Skip to content
2000
image of Advancements in Targeted Therapies and Pharmacogenomics for Personalized Breast Cancer Treatment: The Role of Gene SNPs in Treatment Resistance

Abstract

Breast cancer remains a prevalent and diverse disease, significantly contributing to cancer-related deaths among women worldwide. Recent advancements in molecular biology have paved the way for targeted therapies and pharmacogenomics, which are crucial for developing personalized treatment strategies. This literature review synthesizes findings from recent studies on these approaches, emphasizing clinical trials, genomic profiling, and personalized medicine. It aims to focus on studies examining targeted treatments, such as human epidermal growth factor receptor-2 (HER2) inhibitors and CDK4/6 inhibitors, alongside pharmacogenomic data that influence drug metabolism, efficacy, and toxicity. Additionally, it examines the role of gene SNPs (Single Nucleotide Polymorphisms) correlated with treatment resistance, which have emerged as key biomarkers affecting therapeutic outcomes in breast cancer. These SNPs, found in genes involved in drug metabolism and tumor progression, contribute to variability in treatment responses and resistance in specific subtypes. They encompass various breast cancer subtypes, including hormone receptor-positive (HR+), HER2-positive, and triple-negative breast cancer (TNBC). The targeted therapies, particularly HER2 inhibitors, have markedly improved outcomes for specific subtypes. Furthermore, pharmacogenomics personalizes treatment by identifying genetic variations that affect drug response, optimizing therapy selection, and minimizing adverse effects. Despite these advancements, drug resistance remains a significant challenge, highlighting the necessity for ongoing research in molecular diagnostics and innovative therapeutic combinations. The literature suggests that precision medicine, driven by genomic profiling, pharmacogenomic data, and single nucleotide polymorphisms (SNPs) analysis, is enhancing treatment efficacy for breast cancer patients. HER2-positive and HR+ patients have especially benefitted from these targeted therapies while emerging treatments are addressing the complexities of TNBC. Additionally, genetic testing, such as BRCA1/2 mutation screening, is vital for guiding treatment decisions. Targeted therapies and pharmacogenomics have revolutionized breast cancer treatment, providing more personalized and effective care. Nevertheless, overcoming drug resistance and expanding access to genomic testing are essential for future advancements in this field.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232373621250618181424
2025-06-27
2025-10-26
Loading full text...

Full text loading...

References

  1. Pandey P. Arya D.K. Kumar A. Kaushik A. Mishra Y.K. Rajinikanth P.S. Dual ligand functionalized pH-sensitive liposomes for metastatic breast cancer treatment: In vitro and in vivo assessment. J. Mater. Chem. B Mater. Biol. Med. 2025 13 8 2682 2694 10.1039/D4TB02570A 39841132
    [Google Scholar]
  2. Pandey P. Kumar Arya D. Kumar Ramar M. Chidambaram K. Rajinikanth P.S. Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discov. Today 2022 27 9 2526 2540 10.1016/j.drudis.2022.06.007 35753642
    [Google Scholar]
  3. Momenimovahed Z. Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 2019 11 151 164 10.2147/BCTT.S176070 31040712
    [Google Scholar]
  4. DeSantis C.E. Fedewa S.A. Goding Sauer A. Kramer J.L. Smith R.A. Jemal A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA Cancer J. Clin. 2016 66 1 31 42 10.3322/caac.21320 26513636
    [Google Scholar]
  5. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018 68 1 7 30 10.3322/caac.21442 29313949
    [Google Scholar]
  6. Pandey P. Chaudhary R. Tripathi D. Personalized treatment approach for HER2-positive metastatic breast cancer. Med. Oncol. 2024 41 11 252 10.1007/s12032‑024‑02504‑4 39320608
    [Google Scholar]
  7. Watkins E.J. Overview of breast cancer. JAAPA 2019 32 10 13 17 10.1097/01.JAA.0000580524.95733.3d 31513033
    [Google Scholar]
  8. Anders C.K. Fan C. Parker J.S. Breast carcinomas arising at a young age: Unique biology or a surrogate for aggressive intrinsic subtypes? J. Clin. Oncol. 2011 29 1 e18 e20 10.1200/JCO.2010.28.9199 21115855
    [Google Scholar]
  9. Stadler Z.K. Schrader K.A. Vijai J. Robson M.E. Offit K. Cancer genomics and inherited risk. J. Clin. Oncol. 2014 32 7 687 698 10.1200/JCO.2013.49.7271 24449244
    [Google Scholar]
  10. Stephens P.J. Tarpey P.S. Davies H. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012 486 7403 400 404 10.1038/nature11017 22722201
    [Google Scholar]
  11. Abida W. Cyrta J. Heller G. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2019 116 23 11428 11436 10.1073/pnas.1902651116 31061129
    [Google Scholar]
  12. Buchanan A.H. Lester Kirchner H. Schwartz M.L.B. Clinical outcomes of a genomic screening program for actionable genetic conditions. Genet. Med. 2020 22 11 1874 1882 10.1038/s41436‑020‑0876‑4 32601386
    [Google Scholar]
  13. Anjum M.M. Patel K.K. Bhattacharya S. Overcoming barriers in cystic fibrosis therapy through inhalational lipid nanoparticles: Challenges and advances. J. Drug Deliv. Sci. Technol. 2023 89 105068 10.1016/j.jddst.2023.105068
    [Google Scholar]
  14. Kurian A.W. Ward K.C. Abrahamse P. Time trends in receipt of germline genetic testing and results for women diagnosed with breast cancer or ovarian cancer, 2012-2019. J. Clin. Oncol. 2021 39 15 1631 1640 10.1200/JCO.20.02785 33560870
    [Google Scholar]
  15. Asif M. A review on personalized medicine: A medical treatment to the individual characteristics of each patient. Int J Pharma Prof Res 2023 14 2 80 90
    [Google Scholar]
  16. Srivastava D. Tasar Silkworm Pupae oil: A potential therapeutic and edible lipid source to mitigate the oxidative stress and cholesterol complications associated with diabetes. Food and Humanity 2024 100418
    [Google Scholar]
  17. Nanda A. Pandey P. Rajinikanth P.S. Singh N. Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation - A review. Int. J. Biol. Macromol. 2024 260 Pt 1 129416 10.1016/j.ijbiomac.2024.129416 38224810
    [Google Scholar]
  18. Tripathi D. Srivastava M. Rathour K. A promising approach of dermal targeting of antipsoriatic drugs via engineered nanocarriers drug delivery systems for tackling psoriasis. Drug Metab Bioanal Lett 2023 16 2 89 104 10.2174/2949681016666230803150329 37534794
    [Google Scholar]
  19. Sener U. Berkkan A. Integrating pharmacogenomics into personalized medicine for breast cancer. Int J Adv Res Med 2023 5 4 41 44 10.22271/27069567.2023.v5.i4a.537
    [Google Scholar]
  20. Tripathi D. Rathour K. Pandey P. Tiwari R.K. Rai A.K. Basil seed mucilage as a bioadhesive polymer: Development of naproxen sodium microspheres and suppositories with in-vitro and ex-vivo studies. ADMET DMPK 2024 12 6 881 901 10.5599/admet.2372 39713257
    [Google Scholar]
  21. Malviya R. Singh A.K. Verma S. Personalized medicine: Advanced treatment strategies to revolutionize healthcare. Curr. Drug Res. Rev. 2023 15 2 101 104 10.2174/2589977515666221104152641 36336809
    [Google Scholar]
  22. Sarhangi N. Hajjari S. Heydari S.F. Ganjizadeh M. Rouhollah F. Hasanzad M. Breast cancer in the era of precision medicine. Mol. Biol. Rep. 2022 49 10 10023 10037 10.1007/s11033‑022‑07571‑2 35733061
    [Google Scholar]
  23. Silva S.N. Gomes B.C. André S. Félix A. Rodrigues A.S. Rueff J. Male and female breast cancer: The two faces of the same genetic susceptibility coin. Breast Cancer Res. Treat. 2021 188 1 295 305 10.1007/s10549‑021‑06159‑x 33942220
    [Google Scholar]
  24. Li Q. Geng S. Luo H. Signaling pathways involved in colorectal cancer: Pathogenesis and targeted therapy. Signal Transduct. Target. Ther. 2024 9 1 266 10.1038/s41392‑024‑01953‑7 39370455
    [Google Scholar]
  25. Laxmi P. Golmei P. Srivastava S. Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur. J. Pharmacol. 2024 972 176584 10.1016/j.ejphar.2024.176584 38621507
    [Google Scholar]
  26. Hoeben A. Joosten E.A.J. van den Beuken-van Everdingen M.H.J. Personalized medicine: recent progress in cancer therapy. Cancers 2021 13 2 242 10.3390/cancers13020242 33440729
    [Google Scholar]
  27. Gambardella V. Tarazona N. Cejalvo J.M. Personalized medicine: recent progress in cancer therapy. Cancers 2020 12 4 1009 10.3390/cancers12041009 32325878
    [Google Scholar]
  28. Tripathi D. Gupta T. Rai A.K. Pandey P. Pioneering a new era in oral cancer treatment with electrospun nanofibers: A comprehensive insight. Anticancer. Agents Med. Chem. 2025 25 7 468 489 10.2174/0118715206348821241119100134 39773055
    [Google Scholar]
  29. Wolf D M Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies 10.1016/j.ccell.2022.05.005 2022
    [Google Scholar]
  30. Johnson K.S. Conant E.F. Soo M.S. Molecular subtypes of breast cancer: A review for breast radiologists. J. Breast Imaging 2021 3 1 12 24 10.1093/jbi/wbaa110 38424845
    [Google Scholar]
  31. Jaiswal S. Anjum M.M. Thakur S. Evaluation of cardioprotective effect of naringin loaded lignin nanoparticles against isoproterenol induced myocardial infarction. J. Drug Deliv. Sci. Technol. 2023 89 105076 10.1016/j.jddst.2023.105076
    [Google Scholar]
  32. Lehmann B.D. Colaprico A. Silva T.C. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat. Commun. 2021 12 1 6276 10.1038/s41467‑021‑26502‑6 34725325
    [Google Scholar]
  33. Houghton S.C. Hankinson S.E. Cancer progress and priorities: Breast cancer. Cancer Epidemiol. Biomarkers Prev. 2021 30 5 822 844 10.1158/1055‑9965.EPI‑20‑1193 33947744
