Skip to content
2000
image of The Role of Myeloid-derived Suppressor Cells and Non-tumor Cells in the Glioma Microenvironment

Abstract

Glioma, the most common primary brain tumor, is associated with a poor prognosis largely due to the immunosuppressive environment it creates, which allows it to evade immune surveillance. A key component of this immunosuppressive system is myeloid-derived suppressor cells (MDSCs), a heterogeneous population of early myeloid progenitor and precursor cells. Despite their phenotypic and functional diversity, MDSCs consistently exhibit strong immunosuppressive properties. In glioma tissues, MDSCs are widely infiltrated and play a crucial role in suppressing immune responses within the tumor microenvironment, thereby significantly diminishing the efficacy of immune-based therapies. This review explores the phenotypic characteristics of MDSCs in the glioma microenvironment and their mechanisms of action in promoting glioma progression, providing valuable insights into the pathogenesis of glioma and potential comprehensive treatment strategies. In addition to MDSCs, the glioma microenvironment is composed of various non-tumor cells, including endothelial cells (ECs), pericytes, microglia/macrophages, mesenchymal cells, astrocytes, and neurons, as well as soluble cytokines. These non-tumor cellular components interact with glioma cells to form a complex ecosystem that regulates the malignant progression of the tumor. Advances in understanding the glioma microenvironment have opened avenues for developing novel therapies that target these non-tumor cells, potentially improving the prognosis for glioma patients. This review also summarizes the relationship between glioma cells and various non-tumor cells, highlights relevant translational studies, and discusses the future challenges and opportunities in glioma treatment based on the tumor microenvironment.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232365123250325041507
2025-04-08
2025-09-13
Loading full text...

Full text loading...

References

  1. Ostrom Q.T. Cioffi G. Gittleman H. Patil N. Waite K. Kruchko C. Barnholtz-Sloan J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-oncol. 2019 21 Suppl. 5 v1 v100 10.1093/neuonc/noz150 31675094
    [Google Scholar]
  2. Carter T.C. Medina-Flores R. Lawler B.E. Glioblastoma treatment with temozolomide and bevacizumab and overall survival in a rural tertiary healthcare practice. BioMed Res. Int. 2018 2018 1 10 10.1155/2018/6204676 30687753
    [Google Scholar]
  3. Carter T. Valenzuela R.K. Yerukala Sathipati S. Medina-Flores R. Gene signatures associated with prognosis and chemotherapy resistance in glioblastoma treated with temozolomide. Front. Genet. 2023 14 1320789 10.3389/fgene.2023.1320789 38259614
    [Google Scholar]
  4. Louis D.N. Perry A. Wesseling P. Brat D.J. Cree I.A. Figarella-Branger D. Hawkins C. Ng H.K. Pfister S.M. Reifenberger G. Soffietti R. von Deimling A. Ellison D.W. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-oncol. 2021 23 8 1231 1251 10.1093/neuonc/noab106 34185076
    [Google Scholar]
  5. Golán-Cancela I. Caja L. The TGF-β family in glioblastoma. Int. J. Mol. Sci. 2024 25 2 1067 10.3390/ijms25021067 38256140
    [Google Scholar]
