Skip to content
2000
image of Harnessing Nanotechnology and Gene Editing for Cancer Therapy: A Synergistic Approach to Precision Medicine

Abstract

The fusion of nanotechnology with gene editing promises a revolutionary strategy in combating cancer, providing the possibility of precise and focused treatments. This review examines the synergistic integration of these two potent technologies, specifically emphasising their combined effectiveness in oncological therapies. Nanotechnology offers a flexible framework for administering gene-editing tools, improving their accuracy, and reducing unintended side effects, all of which are significant obstacles in existing cancer treatments. Nanoparticles can improve the effectiveness of therapies, lower the risk of systemic toxicity, and allow the simultaneous manipulation of many genetic pathways involved in cancer growth by delivering CRISPR-Cas9 and other gene-editing systems directly to tumour sites. We conduct a thorough analysis of recent progress in this burgeoning field, emphasising significant advancements in the design of nanoparticles and gene-editing techniques that propel the development of next-generation cancer medicines. In addition, we address the present obstacles and constraints, such as the effectiveness of delivery, apprehensions over safety, and regulatory obstacles, while suggesting potential areas of future research to surmount these barriers. This study thoroughly examines the promise of nano-precision gene editing as a transformative approach to cancer treatment by incorporating findings from recent clinical trials and case studies. By highlighting recent clinical advancements and emerging innovations, this review underscores the potential of nano-precision gene editing as a groundbreaking approach in next-generation cancer therapy.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232367601250717090618
2025-08-01
2025-09-13
Loading full text...

Full text loading...

References

  1. Saraswat I. Goel A. Cervical cancer therapeutics: An in-depth significance of herbal and chemical approaches of nanoparticles. Anticancer. Agents Med. Chem. 2024 24 8 627 636 10.2174/0118715206289468240130051102 38299417
    [Google Scholar]
  2. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  3. Vasan N. Baselga J. Hyman D.M. A view on drug resistance in cancer. Nature 2019 575 7782 299 309 10.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  4. Khosravi-Shahi P. Cabezón-Gutiérrez L. Custodio-Cabello S. Metastatic triple negative breast cancer: Optimizing treatment options, new and emerging targeted therapies. Asia Pac. J. Clin. Oncol. 2018 14 1 32 39 10.1111/ajco.12748 28815913
    [Google Scholar]
  5. Caracciolo G. Vali H. Moore A. Mahmoudi M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 2019 27 6 10 10.1016/j.nantod.2019.06.001
    [Google Scholar]
  6. Lyu N. Hassanzadeh-Barforoushi A. Rey Gomez L.M. Zhang W. Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: Current progress and perspectives. Nano Converg. 2024 11 1 22 10.1186/s40580‑024‑00428‑3 38811455
    [Google Scholar]
  7. Miyasato D.L. Mohamed A.W. Zavaleta C. A path toward the clinical translation of nano‐based imaging contrast agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 13 6 e1721 10.1002/wnan.1721 33938151
    [Google Scholar]
  8. Butt A. Bach H. Advancements in nanotechnology for diagnostics: A literature review, part II: advanced techniques in nuclear and optical imaging. Nanomedicine 2025 20 2 183 206 10.1080/17435889.2024.2439778 39670826
    [Google Scholar]
  9. Lei T. Wang Y. Zhang Y. Yang Y. Cao J. Huang J. Chen J. Chen H. Zhang J. Wang L. Xu X. Gale R.P. Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024 38 12 2517 2543 10.1038/s41375‑024‑02444‑y 39455854
    [Google Scholar]
  10. Mali P. Yang L. Esvelt K.M. Aach J. Guell M. DiCarlo J.E. Norville J.E. Church G.M. RNA-guided human genome engineering via Cas9. Science 2013 339 6121 823 826 10.1126/science.1232033 23287722
    [Google Scholar]
  11. Zheng N. Li L. Wang X. Molecular mechanisms, off‐target activities, and clinical potentials of genome editing systems. Clin. Transl. Med. 2020 10 1 412 426 10.1002/ctm2.34 32508055
