Skip to content
2000
image of Identification of Key Features Pivotal to the Characteristics and Functions of Gut Bacteria Taxa through Machine Learning Methods

Abstract

Background

Gut bacteria critically influence digestion, facilitate the breakdown of complex food substances, aid in essential nutrient synthesis, and contribute to immune system balance. However, current knowledge regarding intestinal bacteria remains insufficient.

Objective

This study aims to discover essential differences for different intestinal bacteria.

Methods

This study was conducted by investigating a total of 1478 gut bacterial samples comprising 235 , 447 , and 796 , by utilizing sophisticated machine learning algorithms. By building on the dataset provided by Chen , we engaged sophisticated machine learning techniques to further investigate and analyze the gut bacterial samples. Each sample in the dataset was described by 993 unique features associated with gut bacteria, including 342 features annotated by the Antibiotic Resistance Genes Database, Comprehensive Antibiotic Research Database, Kyoto Encyclopedia of Genes and Genomes, and Virulence Factors of Pathogenic Bacteria. We employed incremental feature selection methods within a computational framework to identify the optimal features for classification.

Results

Eleven feature ranking algorithms selected several key features as pivotal to the characteristics and functions of gut bacteria. These features appear to facilitate the identification of specific gut bacterial species. Additionally, we established quantitative rules for identifying , , and .

Conclusion

This research underscores the significant potential of machine learning in studying gut microbes and enhances our understanding of the multifaceted roles of gut bacteria.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232367064250630202337
2025-07-15
2025-09-13
Loading full text...

Full text loading...

References

  1. Yatsunenko T. Rey F.E. Manary M.J. Human gut microbiome viewed across age and geography. Nature 2012 486 7402 222 227 10.1038/nature11053 22699611
    [Google Scholar]
  2. Heintz-Buschart A. Wilmes P. Human gut microbiome: Function matters. Trends Microbiol. 2018 26 7 563 574 10.1016/j.tim.2017.11.002 29173869
    [Google Scholar]
  3. Chadchan S.B. Cheng M. Parnell L.A. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: A potential role for gut microbiota. Hum. Reprod. 2019 34 6 1106 1116 10.1093/humrep/dez041 31037294
    [Google Scholar]
  4. Illiano P. Brambilla R. Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 2020 287 5 833 855 10.1111/febs.15217 31955527
    [Google Scholar]
  5. Blaut M. Gut microbiota and energy balance: Role in obesity. Proc. Nutr. Soc. 2015 74 3 227 234 10.1017/S0029665114001700 25518735
    [Google Scholar]
  6. Voland L. Roy L.T. Debédat J. Clément K. Gut microbiota and vitamin status in persons with obesity: A key interplay. Obes. Rev. 2022 23 2 e13377 10.1111/obr.13377 34767276
    [Google Scholar]
  7. Kelly D. Conway S. Aminov R. Commensal gut bacteria: Mechanisms of immune modulation. Trends Immunol. 2005 26 6 326 333 10.1016/j.it.2005.04.008 15922949
    [Google Scholar]
  8. Takeuchi T. Ohno H. Reciprocal regulation of IgA and the gut microbiota: A key mutualism in the intestine. Int. Immunol. 2021 33 12 781 786 10.1093/intimm/dxab049 34346497
    [Google Scholar]