  6. Yalcin F. Haneke H. Efe I.E. Kuhrt L.D. Motta E. Nickl B. Flüh C. Synowitz M. Dzaye O. Bader M. Kettenmann H. Tumor associated microglia/macrophages utilize GPNMB to promote tumor growth and alter immune cell infiltration in glioma. Acta Neuropathol. Commun. 2024 12 1 50 10.1186/s40478‑024‑01754‑7 38566120
    [Google Scholar]
  7. Sielska M. Przanowski P. Wylot B. Gabrusiewicz K. Maleszewska M. Kijewska M. Zawadzka M. Kucharska J. Vinnakota K. Kettenmann H. Kotulska K. Grajkowska W. Kaminska B. Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J. Pathol. 2013 230 3 310 321 10.1002/path.4192 23520016
    [Google Scholar]
  8. Shah N.K. Xu P. Shan Y. Chen C. Xie M. Li Y. Meng Y. Shu C. Dong S. He J. MDSCs in pregnancy and pregnancy-related complications: An update. Biol. Reprod. 2023 108 3 382 392 10.1093/biolre/ioac213 36504233
    [Google Scholar]
  9. Gielen P.R. Schulte B.M. Kers-Rebel E.D. Verrijp K. Petersen-Baltussen H.M.J.M. ter Laan M. Wesseling P. Adema G.J. Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J. Neuropathol. Exp. Neurol. 2015 74 5 390 400 10.1097/NEN.0000000000000183 25853692
    [Google Scholar]
  10. Gielen P.R. Schulte B.M. Kers-Rebel E.D. Verrijp K. Bossman S.A.J.F.H. ter Laan M. Wesseling P. Adema G.J. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neuro-oncol. 2016 18 9 1253 1264 10.1093/neuonc/now034 27006175
    [Google Scholar]
  11. du Chatinier A. Velilla I.Q. Meel M.H. Hoving E.W. Hulleman E. Metselaar D.S. Microglia in pediatric brain tumors: The missing link to successful immunotherapy. Cell Rep. Med. 2023 4 11 101246 10.1016/j.xcrm.2023.101246 37924816
    [Google Scholar]
  12. Rudolph B.M. Loquai C. Gerwe A. Bacher N. Steinbrink K. Grabbe S. Tuettenberg A. Increased frequencies of CD 11b + CD 33 + CD 14 + HLA ‐ DR low myeloid‐derived suppressor cells are an early event in melanoma patients. Exp. Dermatol. 2014 23 3 202 204 10.1111/exd.12336 24495013
    [Google Scholar]
  13. Yang Q. Li X. Chen H. Cao Y. Xiao Q. He Y. Wei J. Zhou J. IRF7 regulates the development of granulocytic myeloid-derived suppressor cells through S100A9 transrepression in cancer. Oncogene 2017 36 21 2969 2980 10.1038/onc.2016.448 28092673
    [Google Scholar]
  14. Salvato I. Marchini A. Immunotherapeutic strategies for the treatment of glioblastoma: Current challenges and future perspectives. Cancers 2024 16 7 1276 10.3390/cancers16071276 38610954
    [Google Scholar]
  15. Maes W. Verschuere T. Van Hoylandt A. Boon L. Van Gool S. Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain. Clin. Dev. Immunol. 2013 2013 1 6 10.1155/2013/952469 23710206
    [Google Scholar]
  16. Sampson J.H. Schmittling R.J. Archer G.E. Congdon K.L. Nair S.K. Reap E.A. Desjardins A. Friedman A.H. Friedman H.S. Herndon J.E. II Coan A. McLendon R.E. Reardon D.A. Vredenburgh J.J. Bigner D.D. Mitchell D.A. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One 2012 7 2 e31046 10.1371/journal.pone.0031046 22383993
    [Google Scholar]
  17. Deng Y. Chen Q. Wan C. Sun Y. Huang F. Hu Y. Yang K. Microglia and macrophage metabolism: A regulator of cerebral gliomas. Cell Biosci. 2024 14 1 49 10.1186/s13578‑024‑01231‑7 38632627
    [Google Scholar]