    [Google Scholar]
  12. Mansoori GA Soelaiman TF Nanotechnology — An introduction for the standards community. J ASTM Int 2005 2 6 1 21 10.1520/JAI13110
    [Google Scholar]
  13. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  14. Crist R. McNeil S. Nanotechnology for treating cancer: pitfalls and bridges on the path to nanomedicines. 2015 Available from: https://www.cancer.gov/research/key-initiatives/ras/news-events/dialogue-blog/2015/nanomedicines
    [Google Scholar]
  15. Kemp J.A. Kwon Y.J. Cancer nanotechnology: Current status and perspectives. Nano Converg. 2021 8 1 34 10.1186/s40580‑021‑00282‑7 34727233
    [Google Scholar]
  16. Singh A Parikh S Sethi N Patel S Modi N Patel K. Nanoparticle formulations: A sustainable approach to biodegradable and non‐biodegradable products. Nanocarrier Vaccines: Biopharmaceutics‐Based Fast Track Development Scrivener Publishing LLC 2024 95 151 10.1002/9781394175482.ch4
    [Google Scholar]
  17. Samadian H. Hosseini-Nami S. Kamrava S.K. Ghaznavi H. Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol. 2016 142 11 2217 2229 10.1007/s00432‑016‑2179‑3 27209529
    [Google Scholar]
  18. Amreddy N. Babu A. Muralidharan R. Panneerselvam J. Srivastava A. Ahmed R. Mehta M. Munshi A. Ramesh R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res. 2018 137 115 170 10.1016/bs.acr.2017.11.003 29405974
    [Google Scholar]
  19. Zhang L. Wang P. Feng Q. Wang N. Chen Z. Huang Y. Zheng W. Jiang X. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 2017 9 10 e441 10.1038/am.2017.185
    [Google Scholar]
  20. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C 2016 60 569 578 10.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  21. Vijayan V. Reddy K.R. Sakthivel S. Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies. Colloids Surf. B Biointerfaces 2013 111 150 155 10.1016/j.colsurfb.2013.05.020 23792547
    [Google Scholar]
  22. Mout R. Ray M. Yesilbag Tonga G. Lee Y.W. Tay T. Sasaki K. Rotello V.M. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 2017 11 3 2452 2458 10.1021/acsnano.6b07600 28129503
    [Google Scholar]
  23. Noureddine A. Maestas-Olguin A. Saada E.A. LaBauve A.E. Agola J.O. Baty K.E. Howard T. Sabo J.K. Espinoza C.R.S. Doudna J.A. Schoeniger J.S. Butler K.S. Negrete O.A. Brinker C.J. Serda R.E. Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta Biomater. 2020 114 358 368 10.1016/j.actbio.2020.07.027 32702530
    [Google Scholar]
  24. Li M Chen F Yang Q Tang Q Xiao Z Tong X Zhang Y Lei L Li S. Biomaterial-based CRISPR/Cas9 delivery systems for tumor treatment. Biomater Res 2024 28 0023 10.34133/bmr.0023 38694229
    [Google Scholar]
  25. Nie J.J. Liu Y. Qi Y. Zhang N. Yu B. Chen D.F. Yang M. Xu F.J. Charge-reversal nanocomolexes-based CRISPR/Cas9 delivery system for loss-of-function oncogene editing in hepatocellular carcinoma. J. Control. Release 2021 333 362 373 10.1016/j.jconrel.2021.03.030 33785418
    [Google Scholar]
  26. Rosenblum D. Gutkin A. Kedmi R. Ramishetti S. Veiga N. Jacobi A.M. Schubert M.S. Friedmann-Morvinski D. Cohen Z.R. Behlke M.A. Lieberman J. Peer D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 2020 6 47 eabc9450 10.1126/sciadv.abc9450 33208369
    [Google Scholar]
  27. Lin Y. Wu J. Gu W. Huang Y. Tong Z. Huang L. Tan J. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 2018 5 4 1700611 10.1002/advs.201700611 29721412
    [Google Scholar]
  28. Castro R. Forero-Doria O. Guzmán L. Perspectives of dendrimer-based nanoparticles in cancer therapy. An. Acad. Bras. Cienc. 2018 90 2 suppl 1 Suppl. 1 2331 2346 10.1590/0001‑3765201820170387 30066746
    [Google Scholar]
  29. Tao Y. Yi K. Hu H. Shao D. Li M. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. J. Mater. Chem. B Mater. Biol. Med. 2021 9 1 94 100 10.1039/D0TB01925A 33220661
    [Google Scholar]
  30. Meng X. Zhou K. Qian Y. Liu H. Wang X. Lin Y. Shi X. Tian Y. Lu Y. Chen Q. Qian J. Wang H. Hollow cuprous oxide@ nitrogen‐doped carbon nanocapsules for cascade chemodynamic therapy. Small 2022 18 15 2107422 10.1002/smll.202107422 35233936