    [Google Scholar]
  34. Zhao S. Zuo W-J. Shao Z-M. Jiang Y-Z. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann. Transl. Med. 2020 8 7 499 10.21037/atm.2020.03.194 32395543
    [Google Scholar]
  35. Adeniji A.A. Dawodu O.O. Habeebu M.Y. Distribution of breast cancer subtypes among Nigerian women and correlation to the risk factors and clinicopathological characteristics. World J. Oncol. 2020 11 4 165 172 10.14740/wjon1303 32849957
    [Google Scholar]
  36. Lashen A. Toss M.S. Green A.R. Mongan N.P. Rakha E. Ki67 assessment in invasive luminal breast cancer: A comparative study between different scoring methods. Histopathology 2022 81 6 786 798 10.1111/his.14781 35997652
    [Google Scholar]
  37. Hsu E. Arezo S.M. Graff S.L. Updates in systemic treatment of hormone receptor-positive early-stage breast cancer. Curr. Treat. Options Oncol. 2024 25 10 1323 1334 10.1007/s11864‑024‑01258‑5 39361142
    [Google Scholar]
  38. Wu Y. Han Y. Yu P. Endocrine therapy for hormone receptor-positive advanced breast cancer: A nation-wide multicenter epidemiological study in China. Front. Oncol. 2021 10 599604 10.3389/fonc.2020.599604 33643905
    [Google Scholar]
  39. Koirala N. Dey N. Aske J. De P. Targeting cell cycle progression in HER2+ breast cancer: An emerging treatment opportunity. Int. J. Mol. Sci. 2022 23 12 6547 10.3390/ijms23126547 35742993
    [Google Scholar]
  40. Xia S. Lin Q. Estrogen receptor bio-activities determine clinical endocrine treatment options in estrogen receptor-positive breast cancer. Technol. Cancer Res. Treat. 2022 21 15330338221090351 10.1177/15330338221090351 35450488
    [Google Scholar]
  41. Arya D.K. Pandey P. Kumar A. Dual-ligand functionalized liposomes with iRGD/trastuzumab co-loaded with gefitinib and lycorine for enhanced metastatic breast cancer therapy. J. Liposome Res. 2025 ••• 1 15 10.1080/08982104.2025.2457453 39895032
    [Google Scholar]
  42. Pandey P. Arya D.K. Deepak P. αvβ3 integrin and folate-targeted ph-sensitive liposomes with dual ligand modification for metastatic breast cancer treatment. Bioengineering 2024 11 8 800 10.3390/bioengineering11080800 39199757
    [Google Scholar]
  43. Dalal H. Precision medicine in breast cancer: A molecular genomics and diagnostics approach. Lund University 2024
    [Google Scholar]
  44. Jasani B. Taylor C. Precision Cancer Medicine. Springer 2021 10.1007/978‑3‑030‑84087‑7
    [Google Scholar]
  45. Rahman S. Recent advancement on breast cancer detection and treatment. Brac University 2022
    [Google Scholar]
  46. Maadi H. Soheilifar M.H. Choi W.S. Moshtaghian A. Wang Z. Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers 2021 13 14 3540 10.3390/cancers13143540 34298754
    [Google Scholar]
  47. Xie J. Zou Y. Gao T. Xie L. Tan D. Xie X. Therapeutic landscape of human epidermal growth factor receptor 2–positive breast cancer. Cancer Contr. 2022 29 10732748221099230 10.1177/10732748221099230 35499382
    [Google Scholar]
  48. Gupta S. Jones J.E. Smith-Graziani D. Disparities in hereditary genetic testing in patients with triple negative breast cancer. Clin. Breast Cancer 2025 25 1 12 18.e1 10.1016/j.clbc.2024.09.018 39477723
    [Google Scholar]
  49. Derakhshan F. Reis-Filho J.S. Pathogenesis of triple-negative breast cancer. Annu. Rev. Pathol. 2022 17 1 181 204 10.1146/annurev‑pathol‑042420‑093238 35073169
    [Google Scholar]
  50. Berger E.R. Iyengar N.M. Obesity and energy balance considerations in triple-negative breast cancer. Cancer J. 2021 27 1 17 24 10.1097/PPO.0000000000000502 33475289
    [Google Scholar]
  51. Manjunath M. Choudhary B. Triple negative breast cancer: A run through of features, classification and current therapies (Review). Oncol. Lett. 2021 22 1 512 10.3892/ol.2021.12773 33986872
    [Google Scholar]
  52. Arya D.K. Deshpande H. Kumar A. HER-2 receptor and αvβ3 integrin dual-ligand surface-functionalized liposome for metastatic breast cancer therapy. Pharmaceutics 2024 16 9 1128 10.3390/pharmaceutics16091128 39339166
    [Google Scholar]
  53. Lau K.H. Tan A.M. Shi Y. New and emerging targeted therapies for advanced breast cancer. Int. J. Mol. Sci. 2022 23 4 2288 10.3390/ijms23042288 35216405
    [Google Scholar]
  54. Oh D-Y. Bang Y-J. HER2-targeted therapies - A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2020 17 1 33 48 10.1038/s41571‑019‑0268‑3 31548601
    [Google Scholar]
  55. Vagia E. Mahalingam D. Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers 2020 12 4 916 10.3390/cancers12040916 32276534
    [Google Scholar]
  56. Deutsch T.M. Riethdorf S. Fremd C. HER2-targeted therapy influences CTC status in metastatic breast cancer. Breast Cancer Res. Treat. 2020 182 1 127 136 10.1007/s10549‑020‑05687‑2 32436146
    [Google Scholar]
  57. Tripathi D. Gupta T. Pandey P. Exploring piperine: Unleashing the multifaceted potential of a phytochemical in cancer therapy. Mol. Biol. Rep. 2024 51 1 1050 10.1007/s11033‑024‑09978‑5 39395120
    [Google Scholar]
  58. Elfgen C. Bjelic-Radisic V. Targeted therapy in HR+ HER2− metastatic breast cancer: current clinical trials and their implications for CDK4/6 inhibitor therapy and beyond treatment options. Cancers 2021 13 23 5994 10.3390/cancers13235994 34885105
    [Google Scholar]
  59. Kay C. Martínez-Pérez C. Meehan J. Current trends in the treatment of HR+/HER2+ breast cancer. Future Oncol. 2021 17 13 1665 1681 10.2217/fon‑2020‑0504 33726508
    [Google Scholar]
  60. Liang Y. Liu X. Yun Z. Li K. Li H. Endocrine therapy plus HER2-targeted therapy, another favorable option for HR+/HER2+ advanced breast cancer patients. Ther. Adv. Med. Oncol. 2024 16 17588359231220501 10.1177/17588359231220501 38188468
    [Google Scholar]
  61. Gupta P.C. Kapoor A. Pandey P. Designing and characterization of econazole nitrate nanostructured lipid carriers gel for topical delivery. Eur. J. Pharm. Med. Res. 2018 5 6 559 567
    [Google Scholar]
  62. Jhaveri K.L. Lim E. Jeselsohn R. Imlunestrant, an oral selective estrogen receptor degrader, as monotherapy and in combination with targeted therapy in estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: Phase Ia/Ib EMBER study. J. Clin. Oncol. 2024 42 35 4173 4186 10.1200/JCO.23.02733 39241211
    [Google Scholar]
  63. Ferreira Almeida C. Oliveira A. João Ramos M. Fernandes P.A. Teixeira N. Amaral C. Estrogen receptor-positive (ER+) breast cancer treatment: Are multi-target compounds the next promising approach? Biochem. Pharmacol. 2020 177 113989 10.1016/j.bcp.2020.113989 32330493
    [Google Scholar]
  64. Kunte S. Abraham J. Montero A.J. Novel HER2–targeted therapies for HER2–positive metastatic breast cancer. Cancer 2020 126 19 4278 4288 10.1002/cncr.33102 32721042
    [Google Scholar]
  65. Yoon J. Oh D.Y. HER2-targeted therapies beyond breast cancer — An update. Nat. Rev. Clin. Oncol. 2024 21 9 675 700 10.1038/s41571‑024‑00924‑9 39039196
    [Google Scholar]
  66. Yi Z. Rong G. Guan Y. Molecular landscape and efficacy of HER2-targeted therapy in patients with HER2-mutated metastatic breast cancer. NPJ Breast Cancer 2020 6 1 59 10.1038/s41523‑020‑00201‑9 33145402
    [Google Scholar]
  67. Kreutzfeldt J. Rozeboom B. Dey N. De P. The trastuzumab era: Current and upcoming targeted HER2+ breast cancer therapies. Am. J. Cancer Res. 2020 10 4 1045 1067 32368385
    [Google Scholar]
  68. Swain S.M. Shastry M. Hamilton E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023 22 2 101 126 10.1038/s41573‑022‑00579‑0 36344672
    [Google Scholar]
  69. Hussain S. Mursal M. Verma G. Hasan S.M. Khan M.F. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur. J. Pharmacol. 2024 970 176484 10.1016/j.ejphar.2024.176484 38467235
    [Google Scholar]
  70. Mir M.A. Qayoom H. Mehraj U. Nisar S. Bhat B. Wani N.A. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr. Cancer Drug Targets 2020 20 8 586 602 10.2174/1570163817666200518081955 32418525
    [Google Scholar]
  71. Marra A. Chandarlapaty S. Modi S. Management of patients with advanced-stage HER2-positive breast cancer: current evidence and future perspectives. Nat. Rev. Clin. Oncol. 2024 21 3 185 202 10.1038/s41571‑023‑00849‑9 38191924
    [Google Scholar]
  72. Torrisi R. Jacobs F. Miggiano C. De Sanctis R. Santoro A.H.R. +/HER2– de novo metastatic breast cancer: A true peculiar entity? Drugs Context 2023 12 1 19 10.7573/dic.2022‑12‑2 36926051
    [Google Scholar]
  73. Richman J. Late recurrence in ER+ breast cancer-refining risk prediction beyond 5 years. Thesis or Dissertation, Institute of Cancer Research (University Of London) 2021
    [Google Scholar]
  74. Gallo M. Expected and paradoxical effects of obesity on cancer treatment response. Rev. Endocr. Metab. Disord. 2020 1 22 33025385
    [Google Scholar]
  75. Loi S. Salgado R. Schmid P. Association between biomarkers and clinical outcomes of pembrolizumab monotherapy in patients with metastatic triple-negative breast cancer: KEYNOTE-086 exploratory analysis. JCO Precis. Oncol. 2023 7 e2200317 10.1200/PO.22.00317 37099733
    [Google Scholar]
  76. Winer E.P. Lipatov O. Im S.A. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021 22 4 499 511 10.1016/S1470‑2045(20)30754‑3 33676601
    [Google Scholar]
  77. Cortes J. Rugo H.S. Cescon D.W. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N. Engl. J. Med. 2022 387 3 217 226 10.1056/NEJMoa2202809 35857659
    [Google Scholar]
  78. Tiainen L. Metastatic breast cancer: Efficacy of bevacizumabbased chemotherapy and prognostic factors. G5 Doctoral dissertation, Tampere University Dissertations 2020
    [Google Scholar]