  9. Liu B.N. Liu X.T. Liang Z.H. Wang J.H. Gut microbiota in obesity. World J. Gastroenterol. 2021 27 25 3837 3850 10.3748/wjg.v27.i25.3837 34321848
    [Google Scholar]
  10. Gurung M. Li Z. You H. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020 51 102590 10.1016/j.ebiom.2019.11.051 31901868
    [Google Scholar]
  11. Liu S. Gao J. Zhu M. Liu K. Zhang H.L. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Mol. Neurobiol. 2020 57 12 5026 5043 10.1007/s12035‑020‑02073‑3 32829453
    [Google Scholar]
  12. Zhang H. Chen Y. Wang Z. Implications of gut microbiota in neurodegenerative diseases. Front. Immunol. 2022 13 785644 10.3389/fimmu.2022.785644 35237258
    [Google Scholar]
  13. Kurilshikov A. Wijmenga C. Fu J. Zhernakova A. Host genetics and gut microbiome: Challenges and perspectives. Trends Immunol. 2017 38 9 633 647 10.1016/j.it.2017.06.003 28669638
    [Google Scholar]
  14. Nogal A. Valdes A.M. Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021 13 1 1897212 10.1080/19490976.2021.1897212 33764858
    [Google Scholar]
  15. Redondo-Useros N. Nova E. González-Zancada N. Díaz L.E. Gómez-Martínez S. Marcos A. Microbiota and lifestyle: A special focus on diet. Nutrients 2020 12 6 1776 10.3390/nu12061776 32549225
    [Google Scholar]
  16. Imhann F. Vila V.A. Bonder M.J. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes 2017 8 4 351 358 10.1080/19490976.2017.1284732 28118083
    [Google Scholar]
  17. Binda C. Lopetuso L.R. Rizzatti G. Gibiino G. Cennamo V. Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018 50 5 421 428 10.1016/j.dld.2018.02.012 29567414
    [Google Scholar]
  18. Pokusaeva K. Fitzgerald G.F. Sinderen V.D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011 6 3 285 306 10.1007/s12263‑010‑0206‑6 21484167
    [Google Scholar]
  19. van de Wouw M. Schellekens H. Dinan T.G. Cryan J.F. Microbiota-gut-brain axis: Modulator of host metabolism and appetite. J. Nutr. 2017 147 5 727 745 10.3945/jn.116.240481 28356427
    [Google Scholar]
  20. Grigor’eva I.N. Gallstone disease, obesity and the firmicutes/bacteroidetes ratio as a possible biomarker of gut dysbiosis. J. Pers. Med. 2020 11 1 13 10.3390/jpm11010013 33375615
    [Google Scholar]
  21. Cui C. Shen C.J. Jia G. Wang K.N. Effect of dietary bacillus subtilis on proportion of bacteroidetes and firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 2013 12 2 1766 1776 10.4238/2013.May.23.1 23765983
    [Google Scholar]
  22. Nakajima A. Sasaki T. Itoh K. A soluble fiber diet increases Bacteroides fragilis group abundance and immunoglobulin A production in the gut. Appl. Environ. Microbiol. 2020 86 13 e00405 e00420 10.1128/AEM.00405‑20 32332136
    [Google Scholar]
  23. Tremaroli V. Kovatcheva-Datchary P. Bäckhed F. A role for the gut microbiota in energy harvesting? Gut 2010 59 12 1589 1590 10.1136/gut.2010.223594 20940281
    [Google Scholar]
  24. Mulders R.J. Git D.K.C.G. Schéle E. Dickson S.L. Sanz Y. Adan R.A.H. Microbiota in obesity: Interactions with enteroendocrine, immune and central nervous systems. Obes. Rev. 2018 19 4 435 451 10.1111/obr.12661 29363272
    [Google Scholar]
  25. Kapoor P. Tiwari A. Sharma S. Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: A systematic review via meta-analysis. Sci. Rep. 2023 13 1 1729 10.1038/s41598‑023‑28764‑0 36720989
    [Google Scholar]
  26. Gibiino G. Lopetuso L.R. Scaldaferri F. Rizzatti G. Binda C. Gasbarrini A. Exploring bacteroidetes: Metabolic key points and immunological tricks of our gut commensals. Dig. Liver Dis. 2018 50 7 635 639 10.1016/j.dld.2018.03.016 29650468
