 34630127
    [Google Scholar]
  63. Tan R. Jia J. Li T. Wang L. Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed. Pharmacother. 2024 176 116922 10.1016/j.biopha.2024.116922 38870627
    [Google Scholar]
  64. Reddy M.A. Park J.T. Natarajan R. Epigenetic modifications and diabetic nephropathy. Kidney Res. Clin. Pract. 2012 31 3 139 150 10.1016/j.krcp.2012.07.004 26894019
    [Google Scholar]
  65. Li X. Lu L. Hou W. Huang T. Chen X. Qi J. Zhao Y. Zhu M. Epigenetics in the pathogenesis of diabetic nephropathy. Acta Biochim. Biophys. Sin. 2022 54 2 163 172 10.3724/abbs.2021016 35130617
    [Google Scholar]
  66. Lu J. Huang Y. Zhang X. Xu Y. Nie S. Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol. Res. 2021 170 105520 10.1016/j.phrs.2021.105520 33639232
    [Google Scholar]
  67. Zheng W. Guo J. Liu Z.S. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: An epigenetic perspective. Clin. Epigenetics 2021 13 1 87 10.1186/s13148‑021‑01079‑5 33883002
    [Google Scholar]
  68. Elmasry K. Mohamed R. Sharma I. Elsherbiny N.M. Liu Y. Al-Shabrawey M. Tawfik A. Epigenetic modifications in hyperhomocysteinemia: Potential role in diabetic retinopathy and age-related macular degeneration. Oncotarget 2018 9 16 12562 12590 10.18632/oncotarget.24333 29560091
    [Google Scholar]
  69. Hysolli E. Tanaka Y. Su J. Kim K.Y. Zhong T. Janknecht R. Zhou X.L. Geng L. Qiu C. Pan X. Jung Y.W. Cheng J. Lu J. Zhong M. Weissman S.M. Park I.H. Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 family. Stem Cell Reports 2016 7 1 43 54 10.1016/j.stemcr.2016.05.014 27373925
    [Google Scholar]
  70. Sankrityayan H. Kulkarni Y.A. Gaikwad A.B. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs. Pharmacol. Res. 2019 141 574 585 10.1016/j.phrs.2019.01.043 30695734
    [Google Scholar]
  71. Jia Y. Reddy M.A. Das S. Oh H.J. Abdollahi M. Yuan H. Zhang E. Lanting L. Wang M. Natarajan R. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1–induced gene expression in mesangial cells and diabetic kidney. J. Biol. Chem. 2019 294 34 12695 12707 10.1074/jbc.RA119.007575 31266808
    [Google Scholar]
  72. Wing M.R. Ramezani A. Gill H.S. Devaney J.M. Raj D.S. Epigenetics of progression of chronic kidney disease: Fact or fantasy? Semin. Nephrol. 2013 33 4 363 374 10.1016/j.semnephrol.2013.05.008 24011578
    [Google Scholar]
  73. Čugalj Kern B. Trebušak Podkrajšek K. Kovač J. Šket R. Jenko Bizjan B. Tesovnik T. Debeljak M. Battelino T. Bratina N. The role of epigenetic modifications in late complications in type 1 diabetes. Genes 2022 13 4 705 10.3390/genes13040705 35456511
    [Google Scholar]
  74. Wu Q. Qi B. Duan X. Ming X. Yan F. He Y. Bu X. Sun S. Zhu H. MicroRNA-126 enhances the biological function of endothelial progenitor cells under oxidative stress via PI3K/Akt/GSK3β and ERK1/2 signaling pathways. Bosn. J. Basic Med. Sci. 2021 21 1 71 80 31999938
    [Google Scholar]
  75. Tang S. Wang F. Shao M. Wang Y. Zhu H. MicroRNA-126 suppresses inflammation in endothelial cells under hyperglycemic condition by targeting HMGB1. Vascul. Pharmacol. 2017 88 48 55 10.1016/j.vph.2016.12.002 27993686
    [Google Scholar]
  76. Raucci A. Macrì F. Castiglione S. Badi I. Vinci M.C. Zuccolo E. MicroRNA-34a: The bad guy in age-related vascular diseases. Cell. Mol. Life Sci. 2021 78 23 7355 7378 10.1007/s00018‑021‑03979‑4 34698884
    [Google Scholar]