  18. Wang F. Cathcart S.J. DiMaio D.J. Zhao N. Chen J. Aizenberg M.R. Shonka N.A. Lin C. Zhang C. Comparison of tumor immune environment between newly diagnosed and recurrent glioblastoma including matched patients. J. Neurooncol. 2022 159 1 163 175 10.1007/s11060‑022‑04053‑0 35754074
    [Google Scholar]
  19. Baker G.J. Chockley P. Yadav V.N. Doherty R. Ritt M. Sivaramakrishnan S. Castro M.G. Lowenstein P.R. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res. 2014 74 18 5079 5090 10.1158/0008‑5472.CAN‑14‑1203 25038230
    [Google Scholar]
  20. Łaszczych D. Czernicka A. Gostomczyk K. Szylberg Ł. Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma—an update on the state of the art and future perspectives. Med. Oncol. 2024 41 8 187 10.1007/s12032‑024‑02434‑1 38918274
    [Google Scholar]
  21. Yi D. Xiang W. Zhang Q. Cen Y. Su Q. Zhang F. Lu Y. Zhao H. Fu P. Human glioblastoma-derived mesenchymal stem cell to pericytes transition and angiogenic capacity in glioblastoma microenvironment. Cell. Physiol. Biochem. 2018 46 1 279 290 10.1159/000488429 29590646
    [Google Scholar]
  22. Numasaki M. Fukushi J. Ono M. Narula S.K. Zavodny P.J. Kudo T. Robbins P.D. Tahara H. Lotze M.T. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003 101 7 2620 2627 10.1182/blood‑2002‑05‑1461 12411307
    [Google Scholar]
  23. Tumangelova-Yuzeir K. Naydenov E. Ivanova-Todorova E. Krasimirova E. Vasilev G. Nachev S. Kyurkchiev D. Mesenchymal stem cells derived and cultured from glioblastoma multiforme increase Tregs, Downregulate Th17, and induce the tolerogenic phenotype of monocyte-derived cells. Stem Cells Int. 2019 2019 1 15 10.1155/2019/6904638 31191680
    [Google Scholar]
  24. Khan M.S.S. Majid A.M.S.A. Iqbal M.A. Majid A.S.A. Al-Mansoub M. Haque R.S.M.A. Designing the angiogenic inhibitor for brain tumor via disruption of VEGF and IL17A expression. Eur. J. Pharm. Sci. 2016 93 304 318 10.1016/j.ejps.2016.08.032 27552907
    [Google Scholar]
  25. Darvishi B. Majidzadeh-A K. Ghadirian R. Mosayebzadeh M. Farahmand L. Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci. 2019 217 34 40 10.1016/j.lfs.2018.11.033 30472294
    [Google Scholar]
  26. Knochelmann H.M. Dwyer C.J. Bailey S.R. Amaya S.M. Elston D.M. Mazza-McCrann J.M. Paulos C.M. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol. 2018 15 5 458 469 10.1038/s41423‑018‑0004‑4 29563615
    [Google Scholar]
  27. Ruiz de Morales J.M.G. Puig L. Daudén E. Cañete J.D. Pablos J.L. Martín A.O. Juanatey C.G. Adán A. Montalbán X. Borruel N. Ortí G. Holgado-Martín E. García-Vidal C. Vizcaya-Morales C. Martín-Vázquez V. González-Gay M.Á. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun. Rev. 2020 19 1 102429 10.1016/j.autrev.2019.102429 31734402
    [Google Scholar]
  28. Khan M.S.S. Asif M. Basheer M.K.A. Kang C.W. Al-Suede F.S. Ein O.C. Tang J. Majid A.S.A. Majid A.M.S.A. Treatment of novel IL17A inhibitor in glioblastoma implementing 3rd generation co-culture cell line and patient-derived tumor model. Eur. J. Pharmacol. 2017 803 24 38 10.1016/j.ejphar.2017.03.031 28322833
    [Google Scholar]
  29. Kehlen A. Thiele K. Riemann D. Rainov N. Langner J. Interleukin-17 stimulates the expression of IκBα mRNA and the secretion of IL-6 and IL-8 in glioblastoma cell lines. J. Neuroimmunol. 1999 101 1 1 6 10.1016/S0165‑5728(99)00111‑3 10580807
    [Google Scholar]