    [Google Scholar]
  27. Thomas F. Hehemann J.H. Rebuffet E. Czjzek M. Michel G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2011 2 93 10.3389/fmicb.2011.00093 21747801
    [Google Scholar]
  28. Houtman T.A. Eckermann H.A. Smidt H. Weerth D.C. Gut microbiota and BMI throughout childhood: The role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci. Rep. 2022 12 1 3140 10.1038/s41598‑022‑07176‑6 35210542
    [Google Scholar]
  29. Magne F. Gotteland M. Gauthier L. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020 12 5 1474 10.3390/nu12051474 32438689
    [Google Scholar]
  30. Marcos-Zambrano L.J. Karaduzovic-Hadziabdic K. Turukalo L.T. Applications of machine learning in human microbiome studies: A review on feature selection, biomarker identification, disease prediction and treatment. Front. Microbiol. 2021 12 634511 10.3389/fmicb.2021.634511 33737920
    [Google Scholar]
  31. Liñares-Blanco J. Fernandez-Lozano C. Seoane J.A. López-Campos G. Machine learning based microbiome signature to predict inflammatory bowel disease subtypes. Front. Microbiol. 2022 13 872671 10.3389/fmicb.2022.872671 35663898
    [Google Scholar]
  32. Ruiz-Perez D. Guan H. Madhivanan P. Mathee K. Narasimhan G. So you think you can PLS-DA? BMC Bioinformatics 2020 21 S1 2 10.1186/s12859‑019‑3310‑7 33297937
    [Google Scholar]
  33. Chen L. Li D. Shao Y. Wang H. Liu Y. Zhang Y. Identifying microbiota signature and functional rules associated with bacterial subtypes in human intestine. Front. Genet. 2019 10 1146 10.3389/fgene.2019.01146 31803234
    [Google Scholar]
  34. Liu H. Setiono R. Incremental feature selection. Appl. Intell. 1998 9 3 217 230 10.1023/A:1008363719778
    [Google Scholar]
  35. Liu B Pop M. ARDB—antibiotic resistance genes database Nucleic Acids Res 2009 37 (Database) D443 7 10.1093/nar/gkn656 18832362
    [Google Scholar]
  36. McArthur A.G. Waglechner N. Nizam F. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013 57 7 3348 3357 10.1128/AAC.00419‑13 23650175
    [Google Scholar]
  37. Kanehisa M. The KEGG database. An ‘In Silico’ simulation of biological processes. Novartis Foundation Symposium 2002 247 91 103 10.1002/0470857897.ch8
    [Google Scholar]
  38. Liu B. Zheng D. Jin Q. Chen L. Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019 47 D1 D687 D692 10.1093/nar/gky1080 30395255
    [Google Scholar]
  39. Jia B. Raphenya A.R. Alcock B. Waglechner N. Guo P. Tsang K.K. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016 gkw1004 27789705
    [Google Scholar]
  40. Aoki K.F. Kanehisa M. Using the KEGG database resource. Curr Protoc Bioinformatics 2005 Chapter 1: Unit 1.12 10.1002/0471250953.bi0112s11
    [Google Scholar]
  41. Dorogush A.V. Ershov V. Gulin A. CatBoost: Gradient boosting with categorical features support arXiv:181011363 2018 2018 10.48550/arXiv.1810.11363
    [Google Scholar]
  42. Geurts P. Ernst D. Wehenkel L. Extremely randomized trees. Mach. Learn. 2006 63 1 3 42 10.1007/s10994‑006‑6226‑1
    [Google Scholar]
  43. Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol. 1996 58 1 267 288 10.1111/j.2517‑6161.1996.tb02080.x
    [Google Scholar]
  44. Ke G. Meng Q. Finley T. Wang T. Chen W. Ma W. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017 30 3146 3154
    [Google Scholar]