  79. Toh U Kage M Yamana H Shirouzu K First-line treatment of metastatic breast cancer: Focus on bevacizumab.
    [Google Scholar]
  80. Medina M.A. Oza G. Sharma A. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health 2020 17 6 2078 32245065
    [Google Scholar]
  81. Hammershøi Madsen A.M. Løvendahl Eefsen R.H. Nielsen D. Kümler I. Targeted treatment of metastatic triple-negative breast cancer: A systematic review. Breast J. 2024 2024 1 9083055 39742383
    [Google Scholar]
  82. Sasich L.D. Sukkari S.R. The US FDAs withdrawal of the breast cancer indication for Avastin (bevacizumab). Saudi Pharm. J. 2012 20 4 381 385 10.1016/j.jsps.2011.12.001 23960813
    [Google Scholar]
  83. Afranie-Sakyi J.A. Klement G.L. The toxicity of anti-VEGF agents when coupled with standard chemotherapeutics. Cancer Lett. 2015 357 1 1 7 10.1016/j.canlet.2014.10.028 25449430
    [Google Scholar]
  84. Barchiesi G. Roberto M. Verrico M. Vici P. Tomao S. Tomao F. Emerging role of PARP inhibitors in metastatic triple negative breast cancer. Current scenario and future perspectives. Front. Oncol. 2021 11 769280 10.3389/fonc.2021.769280 34900718
    [Google Scholar]
  85. Mehlich D. Marusiak A.A. Kinase inhibitors for precision therapy of triple-negative breast cancer: Progress, challenges, and new perspectives on targeting this heterogeneous disease. Cancer Lett. 2022 547 215775 10.1016/j.canlet.2022.215775 35667515
    [Google Scholar]
  86. Tripathi D. Pandey P. Sharma S. Rai A.K. Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity. Bioimpacts 2024 15 1 30573 3 10.34172/bi.30573
    [Google Scholar]
  87. Ayoub N.M. Jaradat S.K. Al-Shami K.M. Alkhalifa A.E. Targeting angiogenesis in breast cancer: Current evidence and future perspectives of novel anti-angiogenic approaches. Front. Pharmacol. 2022 13 838133 10.3389/fphar.2022.838133 35281942
    [Google Scholar]
  88. Musolino A. Gradishar W.J. Rugo H.S. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J. Immunother. Cancer 2022 10 1 e003171 10.1136/jitc‑2021‑003171 34992090
    [Google Scholar]
  89. Batalha S. Gomes C.M. Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front. Immunol. 2023 14 1267621 10.3389/fimmu.2023.1267621 38022643
    [Google Scholar]
  90. Alasmari M.M. A review of margetuximab-based therapies in patients with HER2-positive metastatic breast cancer. Cancers 2022 15 1 38 10.3390/cancers15010038 36612034
    [Google Scholar]
  91. Singla H. Munshi A. Tyrosine kinase inhibitors in the sensitization to cancers resistant to HER2 antibodies. Crit. Rev. Oncog. 2020 25 3 241 250 10.1615/CritRevOncog.2020037108 33463944
    [Google Scholar]
  92. Untch M. Martin M. De Laurentiis M. Gligorov J. How to optimise extended adjuvant treatment with neratinib for patients with early HER2+ breast cancer. Oncol. Ther. 2021 9 2 297 309 10.1007/s40487‑021‑00153‑5 34057699
    [Google Scholar]
  93. Lee A. Tucatinib: First approval. Drugs 2020 80 10 1033 1038 10.1007/s40265‑020‑01340‑w 32548668
    [Google Scholar]
  94. Brugioni E. Cathcart-Rake E. Metsker J. Gustafson E. Douglass L. Pluard T.J. Germline BRCA-mutated HER2-negative advanced breast cancer: overcoming challenges in genetic testing and clinical considerations when using talazoparib. Clin. Breast Cancer 2023 23 5 469 477 10.1016/j.clbc.2023.04.006 37246120
    [Google Scholar]
  95. Cortesi L. Rugo H.S. Jackisch C. An overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol. 2021 16 3 255 282 10.1007/s11523‑021‑00796‑4 33710534
    [Google Scholar]
  96. Tankova T. Senkus E. Beloyartseva M. Management strategies for hyperglycemia associated with the α-selective PI3K inhibitor alpelisib for the treatment of breast cancer. Cancers 2022 14 7 1598 10.3390/cancers14071598 35406370
    [Google Scholar]
  97. Yardley D.A. Liggett W. Mainwaring M. A phase II open label study of everolimus in combination with endocrine therapy in resistant hormone receptor-positive HER2-negative advanced breast cancer. Clin. Breast Cancer 2020 20 2 89 97 10.1016/j.clbc.2019.06.005 31932237
    [Google Scholar]
  98. Sammons S. Moore H. Cushman J. Hamilton E. Efficacy, safety and toxicity management of adjuvant abemaciclib in early stage HR+/HER2- high-risk breast cancer. Expert Rev. Anticancer Ther. 2022 22 8 805 814 10.1080/14737140.2022.2093719 35737886
    [Google Scholar]
  99. Di Cosimo S. Porcu L. Cardoso F. CDK 4/6 inhibitors mired in uncertainty in HR positive and HER2 negative early breast cancer. Breast 2021 55 75 78 10.1016/j.breast.2020.12.006 33352521
    [Google Scholar]
  100. Iorfida M. Mazza M. Munzone E. Fulvestrant in combination with CDK4/6 inhibitors for HER2- Metastatic breast cancers: Current perspectives. Breast Cancer 2020 12 45 56 10.2147/BCTT.S196240 32256106
    [Google Scholar]
  101. Burguin A. Diorio C. Durocher F. Breast cancer treatments: Updates and new challenges. J. Pers. Med. 2021 11 8 808 34442452
    [Google Scholar]
  102. Nielsen S.W. Eckhoff L. Ruhlmann C.H.B. Herrstedt J. Dalton S.O. The prevalence, distribution and impact of peripheral neuropathy among Danish patients with cancer – A population-based cross-sectional study. Acta Oncol. 2022 61 3 363 370 10.1080/0284186X.2021.2007283 34846991
    [Google Scholar]
  103. Ojo O. Osteoporosis screening and treatment in Manitoba: A population-based study. Thesis: MASTER OF SCIENCE 2021
    [Google Scholar]
  104. Tuca A. Gallego R. Ghanem I. Gil-Raga M. Feliu J. Chemotherapy and targeted agents in the treatment of elderly patients with metastatic colorectal cancer. J. Clin. Med. 2020 9 12 4015 10.3390/jcm9124015 33322567
    [Google Scholar]
  105. Zhao M. Ma J. Li M. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 2021 22 23 12808 10.3390/ijms222312808 34884615
    [Google Scholar]
  106. Narendra G. Choudhary S. Raju B. Verma H. Silakari O. Role of genetic polymorphisms in drug-metabolizing enzyme-mediated toxicity and pharmacokinetic resistance to anti-cancer agents: A review on the pharmacogenomics aspect. Clin. Pharmacokinet. 2022 61 11 1495 1517 10.1007/s40262‑022‑01174‑7 36180817
    [Google Scholar]
  107. Martins-Teixeira M.B. Carvalho I. Antitumour anthracyclines: progress and perspectives. ChemMedChem 2020 15 11 933 948 10.1002/cmdc.202000131 32314528
    [Google Scholar]
  108. Nthontho K.C. Ndlovu A.K. Sharma K. Kasvosve I. Hertz D.L. Paganotti G.M. Pharmacogenetics of breast cancer treatments: A sub-Saharan Africa perspective. Pharm. Genomics Pers. Med. 2022 15 613 652 10.2147/PGPM.S308531 35761855
    [Google Scholar]
  109. Bray J. Sludden J. Griffin M.J. Cole M, Verrill M, Jamieson D, Boddy AV. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br. J. Cancer 2010 102 6 1003 1009 10.1080/17425255.2021.1876661 33459081
    [Google Scholar]
  110. Rofaiel S. Muo E.N. Mousa S.A. Pharmacogenetics in breast cancer: Steps toward personalized medicine in breast cancer management. Pharm. Genomics Pers. Med. 2010 3 129 143 23226048
    [Google Scholar]
  111. Malátková P. Maser E. Wsól V. Human carbonyl reductases. Curr. Drug Metab. 2010 11 8 639 658 10.2174/138920010794233530 20942781
    [Google Scholar]
  112. Lal S. Mahajan A. Ning Chen W. Chowbay B. Pharmacogenetics of target genes across doxorubicin disposition pathway: A review. Curr. Drug Metab. 2010 11 1 115 128 10.2174/138920010791110890 20302569
    [Google Scholar]
  113. Zhang J. Blanco J.G. Identification of the promoter of human carbonyl reductase 3 (CBR3) and impact of common promoter polymorphisms on hepatic CBR3 mRNA expression. Pharm. Res. 2009 26 9 2209 2215 10.1007/s11095‑009‑9936‑9 19590938