    [Google Scholar]
  31. Kumar L. Verma S. Utreja P. Kumar D. Overview of inorganic nanoparticles: An expanding horizon in tumor therapeutics. Recent Patents Anticancer Drug Discov. 2023 18 3 343 363 10.2174/1574892817666221005094423 36200151
    [Google Scholar]
  32. Usman W.M. Pham T.C. Kwok Y.Y. Vu L.T. Ma V. Peng B. Chan Y.S. Wei L. Chin S.M. Azad A. He A.B.L. Leung A.Y.H. Yang M. Shyh-Chang N. Cho W.C. Shi J. Le M.T.N. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 2018 9 1 2359 10.1038/s41467‑018‑04791‑8 29907766
    [Google Scholar]
  33. Fatfat Z. Fatfat M. Gali-Muhtasib H. Micelles as potential drug delivery systems for colorectal cancer treatment. World J. Gastroenterol. 2022 28 25 2867 2880 10.3748/wjg.v28.i25.2867 35978871
    [Google Scholar]
  34. Ma Y. Gao W. Zhang Y. Yang M. Yan X. Zhang Y. Li G. Liu C. Xu C. Zhang M. Biomimetic MOF nanoparticles delivery of C-dot nanozyme and CRISPR/Cas9 system for site-specific treatment of ulcerative colitis. ACS Appl. Mater. Interfaces 2022 14 5 6358 6369 10.1021/acsami.1c21700 35099925
    [Google Scholar]
  35. Yang T.C. Chang C.Y. Yarmishyn A.A. Mao Y.S. Yang Y.P. Wang M.L. Hsu C.C. Yang H.Y. Hwang D.K. Chen S.J. Tsai M.L. Lai Y.H. Tzeng Y. Chang C.C. Chiou S.H. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater. 2020 101 484 494 10.1016/j.actbio.2019.10.037 31672582
    [Google Scholar]
  36. Zhang B.C. Luo B.Y. Zou J.J. Wu P.Y. Jiang J.L. Le J.Q. Zhao R.R. Chen L. Shao J.W. Co-delivery of sorafenib and CRISPR/Cas9 based on targeted core–shell hollow mesoporous organosilica nanoparticles for synergistic HCC therapy. ACS Appl. Mater. Interfaces 2020 12 51 57362 57372 10.1021/acsami.0c17660 33301289
    [Google Scholar]
  37. Bariwal J. Ma H. Altenberg G.A. Liang H. Nanodiscs: A versatile nanocarrier platform for cancer diagnosis and treatment. Chem. Soc. Rev. 2022 51 5 1702 1728 10.1039/D1CS01074C 35156110
    [Google Scholar]
  38. Nie D. Guo T. Yue M. Li W. Zong X. Zhu Y. Huang J. Lin M. Research progress on nanoparticles-based CRISPR/Cas9 system for targeted therapy of tumors. Biomolecules 2022 12 9 1239 10.3390/biom12091239 36139078
    [Google Scholar]
  39. Sun L. Liu H. Ye Y. Lei Y. Islam R. Tan S. Tong R. Miao Y.B. Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 418 10.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  40. Kukowska-Latallo J.F. Candido K.A. Cao Z. Nigavekar S.S. Majoros I.J. Thomas T.P. Balogh L.P. Khan M.K. Baker J.R. Jr Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005 65 12 5317 5324 10.1158/0008‑5472.CAN‑04‑3921 15958579
    [Google Scholar]
  41. Sievers E.L. Senter P.D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 2013 64 1 15 29 10.1146/annurev‑med‑050311‑201823 23043493
    [Google Scholar]
  42. Visht S. Awasthi R. Rai R. Srivastav P. Development of dehydration-rehydration liposomal system using film hydration technique followed by sonication. Curr. Drug Deliv. 2014 11 6 763 770 10.2174/1567201811666140910122945 25213073
    [Google Scholar]
  43. Heister E. Neves V. Tîlmaciu C. Lipert K. Beltrán V.S. Coley H.M. Silva S.R.P. McFadden J. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 2009 47 9 2152 2160 10.1016/j.carbon.2009.03.057
    [Google Scholar]
  44. Bagalkot V. Zhang L. Levy-Nissenbaum E. Jon S. Kantoff P.W. Langer R. Farokhzad O.C. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007 7 10 3065 3070 10.1021/nl071546n 17854227
    [Google Scholar]
  45. Gmeiner WH Ghosh S Nanotechnology for cancer treatment. Nanotechnol Rev 2015 3 2 111 122 10.1515/ntrev‑2013‑0013 26082884
    [Google Scholar]
  46. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  47. Carmeliet P Jain RK Angiogenesis in cancer and other diseases. Nature 2000 407 6801 249 257 10.1038/35025220 11001068
    [Google Scholar]
  48. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001 41 1 189 207 10.1016/S0065‑2571(00)00013‑3 11384745
    [Google Scholar]
  49. Tejada-Berges T. Granai C.O. Gordinier M. Gajewski W. Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev. Anticancer Ther. 2002 2 2 143 150 10.1586/14737140.2.2.143 12113236