  45. Dramiński M. Rada-Iglesias A. Enroth S. Wadelius C. Koronacki J. Komorowski J. Monte Carlo feature selection for supervised classification. Bioinformatics 2008 24 1 110 117 10.1093/bioinformatics/btm486 18048398
    [Google Scholar]
  46. Peng H. Long F. Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005 27 8 1226 1238 10.1109/TPAMI.2005.159 16119262
    [Google Scholar]
  47. Breiman L. Random forests. Mach. Learn. 2001 45 1 5 32 10.1023/A:1010933404324
    [Google Scholar]
  48. Hoerl A.E. Kennard R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970 12 1 55 67 10.1080/00401706.1970.10488634
    [Google Scholar]
  49. Guyon I. Weston J. Barnhill S. Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002 46 1/3 389 422 10.1023/A:1012487302797
    [Google Scholar]
  50. Chen T. Guestrin C. XGBoost: A scalable tree boosting system. KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016 785 794 10.1145/2939672.2939785
    [Google Scholar]
  51. Freund Y. Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997 55 1 119 139 10.1006/jcss.1997.1504
    [Google Scholar]
  52. Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011 12 2825 2830
    [Google Scholar]
  53. Chawla N.V. Bowyer K.W. Hall L.O. Kegelmeyer W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002 16 1 321 357 10.1613/jair.953
    [Google Scholar]
  54. Safavian S.R. Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991 21 3 660 674 10.1109/21.97458
    [Google Scholar]
  55. Powers D. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. Technol. 2011 2 1 37 63
    [Google Scholar]
  56. Ren J. Gao Q. Zhou X. Identification of key gene expression associated with quality of life after recovery from COVID-19. Med. Biol. Eng. Comput. 2024 62 4 1031 1048 10.1007/s11517‑023‑02988‑8 38123886
    [Google Scholar]
  57. Ren J. Zhou X. Huang K. Identification of key genes associated with persistent immune changes and secondary immune activation responses induced by influenza vaccination after COVID-19 recovery by machine learning methods. Comput. Biol. Med. 2024 169 107883 10.1016/j.compbiomed.2023.107883 38157776
    [Google Scholar]
  58. Ren J.X. Chen L. Guo W. Feng K.Y. Cai Y.D. Huang T. Patterns of gene expression profiles associated with colorectal cancer in colorectal mucosa by using machine learning methods. Comb. Chem. High Throughput Screen. 2024 27 19 2921 2934 10.2174/0113862073266300231026103844 37957897
    [Google Scholar]
  59. Chen L. Zhang S. Zhou B. Herb-disease association prediction model based on network consistency projection. Sci. Rep. 2025 15 1 3328 10.1038/s41598‑025‑87521‑7 39865145
    [Google Scholar]
  60. Chen L. Li J. PDTDAHN: Predicting drug-target-disease associations using a heterogeneous network. Curr. Bioinform. 2025 20 1 9 10.2174/0115748936359702250120114240
    [Google Scholar]
  61. Chen L. Chen Y. RMTLysPTM: Recognizing multiple types of lysine PTM sites by deep analysis on sequences. Brief. Bioinform. 2023 25 1 bbad450 10.1093/bib/bbad450 38066710
    [Google Scholar]
  62. Chen L. Gu J. Zhou B. PMiSLocMF: Predicting miRNA subcellular localizations by incorporating multi-source features of miRNAs. Brief. Bioinform. 2024 25 5 bbae386 10.1093/bib/bbae386 39154195
    [Google Scholar]
  63. Bao Y. Ma Q. Chen L. Recognizing SARS-CoV-2 infection of nasopharyngeal tissue at the single-cell level by machine learning method. Mol. Immunol. 2025 177 44 61 10.1016/j.molimm.2024.12.004 39700903
    [Google Scholar]