    [Google Scholar]
  114. Weaver B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014 25 18 2677 2681 10.1091/mbc.e14‑04‑0916 25213191
    [Google Scholar]
  115. Jeibouei S. Akbari M.E. Kalbasi A. Personalized medicine in breast cancer: Pharmacogenomics approaches. Pharm. Genomics Pers. Med. 2019 12 59 73 10.2147/PGPM.S167886 31213877
    [Google Scholar]
  116. Skinner K.T. Palkar A.M. Hong A.L. Genetics of ABCB1 in cancer. Cancers 2023 15 17 4236 10.3390/cancers15174236 37686513
    [Google Scholar]
  117. Chang H. Rha S.Y. Jeung H.C. Im CK, Noh SH, Kim JJ, Chung HC. Association of the ABCB1 3435C> T polymorphism and treatment outcomes in advanced gastric cancer patients treated with paclitaxel-based chemotherapy. Oncol. Rep. 2010 23 1 271 278 10.1007/s00280‑021‑04374‑3 34988655
    [Google Scholar]
  118. Salman B. Al-Khabori M. Applications and challenges in therapeutic drug monitoring of cancer treatment: A review. J. Oncol. Pharm. Pract. 2021 27 3 693 701 10.1177/1078155220979048 33302823
    [Google Scholar]
  119. Alalawy A.I. Key genes and molecular mechanisms related to paclitaxel resistance. Cancer Cell Int. 2024 24 1 244 10.1186/s12935‑024‑03415‑0 39003454
    [Google Scholar]
  120. Sethy C. Kundu C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 2021 137 111285 10.1016/j.biopha.2021.111285 33485118
    [Google Scholar]
  121. Famurewa A.C. Mukherjee A.G. Wanjari U.R. Repurposing FDA-approved drugs against the toxicity of platinum-based anticancer drugs. Life Sci. 2022 305 120789 10.1016/j.lfs.2022.120789 35817170
    [Google Scholar]
  122. Gagno S. Bartoletti M. Romualdi C. Pharmacogenetic score predicts overall survival, progression-free survival and platinum sensitivity in ovarian cancer. Pharmacogenomics 2020 21 14 995 1010 10.2217/pgs‑2020‑0049 32894980
    [Google Scholar]
  123. Sadee W. Wang D. Hartmann K. Toland A.E. Pharmacogenomics: driving personalized medicine. Pharmacol. Rev. 2023 75 4 789 814 10.1124/pharmrev.122.000810 36927888
    [Google Scholar]
  124. Cecchin E. Stocco G. Pharmacogenomics and personalized medicine. MDPI 2020 679 10.3390/genes11060679
    [Google Scholar]
  125. Whirl-Carrillo M. Huddart R. Gong L. An evidence‐based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2021 110 3 563 572 10.1002/cpt.2350 34216021
    [Google Scholar]
  126. Primorac D. Bach-Rojecky L. Vađunec D. Pharmacogenomics at the center of precision medicine: Challenges and perspective in an era of Big Data. Pharmacogenomics 2020 21 2 141 156 10.2217/pgs‑2019‑0134 31950879
    [Google Scholar]
  127. Allweis T.M. Hermann N. Berenstein-Molho R. Guindy M. Personalized screening for breast cancer: Rationale, present practices, and future directions. Ann. Surg. Oncol. 2021 28 8 4306 4317 10.1245/s10434‑020‑09426‑1 33398646
    [Google Scholar]
  128. Lorenzo-Luaces L. Peipert A. De Jesús Romero R. Rutter L.A. Rodriguez-Quintana N. Personalized medicine and cognitive behavioral therapies for depression: Small effects, big problems, and bigger data. Int. J. Cogn. Ther. 2021 14 1 59 85 10.1007/s41811‑020‑00094‑3
    [Google Scholar]
  129. Leroux C. Konstantinidou G. Targeted therapies for pancreatic cancer: Overview of current treatments and new opportunities for personalized oncology. Cancers 2021 13 4 799 10.3390/cancers13040799 33672917
    [Google Scholar]
  130. Taylor C. Crosby I. Yip V. Maguire P. Pirmohamed M. Turner R.M. A review of the important role of CYP2D6 in Pharmacogenomics. Genes 2020 11 11 1295 10.3390/genes11111295 33143137
    [Google Scholar]
  131. Hossam Abdelmonem B. Abdelaal N.M. Anwer E.K.E. Decoding the role of CYP450 enzymes in metabolism and disease: A comprehensive review. Biomedicines 2024 12 7 1467 10.3390/biomedicines12071467 39062040
    [Google Scholar]
  132. Wankaew N. Chariyavilaskul P. Chamnanphon M. Genotypic and phenotypic landscapes of 51 pharmacogenes derived from whole-genome sequencing in a Thai population. PLoS One 2022 17 2 e0263621 10.1371/journal.pone.0263621 35176049
    [Google Scholar]
  133. Nahid N.A. Johnson J.A. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine. Expert Opin. Drug Metab. Toxicol. 2022 18 11 769 785 10.1080/17425255.2022.2160317 36597259
    [Google Scholar]
  134. Helland T. Alsomairy S. Lin C. Søiland H. Mellgren G. Hertz D.L. Generating a precision endoxifen prediction algorithm to advance personalized tamoxifen treatment in patients with breast cancer. J. Pers. Med. 2021 11 3 201 10.3390/jpm11030201 33805613
    [Google Scholar]
  135. Krauss K. Stickeler E. Endocrine therapy in early breast cancer. Breast Care 2020 15 4 337 346 10.1159/000509362 32982643
    [Google Scholar]
  136. Schroth W. Goetz M.P. Hamann U. Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S, Fritz P, Simon W, Suman VJ, Ames MM, Safgren SL. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 2009 302 13 1429 1436
    [Google Scholar]
  137. Kiyotani K. Mushiroda T. Imamura C.K. Hosono N, Tsunoda T, Kubo M, Tanigawara Y, Flockhart DA, Desta Z, Skaar TC, Aki F. Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J. Clin. Oncol. 2010 28 8 1287 1293
    [Google Scholar]
  138. Augusto T.A.S.V. Aromatase inhibitors in breast cancer: Drug discovery and strategies to overcome acquired resistance. Portugal Universidade do Porto 2021
    [Google Scholar]
  139. Mukherjee A.G. Wanjari U.R. Nagarajan D. Letrozole: Pharmacology, toxicity and potential therapeutic effects. Life Sci. 2022 310 121074 10.1016/j.lfs.2022.121074 36243120
    [Google Scholar]
  140. Andrés-Sánchez N. Fisher D. Krasinska L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J. Cell Sci. 2022 135 11 jcs258932 10.1242/jcs.258932 35674256
    [Google Scholar]
  141. Tawfik K. Kimler B.F. Davis M.K. Fan F. Tawfik O. Ki-67 expression in axillary lymph node metastases in breast cancer is prognostically significant. Hum. Pathol. 2013 44 1 39 46 10.1098/rsob.210120 34375547
    [Google Scholar]
  142. Sinn B.V. Sychra K. Untch M. On-treatment biopsies to predict response to neoadjuvant chemotherapy for breast cancer. Breast Cancer Res. 2024 26 1 138 10.1186/s13058‑024‑01883‑w 39317942
    [Google Scholar]
  143. Luporsi E. André F. Spyratos F. Martin PM, Jacquemier J, Penault-Llorca F, Tubiana-Mathieu N, Sigal-Zafrani B, Arnould L, Gompel A, Egele C. Ki-67: level of evidence and methodological considerations for its role in the clinical management of breast cancer: analytical and critical review. Breast Cancer Research. and Treatment. 2012 132 895 915 10.3390/cancers13112538 34064183
    [Google Scholar]
  144. Mijit M. Caracciolo V. Melillo A. Amicarelli F. Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules 2020 10 3 420 10.3390/biom10030420 32182711
    [Google Scholar]
  145. Kulaberoglu Y. Hergovich A. Gómez V. The role of p53/p21. In: DNA damage signaling and DNA repair,” in Genome stability. Elsevier 2021 21
    [Google Scholar]
  146. Dumay A. Feugeas J.P. Wittmer E. Lehmann-Che J, Bertheau P, Espié M, Plassa LF, Cottu P, Marty M, André F, Sotiriou C. Distinct tumor protein p53 mutants in breast cancer subgroups. Int. J. Cancer 2013 132 5 1227 1231 10.1007/s00428‑024‑03897‑3 39191994
    [Google Scholar]
  147. Lianidou E. Hoon D. Circulating tumor cells and circulating tumor DNA. In: Principles and applications of molecular diagnostics. Elsevier 2018 235 281
    [Google Scholar]
  148. Bielčiková Z. Circulating tumor cells in breast cancer patients 2017
    [Google Scholar]