    [Google Scholar]
  50. Naganuma M. Tahara K. Hasegawa S. Fukuda A. Sasaoka S. Hatahira H. Motooka Y. Nakao S. Mukai R. Hirade K. Yoshimura T. Kato T. Takeuchi H. Nakamura M. Adverse event profiles of solvent-based and nanoparticle albumin-bound paclitaxel formulations using the food and drug administration adverse event reporting system. SAGE Open Med. 2019 7 2050312119836011 10.1177/2050312119836011 30886713
    [Google Scholar]
  51. Cui J. Qin S. Zhou Y. Zhang S. Sun X. Zhang M. Cui J. Fang W. Gu K. Li Z. Wang J. Chen X. Yao J. Zhou J. Wang G. Bai Y. Xiao J. Qiu W. Wang B. Xia T. Wang C. Kong L. Yin J. Zhang T. Shen X. Fu D. Gao C. Wang H. Wang Q. Wang L. Irinotecan hydrochloride liposome HR070803 in combination with 5-fluorouracil and leucovorin in locally advanced or metastatic pancreatic ductal adenocarcinoma following prior gemcitabine-based therapy (PAN-HEROIC-1): A phase 3 trial. Signal Transduct. Target. Ther. 2024 9 1 248 10.1038/s41392‑024‑01948‑4 39300077
    [Google Scholar]
  52. Miguel R.A. Hirata A.S. Jimenez P.C. Lopes L.B. Costa-Lotufo L.V. Beyond formulation: Contributions of nanotechnology for translation of anticancer natural products into new drugs. Pharmaceutics 2022 14 8 1722 10.3390/pharmaceutics14081722 36015347
    [Google Scholar]
  53. Salave S Rana D Patel P Gupta R Benival D Kommineni N Development of generic liposome products for drug delivery. Liposomes in Drug Delivery Academic Press 2024 613 634 10.1016/B978‑0‑443‑15491‑1.00010‑9
    [Google Scholar]
  54. Ipema H.J. Zacher J.M. Galka E. Nazari J. Varabyeva A. Yu M. Hartke P. Drugs to be used with a filter for preparation and/or administration—2019. Hosp. Pharm. 2021 56 2 81 87 10.1177/0018578719867660 33790482
    [Google Scholar]
  55. Chaurasiya A. Gorajiya A. Panchal K. Katke S. Singh A.K. A review on multivesicular liposomes for pharmaceutical applications: Preparation, characterization, and translational challenges. Drug Deliv. Transl. Res. 2022 12 7 1569 1587 10.1007/s13346‑021‑01060‑y 34599471
    [Google Scholar]
  56. Baldrick P. Nonclinical testing evaluation of liposomes as drug delivery systems. Int. J. Toxicol. 2023 42 2 122 134 10.1177/10915818221148436 36571279
    [Google Scholar]
  57. Vassal G. de Rojas T. Pearson A.D.J. Impact of the EU paediatric medicine regulation on new anti-cancer medicines for the treatment of children and adolescents. Lancet Child Adolesc. Health 2023 7 3 214 222 10.1016/S2352‑4642(22)00344‑3 36682367
    [Google Scholar]
  58. Abulateefeh S.R. Long-acting injectable PLGA/PLA depots for leuprolide acetate: Successful translation from bench to clinic. Drug Deliv. Transl. Res. 2023 13 2 520 530 10.1007/s13346‑022‑01228‑0 35976565
    [Google Scholar]
  59. Piedmonte D.M. Treuheit M.J. Formulation of Neulasta® (pegfilgrastim). Adv. Drug Deliv. Rev. 2008 60 1 50 58 10.1016/j.addr.2007.04.017 17822802
    [Google Scholar]
  60. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  61. Galic V.L. Wright J.D. Lewin S.N. Herzog T.J. Paclitaxel poliglumex for ovarian cancer. Expert Opin. Investig. Drugs 2011 20 6 813 821 10.1517/13543784.2011.576666 21470062
    [Google Scholar]
  62. Williamson S.K. Johnson G.A. Maulhardt H.A. Moore K.M. McMeekin D.S. Schulz T.K. Reed G.A. Roby K.F. Mackay C.B. Smith H.J. Weir S.J. Wick J.A. Markman M. diZerega G.S. Baltezor M.J. Espinosa J. Decedue C.J. A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies. Cancer Chemother. Pharmacol. 2015 75 5 1075 1087 10.1007/s00280‑015‑2737‑4 25898813
    [Google Scholar]
  63. Stathopoulos G.P. Liposomal cisplatin: A new cisplatin formulation. Anticancer Drugs 2010 21 8 732 736 10.1097/CAD.0b013e32833d9adf 20671511
    [Google Scholar]
  64. Wang R. Bao Q. Clark A.G. Wang Y. Zhang S. Burgess D.J. Characterization and in vitro release of minocycline hydrochloride microspheres prepared via coacervation. Int. J. Pharm. 2022 628 122292 10.1016/j.ijpharm.2022.122292 36252639
    [Google Scholar]
  65. Germain D.P. Linhart A. Pegunigalsidase alfa: A novel, pegylated recombinant alpha-galactosidase enzyme for the treatment of Fabry disease. Front. Genet. 2024 15 1395287 10.3389/fgene.2024.1395287 38680424