  64. Liao H. Ma Q. Chen L. Machine learning analysis of CD4+ T cell gene expression in diverse diseases: Insights from cancer, metabolic, respiratory, and digestive disorders. Cancer Genet. 2025 290-291 56 60 10.1016/j.cancergen.2024.12.004 39729927
    [Google Scholar]
  65. Matthews B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 1975 405 2 442 451 10.1016/0005‑2795(75)90109‑9 1180967
    [Google Scholar]
  66. Gorodkin J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem. 2004 28 5-6 367 374 10.1016/j.compbiolchem.2004.09.006 15556477
    [Google Scholar]
  67. Chen L. Zhang C. Xu J. PredictEFC: A fast and efficient multi-label classifier for predicting enzyme family classes. BMC Bioinformatics 2024 25 1 50 10.1186/s12859‑024‑05665‑1 38291384
    [Google Scholar]
  68. Yun E.J. Imdad S. Jang J. Diet is a stronger covariate than exercise in determining gut microbial richness and diversity. Nutrients 2022 14 12 2507 10.3390/nu14122507 35745235
    [Google Scholar]
  69. Rinninella E. Cintoni M. Raoul P. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients 2019 11 10 2393 10.3390/nu11102393 31591348
    [Google Scholar]
  70. Klement R. Pazienza V. Impact of different types of diet on gut microbiota profiles and cancer prevention and treatment. Medicina 2019 55 4 84 10.3390/medicina55040084 30934960
    [Google Scholar]
  71. Gupta S. Fernandes J. Kiron V. Antibiotic-induced perturbations are manifested in the dominant intestinal bacterial phyla of Atlantic salmon. Microorganisms 2019 7 8 233 10.3390/microorganisms7080233 31382431
    [Google Scholar]
  72. Stojanov S. Berlec A. Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020 8 11 1715 10.3390/microorganisms8111715 33139627
    [Google Scholar]
  73. Senghor B. Sokhna C. Ruimy R. Lagier J.C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 2018 7-8 1 9 10.1016/j.humic.2018.01.001
    [Google Scholar]
  74. Novikova O. Jayachandran P. Kelley D.S. Intein clustering suggests functional importance in different domains of life. Mol. Biol. Evol. 2016 33 3 783 799 10.1093/molbev/msv271 26609079
    [Google Scholar]
  75. Verma S.K. Sharma P.C. NGS-based characterization of microbial diversity and functional profiling of solid tannery waste metagenomes. Genomics 2020 112 4 2903 2913 10.1016/j.ygeno.2020.04.002 32272146
    [Google Scholar]
  76. Kolmeder C.A. Salojärvi J. Ritari J. Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS One 2016 11 4 e0153294 10.1371/journal.pone.0153294 27070903
    [Google Scholar]
  77. Li J. Jia H. Cai X. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014 32 8 834 841 10.1038/nbt.2942 24997786
    [Google Scholar]
  78. Walsh C.J. Guinane C.M. O’Toole P.W. Cotter P.D. Beneficial modulation of the gut microbiota. FEBS Lett. 2014 588 22 4120 4130 10.1016/j.febslet.2014.03.035 24681100
    [Google Scholar]
  79. Vos D.W.M. Vos D.E.A.J. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutr. Rev. 2012 70 Suppl. 1 S45 S56 10.1111/j.1753‑4887.2012.00505.x 22861807
    [Google Scholar]
  80. Flores G.E. Caporaso J.G. Henley J.B. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 2014 15 12 531 10.1186/s13059‑014‑0531‑y 25517225
    [Google Scholar]
  81. Poirier S. Rué O. Peguilhan R. Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using gyrB amplicon sequencing: A comparative analysis with 16S rDNA V3-V4 amplicon sequencing. PLoS One 2018 13 9 e0204629 10.1371/journal.pone.0204629 30252901