  149. Fina E. Biological and Clinical Significance of Circulating Tumor Cells in Breast Cancer. United Kingdom Open University 2017
    [Google Scholar]
  150. González Conde M. Clinical application of liquid biopsy to identify predictive and resistance biomarkers in stage IV breast cancer patients treated with CDK4/6 inhibitors. Thesis, University of Santiago de Compostela 2023
    [Google Scholar]
  151. Orsini A. Diquigiovanni C. Bonora E. Omics technologies improving breast cancer research and diagnostics. Int. J. Mol. Sci. 2023 24 16 12690 10.3390/ijms241612690 37628869
    [Google Scholar]
  152. Neagu A.N. Whitham D. Bruno P. Morrissiey H. Darie C.A. Darie C.C. Omics-based investigations of breast cancer. Molecules 2023 28 12 4768 10.3390/molecules28124768 37375323
    [Google Scholar]
  153. Sethy B. Upadhyay R. Narwanti I. Yu Z.Y. Lee S.B. Liou J.P. Novel dual inhibitor targeting CDC25 and HDAC for treating triple-negative breast cancer. Apoptosis 2024 29 11-12 2047 2073 10.1007/s10495‑024‑02023‑7 39395083
    [Google Scholar]
  154. Li J. Yan Y. Chen F. Clinical trial landscape for histone deacetylation inhibitors in breast cancer: A dawn in the darkness? J. Transl. Med. 2024 22 1 1081 10.1186/s12967‑024‑05911‑3 39609889
    [Google Scholar]
  155. Mehmood S.A. Sahu K.K. Sengupta S. Recent advancement of HDAC inhibitors against breast cancer. Med. Oncol. 2023 40 7 201 10.1007/s12032‑023‑02058‑x 37294406
    [Google Scholar]
  156. Dziadkowiec K.N. Gąsiorowska E. Nowak-Markwitz E. Jankowska A. PARP inhibitors: Review of mechanisms of action and BRCA1/2 mutation targeting. Prz. Menopauzalny. 2016 15 4 215 219 10.5114/pm.2016.65667 28250726
    [Google Scholar]
  157. Dean L. Tamoxifen therapy and CYP2D6 genotype. Bethesda (MD). National Center for Biotechnology Information (US) 2019
    [Google Scholar]
  158. Alhussein M.M. Mokbel A. Cosman T. Pertuzumab cardiotoxicity in patients with HER2-positive cancer: A systematic review and meta-analysis. CJC Open 2021 3 11 1372 1382 10.1016/j.cjco.2021.06.019 34901806
    [Google Scholar]
  159. Brugioni E. Pluard T.J. Cathcart-Rake E.J. Gosch K. Treatment of alpelisib induced hyperglycemia with sodium-glucose cotransporter-2 inhibitors: A single institution experience. J. Clin. Oncol. 2022 40 16 Suppl. e13041 e1 10.1200/JCO.2022.40.16_suppl.e13041
    [Google Scholar]
  160. Goetz M.P. Bagegni N.A. Batist G. Lasofoxifene versus fulvestrant for ER+/HER2− metastatic breast cancer with an ESR1 mutation: Results from the randomized, phase II ELAINE 1 trial. Ann. Oncol. 2023 34 12 1141 1151 10.1016/j.annonc.2023.09.3104 38072514
    [Google Scholar]
  161. Kron A. Alidousty C. Scheffler M. Impact of TP53 mutation status on systemic treatment outcome in ALK-rearranged non-small-cell lung cancer. Ann. Oncol. 2018 29 10 2068 2075 10.1093/annonc/mdy333 30165392
    [Google Scholar]
  162. du Rusquec P. Blonz C. Frenel J.S. Campone M. Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer. Ther. Adv. Med. Oncol. 2020 12 1758835920940939 10.1177/1758835920940939 32782489
    [Google Scholar]
  163. Raja Sharin R.N.F.S. Khan J. Ibahim M.J. Muhamad M. Bowen J. Wan Mohamad Zain W.N.I. Role of ErbB1 in the underlying mechanism of lapatinib‐induced diarrhoea: A review. BioMed Res. Int. 2022 2022 1 4165808 10.1155/2022/4165808 35800225
    [Google Scholar]
  164. Schuler M.H. Efficacy and safety of erdafitinib in adults with NSCLC and prespecified fibroblast growth factor receptor alterations in the phase 2 open-label, single-arm RAGNAR trial. J. Clin. Oncol. 2024 42 16 Suppl. 8515 10.1200/JCO.2024.42.16_suppl.8515
    [Google Scholar]
  165. Kim S.T. Lee J. Park S.H. Prospective phase II trial of everolimus in PIK3CA amplification/mutation and/or PTEN loss patients with advanced solid tumors refractory to standard therapy. BMC Cancer 2017 17 1 211 10.1186/s12885‑017‑3196‑6 28330462
    [Google Scholar]
  166. Artigalás O. Vanni T. Hutz M.H. Ashton-Prolla P. Schwartz I.V. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: A systematic review and meta-analysis. BMC Med. 2015 13 1 139 10.1186/s12916‑015‑0373‑9 26067721
    [Google Scholar]
  167. Mlak R. Krawczyk P. Ciesielka M. The relationship between RRM1 gene polymorphisms and effectiveness of gemcitabine-based first-line chemotherapy in advanced NSCLC patient. Clin. Transl. Oncol. 2016 18 9 915 924 10.1007/s12094‑015‑1461‑1 26650486
    [Google Scholar]
  168. Lam S.W. Guchelaar H.J. Boven E. The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat. Rev. 2016 50 9 22 10.1016/j.ctrv.2016.08.001 27569869
    [Google Scholar]
  169. Al-Mahayri Z.N. Patrinos G.P. Ali B.R. Toxicity and pharmacogenomic biomarkers in breast cancer chemotherapy. Front. Pharmacol. 2020 11 445 10.3389/fphar.2020.00445 32351390
    [Google Scholar]
  170. Sacco K. Grech G. Actionable pharmacogenetic markers for prediction and prognosis in breast cancer. EPMA J. 2015 6 1 15 10.1186/s13167‑015‑0037‑z 26203310
    [Google Scholar]
  171. Haroun F. Al-Shaar L. Habib R.H. Effects of CYP2B6 genetic polymorphisms in patients receiving cyclophosphamide combination chemotherapy for breast cancer. Cancer Chemother. Pharmacol. 2015 75 1 207 214 10.1007/s00280‑014‑2632‑4 25428516
    [Google Scholar]
  172. Petrucelli N. Daly M.B. Feldman G.L. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet. Med. 2010 12 5 245 259 10.1097/GIM.0b013e3181d38f2f 20216074
    [Google Scholar]
  173. Gorodetska I. Kozeretska I. Dubrovska A. BRCA genes: The role in genome stability, cancer stemness and therapy resistance. J. Cancer 2019 10 9 2109 2127 10.7150/jca.30410 31205572
    [Google Scholar]
  174. Skarsfjord S.H. Hereditary breast and ovarian cancer. Diversity of genetic causes of HBOC in a Norwegian breast and ovarian cancer patient cohort, BRCA2 c. 8331+ 2C> T-a Norwegian founder mutation. UiT The Arctic University of Norway 2017
    [Google Scholar]
  175. Şahin H.H.K. Şahin M. The roles of oncogenes and tumor supressor genes in breast cancer pathogenesis. Int. J. Res. Stud. Med. Health Sci. 2020 5 5 6 14
    [Google Scholar]
  176. Pulukuri D.B. Penke V.B. Palati D.J. Pulla P.R. Kalakotla S. Lolla S. BRCA Biological Functions. In: BRCA1 and BRCA2 Mutations-Diagnostic and Therapeutic Implications. IntechOpen 2022
    [Google Scholar]
  177. Kapoor A Mishra SK Verma DK Pandey P Chemical penetration enhancers for transdermal drug delivery system. 2018
    [Google Scholar]
  178. Samtani R. Saksena D. BRCA gene mutations: A population based review. Gene Rep. 2019 15 100380 10.1016/j.genrep.2019.100380
    [Google Scholar]
  179. Lee S.Y. Im S.A. Park Y.H. Genetic polymorphisms of SLC28A3, SLC29A1 and RRM1 predict clinical outcome in patients with metastatic breast cancer receiving gemcitabine plus paclitaxel chemotherapy. Eur. J. Cancer 2014 50 4 698 705 10.1016/j.ejca.2013.11.028 24361227
    [Google Scholar]
  180. Delahousse J. Skarbek C. Desbois M. Perfettini J.L. Chaput N. Paci A. Oxazaphosphorines combined with immune checkpoint blockers: Dose-dependent tuning between immune and cytotoxic effects. J. Immunother. Cancer 2020 8 2 e000916 10.1136/jitc‑2020‑000916 32784216
    [Google Scholar]
  181. Aberuyi N. Rahgozar S. Ghodousi E.S. Ghaedi K. Drug resistance biomarkers and their clinical applications in childhood acute lymphoblastic leukemia. Front. Oncol. 2020 9 1496 10.3389/fonc.2019.01496 32010613
    [Google Scholar]
  182. Kong X. Li Z. Li X. GSTP1, GSTM1, and GSTT1 polymorphisms as predictors of response to chemotherapy in patients with breast cancer: a meta-analysis. Cancer chemotherapy and pharmacology 2016 78 1163 1173