    [Google Scholar]
  66. Manoukian G. Hagemeister F. Denileukin diftitox: A novel immunotoxin. Expert Opin. Biol. Ther. 2009 9 11 1445 1451 10.1517/14712590903348135 19817678
    [Google Scholar]
  67. Chaudhry M. Lyon P. Coussios C. Carlisle R. Thermosensitive liposomes: A promising step toward localised chemotherapy. Expert Opin. Drug Deliv. 2022 19 8 899 912 10.1080/17425247.2022.2099834 35830722
    [Google Scholar]
  68. Hackanson B Daskalakis M. Decitabine. Small Molecules in Oncology Springer Berlin, Heidelberg 2010 184 10.1007/978‑3‑642‑01222‑8_10
    [Google Scholar]
  69. Dinndorf P.A. Gootenberg J. Cohen M.H. Keegan P. Pazdur R. FDA drug approval summary: Pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist 2007 12 8 991 998 10.1634/theoncologist.12‑8‑991 17766659
    [Google Scholar]
  70. Pagliarulo V. Bracarda S. Eisenberger M.A. Mottet N. Schröder F.H. Sternberg C.N. Studer U.E. Contemporary role of androgen deprivation therapy for prostate cancer. Eur. Urol. 2012 61 1 11 25 10.1016/j.eururo.2011.08.026 21871711
    [Google Scholar]
  71. Gogia P. Ashraf H. Bhasin S. Xu Y. Antibody–drug conjugates: A review of approved drugs and their clinical level of evidence. Cancers 2023 15 15 3886 10.3390/cancers15153886 37568702
    [Google Scholar]
  72. Chen E. Gan Y. Chen Y. Chen C. Weng Y. Zhang B. Cai Y. Wang Q. Li Q. Post-marketing safety surveillance of ado-trastuzumab emtansine: A real-world data retrospective cohort study using disproportionality analysis. Expert Opin Drug Saf 2025 24 5 565 576 10.1080/14740338.2024.2438748 39639601
    [Google Scholar]
  73. Banoun H. Analysis of Beyfortus® (Nirsevimab) immunization campaign: Effectiveness, biases, and ADE risks in RSV prevention. Curr. Issues Mol. Biol. 2024 46 9 10369 10395 10.3390/cimb46090617 39329969
    [Google Scholar]
  74. Lacy S.A. Miles D.R. Nguyen L.T. Clinical pharmacokinetics and pharmacodynamics of cabozantinib. Clin. Pharmacokinet. 2017 56 5 477 491 10.1007/s40262‑016‑0461‑9 27734291
    [Google Scholar]
  75. Spring L.M. Nakajima E. Hutchinson J. Viscosi E. Blouin G. Weekes C. Rugo H. Moy B. Bardia A. Sacituzumab govitecan for metastatic triple-negative breast cancer: Clinical overview and management of potential toxicities. Oncologist 2021 26 10 827 834 10.1002/onco.13878 34176192
    [Google Scholar]
  76. Siddiqui T. Rani P. Ashraf T. Ellahi A. Enhertu (Fam-trastuzumab-deruxtecan-nxki) – Revolutionizing treatment paradigm for HER2-Low breast cancer. Ann. Med. Surg. 2022 82 104665 10.1016/j.amsu.2022.104665 36268293
    [Google Scholar]
  77. Sarraf Yazdy M. Kasamon Y.L. Gu W. Rodriguez L.R. Jin S. Bhatnagar V. Richardson N.C. Theoret M.R. Pazdur R. Gormley N.J. FDA approval summary: Polatuzumab vedotin in the first-line treatment of select large B-cell lymphomas. Clin. Cancer Res. 2024 30 24 5521 5526 10.1158/1078‑0432.CCR‑24‑1729 39404868
    [Google Scholar]
  78. Zhang Y. Ran L. Liang Y. Zhang Y. An Z. Safety analysis of pemigatinib leveraging the US Food and Drug administration adverse event reporting system. Front. Pharmacol. 2023 14 1194545 10.3389/fphar.2023.1194545 37554985
    [Google Scholar]
  79. Chang E. Weinstock C. Zhang L. Charlab R. Dorff S.E. Gong Y. Hsu V. Li F. Ricks T.K. Song P. Tang S. Waldron P.E. Yu J. Zahalka E. Goldberg K.B. Pazdur R. Theoret M.R. Ibrahim A. Beaver J.A. FDA approval summary: Enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res. 2021 27 4 922 927 10.1158/1078‑0432.CCR‑20‑2275 32962979
    [Google Scholar]
  80. Norsworthy K.J. Ko C.W. Lee J.E. Liu J. John C.S. Przepiorka D. Farrell A.T. Pazdur R. FDA approval summary: Mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist 2018 23 9 1103 1108 10.1634/theoncologist.2017‑0604 29650683
    [Google Scholar]
  81. Jen E.Y. Gao X. Li L. Zhuang L. Simpson N.E. Aryal B. Wang R. Przepiorka D. Shen Y.L. Leong R. Liu C. Sheth C.M. Bowen S. Goldberg K.B. Farrell A.T. Blumenthal G.M. Pazdur R. FDA approval summary: Tagraxofusp-erzs for treatment of blastic plasmacytoid dendritic cell neoplasm. Clin. Cancer Res. 2020 26 3 532 536 10.1158/1078‑0432.CCR‑19‑2329 31548341