    [Google Scholar]
  82. Chen Z. Wang Y. Wen Q. Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting. Environ. Pollut. 2018 237 977 987 10.1016/j.envpol.2017.11.009 29137887
    [Google Scholar]
  83. Alt S. Mitchenall L.A. Maxwell A. Heide L. Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. J. Antimicrob. Chemother. 2011 66 9 2061 2069 10.1093/jac/dkr247 21693461
    [Google Scholar]
  84. Yan H. Zhang L. Guo Z. Zhang H. Liu J. Production phase affects the bioaerosol microbial composition and functional potential in swine confinement buildings. Animals 2019 9 3 90 10.3390/ani9030090 30871116
    [Google Scholar]
  85. Furuno J.P. Perencevich E.N. Johnson J.A. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci co-colonization. Emerg. Infect. Dis. 2005 11 10 1539 1544 10.3201/eid1110.050508 16318693
    [Google Scholar]
  86. Li G. Walker M.J. Oliveira D.D.M.P. Vancomycin resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022 11 1 24 10.3390/microorganisms11010024 36677316
    [Google Scholar]
  87. Martín J.F. Liras P. Sánchez S. Modulation of gene expression in actinobacteria by translational modification of transcriptional factors and secondary metabolite biosynthetic enzymes. Front. Microbiol. 2021 12 630694 10.3389/fmicb.2021.630694 33796086
    [Google Scholar]
  88. Kraxner K.J. Polen T. Baumgart M. Bott M. The conserved actinobacterial transcriptional regulator FtsR controls expression of ftsZ and further target genes and influences growth and cell division in Corynebacterium glutamicum. BMC Microbiol. 2019 19 1 179 10.1186/s12866‑019‑1553‑0 31382874
    [Google Scholar]
  89. Gago G. Diacovich L. Arabolaza A. Tsai S.C. Gramajo H. Fatty acid biosynthesis in actinomycetes. FEMS Microbiol. Rev. 2011 35 3 475 497 10.1111/j.1574‑6976.2010.00259.x 21204864
    [Google Scholar]
  90. Fujita Y. Matsuoka H. Hirooka K. Regulation of fatty acid metabolism in bacteria. Mol. Microbiol. 2007 66 4 829 839 10.1111/j.1365‑2958.2007.05947.x 17919287
    [Google Scholar]
  91. Radka C.D. Frank M.W. Rock C.O. Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative bacteroidetes resident of the human gut microbiome. Mol. Microbiol. 2020 113 4 807 825 10.1111/mmi.14445 31876062
    [Google Scholar]
  92. Wang J. Li C. Zou Y. Yan Y. Bacterial synthesis of C3-C5 diols via extending amino acid catabolism. Proc. Natl. Acad. Sci. USA 2020 117 32 19159 19167 10.1073/pnas.2003032117 32719126
    [Google Scholar]
  93. Wan T. Cao Y. Lai Y. Pan Z. Li Y. Zhuo L. Functional investigation of the two ClpPs and three ClpXs in Myxococcus xanthus DK1622. MSphere 2024 9 9 e00363 e24 10.1128/msphere.00363‑24 39189774
    [Google Scholar]
  94. Wang Y. Wang L. Guo D. Targeting ClpP: Unlocking a novel therapeutic approach of isochlorogenic acid A for methicillin-resistant Staphylococcus aureus-infected osteomyelitis. Microbiol. Res. 2025 292 128042 10.1016/j.micres.2024.128042 39756139
    [Google Scholar]
  95. Meng S. Wang Y.L. Liu C. Genetic diversity, antimicrobial resistance, and virulence genes of Aeromonas isolates from clinical patients, tap water systems, and food. Biomed. Environ. Sci. 2020 33 6 385 395 32641201
    [Google Scholar]
  96. Liu Y. Pei T. Yi S. Phylogenomic analysis substantiates the gyrB gene as a powerful molecular marker to efficiently differentiate the most closely related genera Myxococcus, Corallococcus, and Pyxidicoccus. Front. Microbiol. 2021 12 763359 10.3389/fmicb.2021.763359 34707598