  77. Liu J. Wei E. Wei J. Zhou W. Webster K.A. Zhang B. Li D. Zhang G. Wei Y. Long Y. Qi X. Zhang Q. Xu D. MiR-126-HMGB1-HIF-1 axis regulates endothelial cell inflammation during exposure to hypoxia-acidosis. Dis. Markers 2021 2021 1 14 10.1155/2021/4933194 34970357
    [Google Scholar]
  78. Schell G. Roy B. Prall K. Dwivedi Y. miR-218: A stress-responsive epigenetic modifier. Noncoding RNA 2022 8 4 55 10.3390/ncrna8040055 35893238
    [Google Scholar]
  79. Li M. Guo Q. Cai H. Wang H. Ma Z. Zhang X. miR‐218 regulates diabetic nephropathy via targeting IKK‐β and modulating NK‐κB‐mediated inflammation. J. Cell. Physiol. 2020 235 4 3362 3371 10.1002/jcp.29224 31549412
    [Google Scholar]
  80. Xu Z. Zeng S. Gong Z. Yan Y. Exosome-based immunotherapy: A promising approach for cancer treatment. Mol. Cancer 2020 19 1 160 10.1186/s12943‑020‑01278‑3 33183286
    [Google Scholar]
  81. Rezaie J. Feghhi M. Etemadi T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun. Signal. 2022 20 1 145 10.1186/s12964‑022‑00959‑4 36123730
    [Google Scholar]
  82. Gorgzadeh A. Nazari A. Ismaeel E.A. Safarzadeh D. Hassan J.A.K. Mohammadzadehsaliani S. Kheradjoo H. Yasamineh P. Yasamineh S. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virol. J. 2024 21 1 34 10.1186/s12985‑024‑02301‑5 38291452
    [Google Scholar]
  83. Zhu L. Sun H.T. Wang S. Huang S.L. Zheng Y. Wang C.Q. Hu B.Y. Qin W. Zou T.T. Fu Y. Shen X.T. Zhu W.W. Geng Y. Lu L. Jia H. Qin L.X. Dong Q.Z. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol. 2020 13 1 152 10.1186/s13045‑020‑00987‑y 33168028
    [Google Scholar]
  84. Liu W. Ma Z. Kang X. Current status and outlook of advances in exosome isolation. Anal. Bioanal. Chem. 2022 414 24 7123 7141 10.1007/s00216‑022‑04253‑7 35962791
    [Google Scholar]
  85. Kowal J. Tkach M. Théry C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 2014 29 116 125 10.1016/j.ceb.2014.05.004 24959705
    [Google Scholar]
  86. Afridi W.A. Strachan S. Kasetsirikul S. Pannu A.S. Soda N. Gough D. Nguyen N.T. Shiddiky M.J.A. Potential avenues for exosomal isolation and detection methods to enhance small-cell lung cancer analysis. ACS Meas. Sci. Au 2023 3 3 143 161 10.1021/acsmeasuresciau.2c00068 37360040
    [Google Scholar]
  87. Zhao L. Yu J. Wang J. Li H. Che J. Cao B. Isolation and identification of miRNAs in exosomes derived from serum of colon cancer patients. J. Cancer 2017 8 7 1145 1152 10.7150/jca.18026 28607588
    [Google Scholar]
  88. Melo S.A. Luecke L.B. Kahlert C. Fernandez A.F. Gammon S.T. Kaye J. LeBleu V.S. Mittendorf E.A. Weitz J. Rahbari N. Reissfelder C. Pilarsky C. Fraga M.F. Piwnica-Worms D. Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015 523 7559 177 182 10.1038/nature14581 26106858
    [Google Scholar]
  89. Johnsen K.B. Gudbergsson J.M. Skov M.N. Pilgaard L. Moos T. Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta 2014 1846 1 75 87 24747178
    [Google Scholar]
  90. Zhang B. Wang M. Gong A. Zhang X. Wu X. Zhu Y. Shi H. Wu L. Zhu W. Qian H. Xu W. HucMSC-exosome mediated-wnt4 signaling is required for cutaneous wound healing. Stem Cells 2015 33 7 2158 2168 10.1002/stem.1771 24964196
    [Google Scholar]
  91. Jia Y. Yu L. Ma T. Xu W. Qian H. Sun Y. Shi H. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics 2022 12 15 6548 6575 10.7150/thno.74305 36185597
    [Google Scholar]
  92. Mukerjee N. Bhattacharya A. Maitra S. Kaur M. Ganesan S. Mishra S. Ashraf A. Rizwan M. Kesari K.K. Tabish T.A. Thorat N.D. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater. Today Bio 2025 31 101613 10.1016/j.mtbio.2025.101613 40161926