    [Google Scholar]
  82. Pulte E.D. Vallejo J. Przepiorka D. Nie L. Farrell A.T. Goldberg K.B. McKee A.E. Pazdur R. FDA supplemental approval: Blinatumomab for treatment of relapsed and refractory precursor B-cell acute lymphoblastic leukemia. Oncologist 2018 23 11 1366 1371 10.1634/theoncologist.2018‑0179 30018129
    [Google Scholar]
  83. Musallam K.M. Sheth S. Cappellini M.D. Kattamis A. Kuo K.H.M. Taher A.T. Luspatercept for transfusion-dependent β-thalassemia: Time to get real. Ther. Adv. Hematol. 2023 14 20406207231195594 10.1177/20406207231195594 37645382
    [Google Scholar]
  84. Shi J. Xiao Z. Kamaly N. Farokhzad O.C. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc. Chem. Res. 2011 44 10 1123 1134 10.1021/ar200054n 21692448
    [Google Scholar]
  85. Kamaly N. Xiao Z. Valencia P.M. Radovic-Moreno A.F. Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012 41 7 2971 3010 10.1039/c2cs15344k 22388185
    [Google Scholar]
  86. Mosleh-Shirazi S. Abbasi M. Moaddeli M. Vaez A. Shafiee M. Kasaee S.R. Amani A.M. Hatam S. Nanotechnology advances in the detection and treatment of cancer: An overview. Nanotheranostics 2022 6 4 400 423 10.7150/ntno.74613 36051855
    [Google Scholar]
  87. Friedman A. Claypool S. Liu R. The smart targeting of nanoparticles. Curr. Pharm. Des. 2013 19 35 6315 6329 10.2174/13816128113199990375 23470005
    [Google Scholar]
  88. Song P. Zhang Q. Xu Z. Shi Y. Jing R. Luo D. CRISPR/Cas-based CAR-T cells: Production and application. Biomark. Res. 2024 12 1 54 10.1186/s40364‑024‑00602‑z 38816881
    [Google Scholar]
  89. Zhao J. Liu T. Li Y. Yang X. Wang X. Fu Y. Zheng Y. Yao Z. Wang J. Gong H. He Z. Hepatocellular carcinoma epi-immunotherapy with polyion complex micelles co-delivering HDAC8 inhibitor and PD-L1 siRNA. Chem. Eng. J. 2025 503 158138 10.1016/j.cej.2024.158138
    [Google Scholar]
  90. Zein R. Sharrouf W. Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J. Oncol. 2020 2020 1 1 16 10.1155/2020/5194780 32765604
    [Google Scholar]
  91. Yoo D. Lee J.H. Shin T.H. Cheon J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 2011 44 10 863 874 10.1021/ar200085c 21823593
    [Google Scholar]
  92. Love S.A. Maurer-Jones M.A. Thompson J.W. Lin Y.S. Haynes C.L. Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. 2012 5 1 181 205 10.1146/annurev‑anchem‑062011‑143134 22524221
    [Google Scholar]
  93. Buzea C. Pacheco I.I. Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007 2 4 MR17 MR71 10.1116/1.2815690 20419892
    [Google Scholar]
  94. Awasthi R Pant I Opportunities and challenges in nano-structure mediated drug delivery: Where do we stand? Curr Nanomed 2016 6 2 78 104 10.2174/2468187306666160808160330
    [Google Scholar]
  95. Li H. Yang Y. Hong W. Huang M. Wu M. Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020 5 1 1 10.1038/s41392‑019‑0089‑y 32296011
    [Google Scholar]
  96. Loureiro A. da Silva G.J. CRISPR-Cas: Converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics 2019 8 1 18 10.3390/antibiotics8010018 30823430
    [Google Scholar]
  97. Henderson B. Cancer-free: Your guide to gentle, non-toxic healing. Booklocker.com 2014 380
    [Google Scholar]
  98. Sioson V.A. Kim M. Joo J. Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomed. Eng. Lett. 2021 11 3 217 233 10.1007/s13534‑021‑00199‑4 34350049
    [Google Scholar]
  99. Urnov F.D. Rebar E.J. Holmes M.C. Zhang H.S. Gregory P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010 11 9 636 646 10.1038/nrg2842 20717154
    [Google Scholar]
  100. Zhang H. Qin C. An C. Zheng X. Wen S. Chen W. Liu X. Lv Z. Yang P. Xu W. Gao W. Wu Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer 2021 20 1 126 10.1186/s12943‑021‑01431‑6 34598686
    [Google Scholar]
  101. Gostimskaya I. CRISPR–cas9: A history of its discovery and ethical considerations of its use in genome editing. Biochemistry 2022 87 8 777 788 10.1134/S0006297922080090 36171658
    [Google Scholar]
  102. Lino C.A. Harper J.C. Carney J.P. Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018 25 1 1234 1257 10.1080/10717544.2018.1474964 29801422
