
Full text loading...
The fusion of nanotechnology with gene editing promises a revolutionary strategy in combating cancer, providing the possibility of precise and focused treatments. This review examines the synergistic integration of these two potent technologies, specifically emphasising their combined effectiveness in oncological therapies. Nanotechnology offers a flexible framework for administering gene-editing tools, improving their accuracy, and reducing unintended side effects, all of which are significant obstacles in existing cancer treatments. Nanoparticles can improve the effectiveness of therapies, lower the risk of systemic toxicity, and allow the simultaneous manipulation of many genetic pathways involved in cancer growth by delivering CRISPR-Cas9 and other gene-editing systems directly to tumour sites. We conduct a thorough analysis of recent progress in this burgeoning field, emphasising significant advancements in the design of nanoparticles and gene-editing techniques that propel the development of next-generation cancer medicines. In addition, we address the present obstacles and constraints, such as the effectiveness of delivery, apprehensions over safety, and regulatory obstacles, while suggesting potential areas of future research to surmount these barriers. This study thoroughly examines the promise of nano-precision gene editing as a transformative approach to cancer treatment by incorporating findings from recent clinical trials and case studies. By highlighting recent clinical advancements and emerging innovations, this review underscores the potential of nano-precision gene editing as a groundbreaking approach in next-generation cancer therapy.
Article metrics loading...
Full text loading...
References
Data & Media loading...