    [Google Scholar]
  183. Todorova V.K. Makhoul I. Dhakal I. Wei J, Stone A, Carter W, Owen A, Klimberg VS. Polymorphic variations associated with doxorubicin-induced cardiotoxicity in breast cancer patients. Oncol. Res. 2017 25 8 1223 10.3390/ph17070881 39065732
    [Google Scholar]
  184. Romero A. Martín M. Oliva B. De la Torre J, Furió V, de la Hoya M, García-Saénz JA, Moreno A, Román JM, Diaz-Rubio E, Caldés T. Glutathione S-transferase P1 c. 313A> G polymorphism could be useful in the prediction of doxorubicin response in breast cancer patients. Ann. Oncol. 2012 23 7 1750 1756 10.14218/CSP.2022.00004
    [Google Scholar]
  185. Marme F. Werft W. Benner A. Burwinkel B, Sinn P, Sohn C, Lichter P, Hahn M, Schneeweiss A. FGFR4 Arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Ann. Oncol. 2010 21 8 1636 1642 38511398
    [Google Scholar]
  186. Ge J. Tian A.X. Wang Q.S. Kong PZ, Yu Y, Li XQ, Cao XC, Feng YM. The GSTP1 105Val allele increases breast cancer risk and aggressiveness but enhances response to cyclophosphamide chemotherapy in North China. PLoS One 2013 8 6 e67589 10.3892/ijo.2020.4979 32319549
    [Google Scholar]
  187. Jahan N. Jones C. Rahman R.L. Endocrine prevention of breast cancer. Mol. Cell. Endocrinol. 2021 530 111284 10.1016/j.mce.2021.111284 33882282
    [Google Scholar]
  188. Thomas R.E. Optimising seniors’ metabolism of medications and avoiding adverse drug events using data on how metabolism by their P450 enzymes varies with ancestry and drug-drug and drug-drug-gene interactions. J. Pers. Med. 2020 10 3 84 10.3390/jpm10030084 32796505
    [Google Scholar]
  189. El Masri J. Phadke S. Breast cancer epidemiology and contemporary breast cancer care: A review of the literature and clinical applications. Clin. Obstet. Gynecol. 2022 65 3 461 481 10.1097/GRF.0000000000000721 35703213
    [Google Scholar]
  190. Dahmane E. Tamoxifen pharmacokinetics and pharmacogenetics in endocrine sensitive breast cancer patients. Doctoral Thesis 2013 10.13097/archive‑ouverte/unige:33429
    [Google Scholar]
  191. Allahloubi N.M.A. Zekri A.R.N. Ragab M. Estrogen receptor gene polymorphism as a possible genetic risk factor for treatment response in ER-positive breast cancer patients. Biochem. Genet. 2022 60 6 1963 1985 10.1007/s10528‑022‑10199‑3 35182276
    [Google Scholar]
  192. Santacana Font G. Molecular dynamics of breast cancer response to aromatase inhibitors treatment. University of Salamanca (Spain) Doctoral Thesis 2023 10.14201/gredos.158285
    [Google Scholar]
  193. Andrikopoulou A. Fiste O. Liontos M. Dimopoulos M. Zagouri F. Aromatase and CDK4/6 inhibitor-induced musculoskeletal symptoms: A systematic review. Cancers 2021 13 3 465 10.3390/cancers13030465 33530456
    [Google Scholar]
  194. Mohammed A.E. Multi-organ-on-a-chip for cancer drug testing. Turkey Izmir Institute of Technology 2022
    [Google Scholar]
  195. Ahmed Laskar A. Younus H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab. Rev. 2019 51 1 42 64 10.1080/03602532.2018.1555587 30514131
    [Google Scholar]
  196. Lavudi K. Nuguri S.M. Pandey P. Kokkanti R.R. Wang Q-E. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci. 2024 356 123033 10.1016/j.lfs.2024.123033 39222837
    [Google Scholar]
  197. Mukai H. Targeted therapy in breast cancer: Current status and future directions. Jpn. J. Clin. Oncol. 2010 40 8 711 716 10.1093/jjco/hyq037 20382634
    [Google Scholar]
  198. Fuso P. Muratore M. D’Angelo T. PI3K inhibitors in advanced breast cancer: The past, the present, new challenges and future perspectives. Cancers 2022 14 9 2161 10.3390/cancers14092161 35565291
    [Google Scholar]
  199. Verret B. Cortes J. Bachelot T. Andre F. Arnedos M. Efficacy of PI3K inhibitors in advanced breast cancer. Ann. Oncol. 2019 30 x12 x20 10.1093/annonc/mdz381
    [Google Scholar]
  200. Ibanez K.R. Huang T-T. Lee J-M. Combination therapy approach to overcome the resistance to PI3K pathway inhibitors in gynecological cancers. Cells 2024 13 12 1064 10.3390/cells13121064 38920692
    [Google Scholar]
  201. Bhushan A. Gonsalves A. Menon J.U. Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics 2021 13 5 723 10.3390/pharmaceutics13050723 34069059
    [Google Scholar]
  202. Sueangoen N. Thuwajit P. Yenchitsomanus P-T. Thuwajit C. Public neoantigens in breast cancer immunotherapy (Review). Int. J. Mol. Med. 2024 54 1 65 10.3892/ijmm.2024.5388 38904202
    [Google Scholar]
  203. AöR UU A multicenter phase II study in patients with HER2-negative metastatic breast cancer and persisting HER2-negative circulating tumor cells (CTCs). Available from 2018
    [Google Scholar]
  204. Bergmann L. Maute L. Guschmann M. Temsirolimus for advanced renal cell carcinoma. Expert Rev. Anticancer Ther. 2014 14 1 9 21 10.1586/14737140.2014.864562 24313573
    [Google Scholar]
  205. Freedman R.A. Tolaney S.M. Efficacy and safety in older patient subsets in studies of endocrine monotherapy versus combination therapy in patients with HR+/HER2− advanced breast cancer: a review. Breast Cancer Res. Treat. 2018 167 3 607 614 10.1007/s10549‑017‑4560‑6 29103175
    [Google Scholar]
  206. Chumsri S. Sabnis G. Tkaczuk K. Brodie A. mTOR inhibitors: changing landscape of endocrine-resistant breast cancer. Future Oncol. 2014 10 3 443 456 10.2217/fon.13.178 24559450
    [Google Scholar]
  207. Pont M. Marqués M. Sorolla M.A. Applications of CRISPR Technology to Breast Cancer and Triple Negative Breast Cancer Research. Cancers 2023 15 17 4364 10.3390/cancers15174364 37686639
    [Google Scholar]
  208. Islam R. Lam K.W. Recent progress in small molecule agents for the targeted therapy of triple-negative breast cancer. Eur. J. Med. Chem. 2020 207 112812 10.1016/j.ejmech.2020.112812 32937283
    [Google Scholar]
  209. De Amicis F. Aquila S. Morelli C. Bergapten drives autophagy through the up-regulation of PTEN expression in breast cancer cells. Mol. Cancer 2015 14 1 130 10.1186/s12943‑015‑0403‑4 26148846
    [Google Scholar]
  210. Avtanski D.B. Nagalingam A. Bonner M.Y. Arbiser J.L. Saxena N.K. Sharma D. Honokiol inhibits epithelial—mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E‐cadherin axis. Mol. Oncol. 2014 8 3 565 580 10.1016/j.molonc.2014.01.004 24508063
    [Google Scholar]
  211. Lee J. Sul J. Park J. Lee M. Cha E. Ko Y. Honokiol induces apoptosis and suppresses migration and invasion of ovarian carcinoma cells via AMPK/mTOR signaling pathway. Int. J. Mol. Med. 2019 43 5 1969 1978 10.3892/ijmm.2019.4122 30864681
    [Google Scholar]
  212. Gharwan H. Groninger H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat. Rev. Clin. Oncol. 2016 13 4 209 227 10.1038/nrclinonc.2015.213 26718105
    [Google Scholar]
  213. Xuhong J-C. Qi X-W. Zhang Y. Jiang J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am. J. Cancer Res. 2019 9 10 2103 2119 31720077
    [Google Scholar]
  214. Derakhshani A. Rezaei Z. Safarpour H. Overcoming trastuzumab resistance in HER2‐positive breast cancer using combination therapy. J. Cell. Physiol. 2020 235 4 3142 3156 10.1002/jcp.29216 31566722
    [Google Scholar]
  215. Schettini F. Conte B. Buono G. T-DM1 versus pertuzumab, trastuzumab and a taxane as first-line therapy of early-relapsed HER2-positive metastatic breast cancer: an Italian multicenter observational study. ESMO Open 2021 6 2 100099 10.1016/j.esmoop.2021.100099 33819752
    [Google Scholar]