    [Google Scholar]
  103. Lanphier E. Urnov F. Haecker S.E. Werner M. Smolenski J. Don’t edit the human germ line. Nature 2015 519 7544 410 411 10.1038/519410a 25810189
    [Google Scholar]
  104. Gasiunas G. Barrangou R. Horvath P. Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 2012 109 39 E2579 E2586 10.1073/pnas.1208507109 22949671
    [Google Scholar]
  105. Niemiec E. Howard H.C. Ethical issues related to research on genome editing in human embryos. Comput. Struct. Biotechnol. J. 2020 18 887 896 10.1016/j.csbj.2020.03.014 32322370
    [Google Scholar]
  106. Saraswat I. Saha S. Mishra A. A review of metallic nanostructures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Toxicol. Environ. Health Sci. 2023 15 4 315 324 10.1007/s13530‑023‑00182‑9
    [Google Scholar]
  107. Greely H.T. CRISPR’d babies: Human germline genome editing in the ‘He Jiankui affair’. J. Law Biosci. 2019 6 1 111 183 10.1093/jlb/lsz010 31666967
    [Google Scholar]
  108. Koonin EV Makarova KS Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019 374 1772 20180087 10.1098/rstb.2018.0087 30905284
    [Google Scholar]
  109. Piergentili R. Del Rio A. Signore F. Umani Ronchi F. Marinelli E. Zaami S. CRISPR-Cas and its wide-ranging applications: From human genome editing to environmental implications, technical limitations, hazards and bioethical issues. Cells 2021 10 5 969 10.3390/cells10050969 33919194
    [Google Scholar]
  110. Chen F. Alphonse M. Liu Q. Strategies for nonviral nanoparticle‐based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020 12 3 e1609 10.1002/wnan.1609 31797562
    [Google Scholar]
  111. Parra-Nieto J. del Cid M.A.G. de Cárcer I.A. Baeza A. Inorganic porous nanoparticles for drug delivery in antitumoral therapy. Biotechnol. J. 2021 16 2 2000150 10.1002/biot.202000150 32476279
    [Google Scholar]
  112. Xu X. Liu C. Wang Y. Koivisto O. Zhou J. Shu Y. Zhang H. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv. Drug Deliv. Rev. 2021 176 113891 10.1016/j.addr.2021.113891 34324887
    [Google Scholar]
  113. Elmowafy M. Shalaby K. Elkomy M.H. Alsaidan O.A. Gomaa H.A.M. Abdelgawad M.A. Mostafa E.M. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers 2023 15 5 1123 10.3390/polym15051123 36904364
    [Google Scholar]
  114. Panyam J. Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003 55 3 329 347 10.1016/S0169‑409X(02)00228‑4 12628320
    [Google Scholar]
  115. Battaglia L. Gallarate M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv. 2012 9 5 497 508 10.1517/17425247.2012.673278 22439808
    [Google Scholar]
  116. Rehman M. Ihsan A. Madni A. Bajwa S.Z. Shi D. Webster T.J. Khan W. Solid lipid nanoparticles for thermoresponsive targeting: Evidence from spectrophotometry, electrochemical, and cytotoxicity studies. Int. J. Nanomedicine 2017 12 8325 8336 10.2147/IJN.S147506 29200845
    [Google Scholar]
  117. Chen K. Jiang S. Hong Y. Li Z. Wu Y.L. Wu C. Cationic polymeric nanoformulation: Recent advances in material design for CRISPR/Cas9 gene therapy. Prog. Nat. Sci. 2019 29 6 617 627 10.1016/j.pnsc.2019.10.003
    [Google Scholar]
  118. Li Y. Gao G.H. Lee D.S. Stimulus-sensitive polymeric nanoparticles and their applications as drug and gene carriers. Adv. Healthc. Mater. 2013 2 3 388 417 10.1002/adhm.201200313 23184586
    [Google Scholar]
  119. Freitas K.A. Belk J.A. Sotillo E. Quinn P.J. Ramello M.C. Malipatlolla M. Daniel B. Sandor K. Klysz D. Bjelajac J. Xu P. Burdsall K.A. Tieu V. Duong V.T. Donovan M.G. Weber E.W. Chang H.Y. Majzner R.G. Espinosa J.M. Satpathy A.T. Mackall C.L. Enhanced T cell effector activity by targeting the Mediator kinase module. Science 2022 378 6620 eabn5647 10.1126/science.abn5647 36356142
    [Google Scholar]
  120. Pont M. Marqués M. Sorolla M.A. Parisi E. Urdanibia I. Morales S. Salud A. Sorolla A. Applications of CRISPR technology to breast cancer and triple negative breast cancer research. Cancers 2023 15 17 4364 10.3390/cancers15174364 37686639
    [Google Scholar]