    [Google Scholar]
  93. Jung M.K. Mun J.Y. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. 2018 131 56482 29364263
    [Google Scholar]
  94. Bakhsh T. Alhazmi S. Farsi A. Yusuf A.S. Alharthi A. Qahl S.H. Alghamdi M.A. Alzahrani F.A. Elgaddar O.H. Ibrahim M.A. Bahieldin A. Molecular detection of exosomal miRNAs of blood serum for prognosis of colorectal cancer. Sci. Rep. 2024 14 1 8902 10.1038/s41598‑024‑58536‑3 38632250
    [Google Scholar]
  95. Prattichizzo F. Matacchione G. Giuliani A. Sabbatinelli J. Olivieri F. de Candia P. De Nigris V. Ceriello A. Extracellular vesicle-shuttled miRNAs: A critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications. Theranostics 2021 11 3 1031 1045 10.7150/thno.51605 33391519
    [Google Scholar]
  96. Tsai C.Y. Lu M.C. Yu C.L. Can urinary exosomal micro-RNA detection become a diagnostic and prognostic gold standard for patients with lupus nephritis and diabetic nephropathy? J. Lab. Precis. Med. 2017 2 11 91 10.21037/jlpm.2017.06.05
    [Google Scholar]
  97. Schena FP Sallustio F Serino G microRNAs in glomerular diseases from pathophysiology to potential treatment target. Clin. Sci. 2015 128 11 775 788 10.1042/CS20140733
    [Google Scholar]
  98. Xu D. Di K. Fan B. Wu J. Gu X. Sun Y. Khan A. Li P. Li Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front. Bioeng. Biotechnol. 2022 10 948959 10.3389/fbioe.2022.948959 36324901
    [Google Scholar]
  99. Moldovan L. Batte K.E. Trgovcich J. Wisler J. Marsh C.B. Piper M. Methodological challenges in utilizing mi RNA s as circulating biomarkers. J. Cell. Mol. Med. 2014 18 3 371 390 10.1111/jcmm.12236 24533657
    [Google Scholar]
  100. Liu M. Wen Z. Zhang T. Zhang L. Liu X. Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front. Immunol. 2024 15 1417758 10.3389/fimmu.2024.1417758 38983854
    [Google Scholar]
  101. Alexandru N. Procopciuc A. Vîlcu A. Comariţa I.K. Bӑdilӑ E. Georgescu A. Extracellular vesicles—incorporated microRNA signature as biomarker and diagnosis of prediabetes state and its complications. Rev. Endocr. Metab. Disord. 2022 23 3 309 332 10.1007/s11154‑021‑09664‑y 34143360
    [Google Scholar]
  102. Tavassoly I. Goldfarb J. Iyengar R. Systems biology primer: The basic methods and approaches. Essays Biochem. 2018 62 4 487 500 10.1042/EBC20180003 30287586
    [Google Scholar]
  103. Plaza-Oliver M. Santander-Ortega M.J. Lozano M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res. 2021 11 2 471 497 10.1007/s13346‑021‑00908‑7 33528830
    [Google Scholar]
  104. Harde H. Das M. Jain S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 2011 8 11 1407 1424 10.1517/17425247.2011.604311 21831007
    [Google Scholar]
  105. Mishra V. Bansal K.K. Verma A. Yadav N. Thakur S. Sudhakar K. Rosenholm J.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018 10 4 191 10.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  106. Lee S.W.L. Paoletti C. Campisi M. Osaki T. Adriani G. Kamm R.D. Mattu C. Chiono V. MicroRNA delivery through nanoparticles. J. Control. Release 2019 313 80 95 10.1016/j.jconrel.2019.10.007 31622695
    [Google Scholar]
  107. Chen Q. Chen J. Liu Y.N. Qi S.H. Huang L.Y. Exosome-based drug delivery systems for the treatment of diabetes and its complications: Current opinion. Extracell. Vesic. Circul. Nucl. Acids 2023 4 3 502 517 10.20517/evcna.2023.32 39698026
    [Google Scholar]
  108. Parveen S. Gupta P. Kumar S. Banerjee M. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Med. Drug Discov. 2023 20 100165 10.1016/j.medidd.2023.100165