  216. Wu J. Kong R. Tian S. Li H. Wu K. Kong L. Can trastuzumab emtansine be replaced by additional chemotherapy plus targeted therapy for HER2-overexpressing breast cancer patients with residual disease after neoadjuvant chemotherapy? Chin. J. Cancer Res. 2019 31 6 878 891 10.21147/j.issn.1000‑9604.2019.06.04 31949390
    [Google Scholar]
  217. Alemasova E.E. Lavrik O.I. Poly(ADP-ribosyl)ation by PARP1: Reaction mechanism and regulatory proteins. Nucleic Acids Res. 2019 47 8 3811 3827 10.1093/nar/gkz120 30799503
    [Google Scholar]
  218. Soni A. Lin X. Mladenov E. Mladenova V. Stuschke M. Iliakis G. BMN673 is a PARP inhibitor with unique radiosensitizing properties: Mechanisms and potential in radiation therapy. Cancers 2022 14 22 5619 36428712
    [Google Scholar]
  219. Poratti M. Marzaro G. Third-generation CDK inhibitors: A review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib. Eur. J. Med. Chem. 2019 172 143 153 10.1016/j.ejmech.2019.03.064 30978559
    [Google Scholar]
  220. Shah A. Bloomquist E. Tang S. FDA approval: Ribociclib for the treatment of postmenopausal women with hormone receptor–positive, HER2-negative advanced or metastatic breast cancer. Clin. Cancer Res. 2018 24 13 2999 3004 10.1158/1078‑0432.CCR‑17‑2369 29437768
    [Google Scholar]
  221. Wander S.A. O’Brien N. Litchfield L.M. Targeting CDK4 and 6 in cancer therapy: Emerging preclinical insights related to abemaciclib. Oncologist 2022 27 10 811 821 10.1093/oncolo/oyac138 35917168
    [Google Scholar]
  222. Corona S.P. Generali D. Abemaciclib: A CDK4/6 inhibitor for the treatment of HR+/HER2- advanced breast cancer. Drug Des. Devel. Ther. 2018 12 321 330 10.2147/DDDT.S137783 29497278
    [Google Scholar]
  223. Dri A. Arpino G. Bianchini G. Breaking barriers in triple negative breast cancer (TNBC) - Unleashing the power of antibody-drug conjugates (ADCs). Cancer Treat. Rev. 2024 123 102672 10.1016/j.ctrv.2023.102672 38118302
    [Google Scholar]
  224. Slamon D. Eiermann W. Robert N. Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011 365 14 1273 1283 10.1007/s10549‑018‑5001‑x 30317424
    [Google Scholar]
  225. Petrelli F. Ghidini M. Lonati V. The efficacy of lapatinib and capecitabine in HER-2 positive breast cancer with brain metastases: A systematic review and pooled analysis. Eur. J. Cancer 2017 84 141 148 10.1016/j.ejca.2017.07.024 28810186
    [Google Scholar]
  226. Cetin B. Benekli M. Dane F. Lapatinib plus capecitabine for HER2-positive advanced-stage breast cancer in elderly women: review of the Anatolian Society of Medical Oncology (ASMO) experience. Breast Care 2013 8 1 67 70 10.1159/000346829 24715846
    [Google Scholar]
  227. Maadi H. Understanding the effects of therapeutic HER2 antibodies trastuzumab and pertuzumab on HER2-mediated cell signaling. Thesis 2020
    [Google Scholar]
  228. Swain S.M. Miles D. Kim S.B. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020 21 4 519 530 10.1016/S1470‑2045(19)30863‑0 32171426
    [Google Scholar]
  229. Collins D.M. Conlon N.T. Kannan S. Preclinical characteristics of the irreversible pan-HER kinase inhibitor neratinib compared with lapatinib: Implications for the treatment of HER2-positive and HER2-mutated breast cancer. Cancers 2019 11 6 737 10.3390/cancers11060737 31141894
    [Google Scholar]
  230. Zhu H. Du C. Yuan M. PD-1/PD-L1 counterattack alliance: multiple strategies for treating triple-negative breast cancer. Drug Discov. Today 2020 25 9 1762 1771 10.1016/j.drudis.2020.07.006 32663441
    [Google Scholar]
  231. Chen X. Feng L. Huang Y. Wu Y. Xie N. Mechanisms and strategies to overcome PD-1/PD-L1 blockade resistance in triple-negative breast cancer. Cancers 2022 15 1 104 10.3390/cancers15010104 36612100
    [Google Scholar]
  232. Omabe M. Ahmed S. Sami A. Xie Y. Tao M. Xiang J. HER2-specific vaccines for HER2-positive breast Cancer immunotherapy. World J. Vaccines 2015 5 02 106 128 10.4236/wjv.2015.52013
    [Google Scholar]
  233. Goyvaerts C. De Vlaeminck Y. Escors D. Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: implications for in vivo targeted vaccine delivery. Gene Ther. 2017 24 6 370 375 10.1038/gt.2017.30 28540936
    [Google Scholar]
  234. Pentheroudakis G. Lazaridis G. Pavlidis N. Axillary nodal metastases from carcinoma of unknown primary (CUPAx): A systematic review of published evidence. Breast Cancer Res. Treat. 2010 119 1 1 11 10.1007/s10549‑009‑0554‑3 19771506
    [Google Scholar]
  235. de Fontes M.F.T. Exploring epigenetic profiling as prognostic/ predictive markers of endocrine resistance in estrogen receptor positive breast cancer. PhD Thesis in Molecular and Oncology Medicine 2020
    [Google Scholar]
  236. Schildgen V. Warm M. Brockmann M. Schildgen O. Oncotype DX breast cancer recurrence score resists inter-assay reproducibility with RT2-profiler multiplex RT-PCR. Sci. Rep. 2019 9 1 20266 10.1038/s41598‑019‑56910‑0 31889145
    [Google Scholar]
  237. Ross J.S. Multigene classifiers, prognostic factors, and predictors of breast cancer clinical outcome. Adv. Anat. Pathol. 2009 16 4 204 215 10.1097/PAP.0b013e3181a9d4bf 19546609
    [Google Scholar]
  238. Pellegrini C. Gori I. Achtari C. The expression of estrogen receptors as well as GREB1, c-MYC, and cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil. Steril. 2012 98 5 1200 1208 10.1016/j.fertnstert.2012.06.056 22884659
    [Google Scholar]
  239. Clusan L. Ferrière F. Flouriot G. Pakdel F. A basic review on estrogen receptor signaling pathways in breast cancer. Int. J. Mol. Sci. 2023 24 7 6834 10.3390/ijms24076834 37047814
    [Google Scholar]
  240. Nicolini A. Ferrari P. Duffy M.J. Prognostic and predictive biomarkers in breast cancer: Past, present and future. In: Seminars in cancer biology. Elsevier 2018 52 56 73 10.1016/j.semcancer.2017.08.010
    [Google Scholar]
  241. Yau T.H.L. Cheung K.L. Optimising endocrine therapy in postmenopausal women with advanced breast cancer. Endocr. Relat. Cancer 2018 25 7 705 721 10.1530/ERC‑18‑0021 29674428
    [Google Scholar]
  242. Bertho M. Patsouris A. Augereau P. A pharmacokinetic evaluation of alpelisib for the treatment of HR+, HER2-negative, PIK3CA-mutated advanced or metastatic breast cancer. Expert Opin. Drug Metab. Toxicol. 2021 17 2 139 152 10.1080/17425255.2021.1844662 33213227
    [Google Scholar]
  243. Croom K.F. Dhillon S. Bevacizumab. Drugs 2011 71 16 2213 2229 10.2165/11207720‑000000000‑00000 22035518
    [Google Scholar]
  244. Park Y.H. Kim T.Y. Kim G.M. Palbociclib plus exemestane with gonadotropin-releasing hormone agonist versus capecitabine in premenopausal women with hormone receptor-positive, HER2-negative metastatic breast cancer (KCSG-BR15-10): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2019 20 12 1750 1759 10.1016/S1470‑2045(19)30565‑0 31668850
    [Google Scholar]
  245. Huppert L.A. Gumusay O. Idossa D. Rugo H.S. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer. CA Cancer J. Clin. 2023 73 5 480 515 10.3322/caac.21777 36939293
    [Google Scholar]
  246. Walle T. Martinez Monge R. Cerwenka A. Ajona D. Melero I. Lecanda F. Radiation effects on antitumor immune responses: Current perspectives and challenges. Ther. Adv. Med. Oncol. 2018 10 1758834017742575 10.1177/1758834017742575 29383033
    [Google Scholar]
  247. Moffat F.L. Yakoub D. Bilateral mastectomy and the retreat from breast-conserving surgery. Breast Cancer Res. Treat. 2016 159 1 15 30 10.1007/s10549‑016‑3909‑6 27475088
    [Google Scholar]
  248. Hak A. Ravasaheb Shinde V. Rengan A.K. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagn. Photodyn. Ther. 2021 33 102205 10.1016/j.pdpdt.2021.102205 33561574
    [Google Scholar]