  121. Duan L. Ouyang K. Xu X. Xu L. Wen C. Zhou X. Qin Z. Xu Z. Sun W. Liang Y. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front. Genet. 2021 12 673286 10.3389/fgene.2021.673286 34054927
    [Google Scholar]
  122. Ma P. Wang Q. Luo X. Mao L. Wang Z. Ye E. Loh X.J. Li Z. Wu Y.L. Recent advances in stimuli-responsive polymeric carriers for controllable CRISPR/Cas9 gene editing system delivery. Biomater. Sci. 2023 11 15 5078 5094 10.1039/D3BM00529A 37282836
    [Google Scholar]
  123. Poddar A. Pyreddy S. Carraro F. Dhakal S. Rassell A. Field M.R. Reddy T.S. Falcaro P. Doherty C.M. Shukla R. ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer. Chem. Commun. 2020 56 98 15406 15409 10.1039/D0CC06241C 33196071
    [Google Scholar]
  124. Sun Q. Ma X. Zhang B. Zhou Z. Jin E. Shen Y. Van Kirk E.A. Murdoch W.J. Radosz M. Sun W. Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery. Biomater. Sci. 2016 4 6 958 969 10.1039/C6BM00189K 27087640
    [Google Scholar]
  125. Pl F.E. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci 1987 84 21 7413 7417 10.1073/pnas.84.21.7413
    [Google Scholar]
  126. Liu Q. Wang C. Zheng Y. Zhao Y. Wang Y. Hao J. Zhao X. Yi K. Shi L. Kang C. Liu Y. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials 2020 258 120275 10.1016/j.biomaterials.2020.120275 32798741
    [Google Scholar]
  127. Liu Y. Zhao G. Xu C.F. Luo Y.L. Lu Z.D. Wang J. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomater. Sci. 2018 6 6 1592 1603 10.1039/C8BM00263K 29725684
    [Google Scholar]
  128. Chehelgerdi M Chehelgerdi M Khorramian-Ghahfarokhi M Shafieizadeh M Mahmoudi E Eskandari F Rashidi M Arshi A Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024 23 1 9 10.1186/s12943‑023‑01925‑5
    [Google Scholar]
  129. Li S. Song Z. Liu C. Chen X.L. Han H. Biomimetic mineralization-based CRISPR/Cas9 ribonucleoprotein nanoparticles for gene editing. ACS Appl. Mater. Interfaces 2019 11 51 47762 47770 10.1021/acsami.9b17598 31773942
    [Google Scholar]
  130. Zhang B.C. Wu P.Y. Zou J.J. Jiang J.L. Zhao R.R. Luo B.Y. Liao Y.Q. Shao J.W. Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect. Chem. Eng. J. 2020 393 124688 10.1016/j.cej.2020.124688
    [Google Scholar]
  131. Koo T. Yoon A.R. Cho H.Y. Bae S. Yun C.O. Kim J.S. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res. 2017 45 13 7897 7908 10.1093/nar/gkx490 28575452
    [Google Scholar]
  132. Lee SW Kim YM Cho CH Kim YT Kim SM Hur SY Kim JH Kim BG Kim SC Ryu HS Kang SB An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: A Korean Gynecologic Oncology Group Study (KGOG-3021). Cancer Res Treat 2018 50 1 195 203 10.4143/crt.2016.376 28324920
    [Google Scholar]
  133. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  134. Mukai H. Kogawa T. Matsubara N. Naito Y. Sasaki M. Hosono A. A first-in-human Phase 1 study of epirubicin-conjugated polymer micelles (K-912/NC-6300) in patients with advanced or recurrent solid tumors. Invest. New Drugs 2017 35 3 307 314 10.1007/s10637‑016‑0422‑z 28054329
    [Google Scholar]
  135. Evans T.R.J. Dean E. Molife L.R. Lopez J. Ranson M. El-Khouly F. Zubairi I. Savulsky C. Reyderman L. Jia Y. Sweeting L. Greystoke A. Barriuso J. Kristeleit R. Phase 1 dose-finding and pharmacokinetic study of eribulin-liposomal formulation in patients with solid tumours. Br. J. Cancer 2019 120 4 379 386 10.1038/s41416‑019‑0377‑x 30679780
    [Google Scholar]
  136. Liu Q. World-first phase I clinical trial for CRISPR-Cas9 PD-1-edited T-cells in advanced nonsmall cell lung cancer. Glob Med Genet 2020 7 3 73 74 10.1055/s‑0040‑1721451 33392608
    [Google Scholar]
  137. Ernst M.P.T. Broeders M. Herrero-Hernandez P. Oussoren E. van der Ploeg A.T. Pijnappel W.W.M.P. Ready for repair? Gene editing enters the clinic for the treatment of human disease. Mol. Ther. Methods Clin. Dev. 2020 18 532 557 10.1016/j.omtm.2020.06.022 32775490
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232367601250717090618
Loading
/content/journals/cgt/10.2174/0115665232367601250717090618
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanotechnology ; CRISPR-Cas9 ; cancer therapy ; diagnosis ; nanoparticles ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test