    [Google Scholar]
  109. Shang S. Li X. Wang H. Zhou Y. Pang K. Li P. Liu X. Zhang M. Li W. Li Q. Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact. Mater. 2024 37 206 221 10.1016/j.bioactmat.2024.03.014 38560369
    [Google Scholar]
  110. EL Andaloussi S. Mäger I. Breakefield X.O. Wood M.J.A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013 12 5 347 357 10.1038/nrd3978 23584393
    [Google Scholar]
  111. Lin X. Zhang X. Wang Y. Chen W. Zhu Z. Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int. J. Biol. Macromol. 2025 285 138098 10.1016/j.ijbiomac.2024.138098 39608543
    [Google Scholar]
  112. He X. Kuang G. Wu Y. Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 2021 11 6 468 10.1002/ctm2.468 34185424
    [Google Scholar]
  113. Murphy D.E. de Jong O.G. Brouwer M. Wood M.J. Lavieu G. Schiffelers R.M. Vader P. Extracellular vesicle-based therapeutics: Natural versus engineered targeting and trafficking. Exp. Mol. Med. 2019 51 3 32 10.1038/s12276‑019‑0223‑5 30872574
    [Google Scholar]
  114. Zapała B. Kamińska A. Piwowar M. Paziewska A. Gala-Błądzińska A. Stępień E.Ł. miRNA signature of urine extracellular vesicles shows the involvement of inflammatory and apoptotic processes in diabetic chronic kidney disease. Pharm. Res. 2023 40 4 817 832 10.1007/s11095‑023‑03481‑5 36859746
    [Google Scholar]
  115. Zang J. Maxwell A.P. Simpson D.A. McKay G.J. Differential expression of urinary exosomal micrornas mir-21-5p and mir-30b-5p in individuals with diabetic kidney disease. Sci. Rep. 2019 9 1 10900 10.1038/s41598‑019‑47504‑x 31358876
    [Google Scholar]
  116. Kim J. Ha S. Son M. Kim D. Kim M.J. Kim B. Kim D. Chung H.Y. Chung K.W. TLR7 activation by miR-21 promotes renal fibrosis by activating the pro-inflammatory signaling pathway in tubule epithelial cells. Cell Commun. Signal. 2023 21 1 215 10.1186/s12964‑023‑01234‑w 37596656
    [Google Scholar]
  117. Liu S. Wu W. Liao J. Tang F. Gao G. Peng J. Fu X. Zhan Y. Chen Z. Xu W. Zhao S. MicroRNA-21: A critical pathogenic factor of diabetic nephropathy. Front. Endocrinol. 2022 13 895010 10.3389/fendo.2022.895010 35865316
    [Google Scholar]
  118. Wang H. Wang B. Zhang A. Hassounah F. Seow Y. Wood M. Ma F. Klein J.D. Price S.R. Wang X.H. Exosome-Mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol. Ther. 2019 27 3 571 583 10.1016/j.ymthe.2019.01.008 30711446
    [Google Scholar]
  119. Jia Y. Guan M. Zheng Z. Zhang Q. Tang C. Xu W. Xiao Z. Wang L. Xue Y. miRNAs in urine extracellular vesicles as predictors of early-stage diabetic nephropathy. J. Diabetes Res. 2016 2016 1 10 10.1155/2016/7932765 26942205
    [Google Scholar]
  120. Chung Y.H. Huang G.K. Kang C.H. Cheng Y.T. Kao Y.H. Chien Y.S. MicroRNA-26a-5p restoration ameliorates unilateral ureteral obstruction-induced renal fibrosis in mice through modulating TGF-β signaling. Lab. Invest. 2023 103 7 100131 10.1016/j.labinv.2023.100131 36948295
    [Google Scholar]
  121. Cho N.J. Kim D.Y. Kwon S.H. Ha T.W. Kim H.K. Lee M.R. Chun S.W. Park S. Lee E. Gil H.W. Urinary exosomal microRNA profiling in type 2 diabetes patients taking dipeptidyl peptidase-4 inhibitor compared with sulfonylurea. Kidney Res. Clin. Pract. 2021 40 3 383 391 10.23876/j.krcp.21.015 34233436
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232376803250815065514
Loading
/content/journals/cgt/10.2174/0115665232376803250815065514
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test