  249. Marchetti LLM Barosi G Session B: Advanced breast cancer.
    [Google Scholar]
  250. Lamberti M.J. Vittar N.B.R. Rivarola V.A. Breast cancer as photodynamic therapy target: Enhanced therapeutic efficiency by overview of tumor complexity. World J. Clin. Oncol. 2014 5 5 901 907 10.5306/wjco.v5.i5.901 25493228
    [Google Scholar]
  251. Cogno I.S. Vittar N.B.R. Lamberti M.J. Rivarola V.A. Optimization of photodynamic therapy response by survivin gene knockdown in human metastatic breast cancer T47D cells. J. Photochem. Photobiol. B 2011 104 3 434 443 10.1016/j.jphotobiol.2011.05.001 21641815
    [Google Scholar]
  252. Aniogo E.C. George B.P. Abrahamse H. Molecular effectors of photodynamic therapy-mediated resistance to cancer cells. Int. J. Mol. Sci. 2021 22 24 13182 10.3390/ijms222413182 34947979
    [Google Scholar]
  253. Mazraedoost S. Behbudi G. Nano materials-based devices by photodynamic therapy for treating cancer applications. Adv Appl NanoBio-Technol 2021 2 3 9 21
    [Google Scholar]
  254. Hong M. Biochemical studies on the structure–function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv. Drug Deliv. Rev. 2017 116 3 20 10.1016/j.addr.2016.06.003 27317853
    [Google Scholar]
  255. Formenti S.C. Hawtin R.E. Dixit N. Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients. J. Immunother. Cancer 2019 7 1 177 10.1186/s40425‑019‑0633‑x 31296256
    [Google Scholar]
  256. Toroghian Y. Khayyami R. Hassanian S.M. The therapeutic potential of targeting the toll-like receptor pathway in breast cancer. Curr. Pharm. Des. 2022 28 27 2203 2210 10.2174/1381612828666220728154012 35909287
    [Google Scholar]
  257. Pondé N.F. Zardavas D. Piccart M. Progress in adjuvant systemic therapy for breast cancer. Nat. Rev. Clin. Oncol. 2019 16 1 27 44 10.1038/s41571‑018‑0089‑9 30206303
    [Google Scholar]
  258. Albarrán V. Chamorro J. Pozas J. Maintained complete response to talazoparib in a BRCA-2 mutated metastatic luminal breast cancer: case report and review of literature. Front. Oncol. 2023 13 1158981 10.3389/fonc.2023.1158981 37213307
    [Google Scholar]
  259. Li N. Zhu J. Yin R. Treatment with niraparib maintenance therapy in patients with newly diagnosed advanced ovarian cancer: A phase 3 randomized clinical trial. JAMA Oncol. 2023 9 9 1230 1237 10.1001/jamaoncol.2023.2283 37440217
    [Google Scholar]
  260. Drewett L Lucey R Pinilla KA PARTNER: A randomized, phase II/III trial to evaluate the safety and efficacy of the addition of olaparib to platinum-based neoadjuvant chemotherapy in patients with triple-negative and/or germline BRCA-mutated breast cancer. JCO 2022 40 TPS619 10.1200/JCO.2022.40.16_suppl.TPS619
    [Google Scholar]
  261. Eikesdal H.P. Yndestad S. Elzawahry A. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann. Oncol. 2021 32 2 240 249 10.1016/j.annonc.2020.11.009 33242536
    [Google Scholar]
  262. Fasching P.A. Link T. Hauke J. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study). Ann. Oncol. 2021 32 1 49 57 10.1016/j.annonc.2020.10.471 33098995
    [Google Scholar]
  263. Geyer C.E. Sikov W.M. Huober J. Long-term efficacy and safety of addition of carboplatin with or without veliparib to standard neoadjuvant chemotherapy in triple-negative breast cancer: 4-year follow-up data from BrighTNess, a randomized phase III trial. Ann. Oncol. 2022 33 4 384 394 10.1016/j.annonc.2022.01.009 35093516
    [Google Scholar]
  264. Chaurasia M. Singh R. Sur S. Flora S.J.S. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front. Pharmacol. 2023 14 1184472 10.3389/fphar.2023.1184472 37576816
    [Google Scholar]
  265. Gautam K.A. Singh N. Tyagi P. Jha G. Raman A. Breast cancer associated conventional and advanced therapies. Int J Pharm Phytopharmacol Res 2023 13 3 22 37 10.51847/nQUUw5hfzg
    [Google Scholar]
  266. Kumar A. Bhagabaty S.M. Tripathy J.P. Selvaraj K. Purkayastha J. Singh R. Delays in diagnosis and treatment of breast cancer and the pathways of care: a mixed methods study from a tertiary cancer centre in North East India. Asian Pac. J. Cancer Prev. 2019 20 12 3711 3721 10.31557/APJCP.2019.20.12.3711 31870113
    [Google Scholar]
  267. Rajeswari R. Chandrasekaran V. Suhadev M. Sivasubramaniam S. Sudha G. Renu G. Factors associated with patient and health system delays in the diagnosis of tuberculosis in South India. Int. J. Tuberc. Lung Dis. 2002 6 9 789 795 12234134
    [Google Scholar]
  268. a Bergin R.J. Emery J. Bollard R.C. Rural–urban disparities in time to diagnosis and treatment for colorectal and breast cancer. Cancer Epidemiol. Biomarkers Prev. 2018 27 9 1036 1046 10.1158/1055‑9965.EPI‑18‑0210 29987098
    [Google Scholar]
  269. b Colleoni M. Rotmensz N. Peruzzotti G. Maisonneuve P. Minimal and small size invasive breast cancer with no axillary lymph node involvement: the need for tailored adjuvant therapies. Ann. Oncol. 2004 15 11 1633 1639
    [Google Scholar]
  270. c Mao Q. Unadkat J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—an update. The AAPS Journal 2015 17 65 82
    [Google Scholar]
  271. d Doyle L.A. Yang W. Abruzzo L.V. Krogmann T. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 1998 95 26 15665 15670
    [Google Scholar]
  272. e Mo W. Zhang J.T. Human ABCG2: structure, function, and its role in multidrug resistance. Int. J. Biochem. Mol. Biol. 2011 3 1 1
    [Google Scholar]
  273. f Haimeur A.G. Conseil G. Deeley R.G. Cole S.P. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: Biology, substrate specificity and regulation. Curr. Drug Metab. 2004 5 1 21 53
    [Google Scholar]
  274. g Safar Z. Kis E. Erdo F. Zolnerciks J.K. Krajcsi P. ABCG2/BCRP: Variants, transporter interaction profile of substrates and inhibitors. Expert Opin. Drug Metab. Toxicol. 2019 15 4 313 328
    [Google Scholar]
  275. Bai X. Ni J. Beretov J. Graham P. Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev. 2018 69 152 163 10.1016/j.ctrv.2018.07.004 30029203
    [Google Scholar]
  276. Palomeras S. Ruiz-Martínez S. Puig T. Targeting breast cancer stem cells to overcome treatment resistance. Molecules 2018 23 9 2193 10.3390/molecules23092193 30200262
    [Google Scholar]
  277. Pandey P. Gupta P.C. Yadav S. Solid lipid nanoparticle: A potential approach in drug delivery system. Eur. J. Pharm. Med. Res. 2018 5 9 225 236
    [Google Scholar]
  278. Sun M. Yang C. Zheng J. Wang M. Chen M. Le D.Q. Kjems J. Bünger C.E. Wang M, Chen M, Le DQ, Kjems J, Bünger CE. Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Acta Biomater. 2015 Dec 1 28 171 182 10.3389/fonc.2019.01104 31709180
    [Google Scholar]
  279. Zheng W. Yin T. Chen Q. Qin X. Huang X. Zhao S. Xu T. Chen L. Liu J. Qin X, Huang X, Zhao S, Xu T, Chen L, Liu J. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III β-tubulin in drug-resistant breast cancers. Acta biomater 2016 Feb 1 31 197 210 10.1016/j.addr.2022.114451 35843506
    [Google Scholar]
  280. Fernandes Q. Therachiyil L. Khan A.Q. Bedhiafi T. Korashy H.M. Bhat A.A. Uddin S. Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: nanotechnology against cancer stem cells. Eur. J. Pharm. Sci. 2023 Dec 1 191 106586 10.1016/j.critrevonc.2024.104351 38615873
    [Google Scholar]
  281. Andreidesz K. Szabo A. Kovacs D. Cytostatic effect of a novel mitochondria-targeted pyrroline nitroxide in human breast cancer lines. Int. J. Mol. Sci. 2021 22 16 9016 10.3390/ijms22169016 34445722
    [Google Scholar]
  282. Zahedipour F. Jamialahmadi K. Karimi G. The role of noncoding RNAs and sirtuins in cancer drug resistance. Eur. J. Pharmacol. 2020 877 173094 10.1016/j.ejphar.2020.173094 32243871
    [Google Scholar]
  283. Sinha S. Sharma S. Vora J. Shrivastava N. Emerging role of sirtuins in breast cancer metastasis and multidrug resistance: Implication for novel therapeutic strategies targeting sirtuins. Pharmacol. Res. 2020 158 104880 10.1016/j.phrs.2020.104880 32442721
    [Google Scholar]
  284. Starska-Kowarska K. Role of mesenchymal stem/stromal cells in head and neck cancer—regulatory mechanisms of tumorigenic and immune activity, chemotherapy resistance, and therapeutic benefits of stromal cell-based pharmacological strategies. Cells 2024 13 1270 0
    [Google Scholar]
  285. Mandal S. Arfuso F. Sethi G. Dharmarajan A. Warrier S. Encapsulated human mesenchymal stem cells (eMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: Development of 3D primed therapeutic MSCs. The Int. J. Biochem. Cell Biol. 2019 May 1 110 59 69 10.3390/pharmaceutics16091192 39339228
    [Google Scholar]
  286. Rugo H.S. Im S.A. Cardoso F. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial. JAMA Oncol. 2021 7 4 573 584 10.1001/jamaoncol.2020.7932 33480963
    [Google Scholar]
  287. de Nonneville A. Goncalves A. Mamessier E. Bertucci F. Sacituzumab govitecan in triple-negative breast cancer. Ann. Transl. Med. 2022 10 11 647 10.21037/atm‑22‑813 35813338
    [Google Scholar]
  288. Chen Z. Li J. Cui Q. Li F. Zhang G. Formosanin C promotes the curative efficacy of ultrasound-guided radiofrequency ablation in a mouse model of breast cancer. Oncol. Lett. 2021 22 1 550 10.3892/ol.2021.12811 34093771
    [Google Scholar]
  289. Wang L. Liu G. Hu Y. Doxorubicin-loaded polypyrrole nanovesicles for suppressing tumor metastasis through combining photothermotherapy and lymphatic system-targeted chemotherapy. Nanoscale 2022 14 8 3097 3111 10.1039/D2NR00186A 35141740
    [Google Scholar]
  290. Chu K.F. Dupuy D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014 14 3 199 208 10.1038/nrc3672 24561446
    [Google Scholar]
  291. Feyzizadeh M. Barfar A. Nouri Z. Sarfraz M. Zakeri-Milani P. Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opin. Drug Discov. 2022 17 9 1013 1027 10.1080/17460441.2022.2112666 35996765
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232373621250618181424
Loading
/content/journals/cgt/10.2174/0115665232373621250618181424
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test