    [Google Scholar]
  97. Yoo H.Y. Park S.Y. Chang S.Y. Kim S.H. Regulation of butyrate-induced resistance through ampk signaling pathway in human colon cancer cells. Biomedicines 2021 9 11 1604 10.3390/biomedicines9111604 34829834
    [Google Scholar]
  98. Lv H. Tao F. Peng L. In vitro probiotic properties of Bifidobacterium animalis subsp. lactis SF and its alleviating effect on non-alcoholic fatty liver disease. Nutrients 2023 15 6 1355 10.3390/nu15061355 36986084
    [Google Scholar]
  99. Wang L. Li S. Fan H. Bifidobacterium lactis combined with Lactobacillus plantarum inhibit glioma growth in mice through modulating PI3K/AKT pathway and gut microbiota. Front. Microbiol. 2022 13 986837 10.3389/fmicb.2022.986837 36147842
    [Google Scholar]
  100. Zhou L. Xie Y. Li Y. Bifidobacterium infantis promotes foxp3 expression in colon cells via PD-L1-mediated inhibition of the PI3K-Akt-mTOR Signaling Pathway. Front. Immunol. 2022 13 871705 10.3389/fimmu.2022.871705 35860248
    [Google Scholar]
  101. Tremaroli V. Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012 489 7415 242 249 10.1038/nature11552 22972297
    [Google Scholar]
  102. Liu H. Li Z. Si H. Zhong W. Fan Z. Li G. Comparative analysis of the gut microbiota of the blue fox (Alopex lagopus) and raccoon dog (Nyctereutes procyonoides). Arch. Microbiol. 2020 202 1 135 142 10.1007/s00203‑019‑01721‑0 31535158
    [Google Scholar]
  103. Wallace R. Onodera R. Cotta M. Metabolism of nitrogen-containing compounds. In:The Rumen Microbial Ecosystem. Dordrecht Springer 1997 283 328 10.1007/978‑94‑009‑1453‑7_7
    [Google Scholar]
  104. Patra A.K. Yu Z. Genomic insights into the distribution of peptidases and proteolytic capacity among Prevotella and paraprevotella species. Microbiol. Spectr. 2022 10 2 e02185 e21 10.1128/spectrum.02185‑21 35377228
    [Google Scholar]
  105. Sangineto M. Grander C. Grabherr F. Recovery of Bacteroides thetaiotaomicron ameliorates hepatic steatosis in experimental alcohol-related liver disease. Gut Microbes 2022 14 1 2089006 10.1080/19490976.2022.2089006 35786161
    [Google Scholar]
  106. Charlet R. Danvic L.C. Sendid B. Nagnan-Le Meillour P. Jawhara S. Oleic acid and palmitic acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii exhibit anti-inflammatory and antifungal properties. Microorganisms 2022 10 9 1803 10.3390/microorganisms10091803 36144406
    [Google Scholar]
  107. Shon H.J. Kim Y.M. Kim K.S. Protective role of colitis in inflammatory arthritis via propionate-producing Bacteroides in the gut. Front. Immunol. 2023 14 1064900 10.3389/fimmu.2023.1064900 36793721
    [Google Scholar]
  108. Wu Q. Chen H. Zhang F. Cysteamine supplementation in vitro remarkably promoted rumen fermentation efficiency towards propionate production via Prevotella enrichment and enhancing antioxidant capacity. Antioxidants 2022 11 11 2233 10.3390/antiox11112233 36421419
    [Google Scholar]
  109. Yoshida H. Ishii M. Akagawa M. Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Arch. Biochem. Biophys. 2019 672 108057 10.1016/j.abb.2019.07.022 31356781
    [Google Scholar]
  110. Wang D. Liu C.D. Tian M.L. Propionate promotes intestinal lipolysis and metabolic benefits via AMPK/LSD1 pathway in mice. J. Endocrinol. 2019 243 3 187 197 10.1530/JOE‑19‑0188 31505463
    [Google Scholar]
  111. Zhou B. Dong C. Zhao B. Bacteroides fragilis participates in the therapeutic effect of methotrexate on arthritis through metabolite regulation. Front. Microbiol. 2022 13 1015130 10.3389/fmicb.2022.1015130 36590441
    [Google Scholar]
  112. Chen L. Jiang Q. Lu H. Antidiabetic effect of sciadonic acid on type 2 diabetic mice through activating the PI3K-AKT signaling pathway and altering intestinal flora. Front. Nutr. 2022 9 1053348 10.3389/fnut.2022.1053348 36618687
    [Google Scholar]
  113. Gulhane P. Singh S. MicroRNA‐520c‐3p impacts sphingolipid metabolism mediating PI3K/AKT signaling in NSCLC: Systems perspective. J. Cell. Biochem. 2022 123 11 1827 1840 10.1002/jcb.30319 35977046
    [Google Scholar]
  114. Neumann S. Grosse K. Sourjik V. Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc. Natl. Acad. Sci. USA 2012 109 30 12159 12164 10.1073/pnas.1205307109 22778402
    [Google Scholar]
  115. Kang D. Ham H.I. Lee S.H. Functional dissection of the phosphotransferase system provides insight into the prevalence of Faecalibacterium prausnitzii in the host intestinal environment. Environ. Microbiol. 2021 23 8 4726 4740 10.1111/1462‑2920.15681 34296500
    [Google Scholar]
  116. Wu Y. Bai Y. Zhang D. Pleiotropic regulation of a glucose-specific PTS in Clostridium acetobutylicum for high-efficient butanol production from corn stover without detoxification. Biotechnol. Biofuels 2019 12 1 264 10.1186/s13068‑019‑1604‑7 31709013
    [Google Scholar]
  117. Zhang K. Jiang D. Liebl W. Confirmation of glucose transporters through targeted mutagenesis and transcriptional analysis in clostridium acetobutylicum. Fermentation 2023 9 1 64 10.3390/fermentation9010064
    [Google Scholar]
  118. Ye K. Li P. Gu Q. Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics 2020 112 5 3142 3149 10.1016/j.ygeno.2020.05.015 32450257
    [Google Scholar]
  119. Magoch M. Nogly P. Grudnik P. Crystal structure of mannose specific IIA subunit of phosphotransferase system from Streptococcus pneumoniae. Molecules 2020 25 20 4633 10.3390/molecules25204633 33053673
    [Google Scholar]
  120. Qu H. Zong L. Sang J. Effect of Lactobacillus rhamnosus hsryfm 1301 fermented milk on lipid metabolism disorders in high-fat-diet rats. Nutrients 2022 14 22 4850 10.3390/nu14224850 36432537
    [Google Scholar]
  121. Ariyoshi T. Hagihara M. Tomono S. Clostridium butyricum MIYAIRI 588 modifies bacterial composition under antibiotic-induced dysbiosis for the activation of interactions via lipid metabolism between the gut microbiome and the host. Biomedicines 2021 9 8 1065 10.3390/biomedicines9081065 34440269
    [Google Scholar]
  122. Lannes R. Olsson-Francis K. Lopez P. Bapteste E. Carbon fixation by marine ultrasmall prokaryotes. Genome Biol. Evol. 2019 11 4 1166 1177 10.1093/gbe/evz050 30903144
    [Google Scholar]
  123. Bengelsdorf F.R. Straub M. Dürre P. Bacterial synthesis gas (syngas) fermentation. Environ. Technol. 2013 34 13-14 1639 1651 10.1080/09593330.2013.827747 24350425
    [Google Scholar]
  124. Brown S.D. Nagaraju S. Utturkar S. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol. Biofuels 2014 7 1 40 10.1186/1754‑6834‑7‑40 24655715
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232367064250630202337
Loading
/content/journals/cgt/10.2174/0115665232367064250630202337
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: disease pathology ; ecosystem ; machine learning ; gut dysbiosis ; feature selection ; Gut bacteria
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test