  30. Tan J. Liu H. Huang M. Li N. Tang S. Meng J. Tang S. Zhou H. Kijlstra A. Yang P. Hou S. Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation. Cell Death Dis. 2020 11 8 697 10.1038/s41419‑020‑02891‑2 32829384
    [Google Scholar]
  31. Zheng Q. Diao S. Wang Q. Zhu C. Sun X. Yin B. Zhang X. Meng X. Wang B. IL ‐17A promotes cell migration and invasion of glioblastoma cells via activation of PI 3K/ AKT signalling pathway. J. Cell. Mol. Med. 2019 23 1 357 369 10.1111/jcmm.13938 30353649
    [Google Scholar]
  32. Sun L. Wang L. Moore B.B. Zhang S. Xiao P. Decker A.M. Wang H.L. IL-17: Balancing protective immunity and pathogenesis. J. Immunol. Res. 2023 2023 1 9 10.1155/2023/3360310 37600066
    [Google Scholar]
  33. Anvar M.T. Rashidan K. Arsam N. Rasouli-Saravani A. Yadegari H. Ahmadi A. Asgari Z. Vanan A.G. Ghorbaninezhad F. Tahmasebi S. Th17 cell function in cancers: Immunosuppressive agents or anti-tumor allies? Cancer Cell Int. 2024 24 1 355 10.1186/s12935‑024‑03525‑9 39465401
    [Google Scholar]
  34. Parajuli P. Mittal S. Role of IL-17 in glioma progression. J. Spine Neurosurg. 2013 Suppl. 1 S1 S004 10.4172/2325‑9701.S1‑004 25419530
    [Google Scholar]
  35. Panek W.K. Toedebusch R.G. Mclaughlin B.E. Dickinson P.J. Van Dyke J.E. Woolard K.D. Berens M.E. Lesniak M.S. Sturges B.K. Vernau K.M. Li C. Miska J. Toedebusch C.M. The CCL2-CCR4 axis promotes regulatory T cell trafficking to canine glioma tissues. J. Neurooncol. 2024 169 3 647 658 10.1007/s11060‑024‑04766‑4 39046599
    [Google Scholar]
  36. Mangani D. Weller M. Roth P. The network of immunosuppressive pathways in glioblastoma. Biochem. Pharmacol. 2017 130 1 9 10.1016/j.bcp.2016.12.011 28017775
    [Google Scholar]
  37. Qi L. Yu H. Zhang Y. Zhao D. Lv P. Zhong Y. Xu Y. IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma. Oncotarget 2016 7 44 71673 71685 10.18632/oncotarget.12317 27765933
    [Google Scholar]
  38. Rodrigues J.C. Gonzalez G.C. Zhang L. Ibrahim G. Kelly J.J. Gustafson M.P. Lin Y. Dietz A.B. Forsyth P.A. Yong V.W. Parney I.F. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-oncol. 2010 12 4 351 365 10.1093/neuonc/nop023 20308313
    [Google Scholar]
  39. Paladugu M. Thakur A. Lum L.G. Mittal S. Parajuli P. Generation and immunologic functions of Th17 cells in malignant gliomas. Cancer Immunol. Immunother. 2013 62 1 75 86 10.1007/s00262‑012‑1312‑7 22752645
    [Google Scholar]
  40. Alban T.J. Bayik D. Otvos B. Rabljenovic A. Leng L. Jia-Shiun L. Roversi G. Lauko A. Momin A.A. Mohammadi A.M. Peereboom D.M. Ahluwalia M.S. Matsuda K. Yun K. Bucala R. Vogelbaum M.A. Lathia J.D. Glioblastoma myeloid-derived suppressor cell subsets express differential macrophage migration inhibitory factor receptor profiles that can be targeted to reduce immune suppression. Front. Immunol. 2020 11 1191 10.3389/fimmu.2020.01191 32625208
    [Google Scholar]
  41. Lv K. Du X. Chen C. Yu Y. Research hotspots and trend of glioblastoma immunotherapy: A bibliometric and visual analysis. Front. Oncol. 2024 14 1361530 10.3389/fonc.2024.1361530 39175478
    [Google Scholar]
  42. Mahajan S. Schmidt M.H.H. Schumann U. The glioma immune landscape: A double-edged sword for treatment regimens. Cancers 2023 15 7 2024 10.3390/cancers15072024 37046685
    [Google Scholar]
  43. Aarts C.E.M. Kuijpers T.W. Neutrophils as myeloid‐derived suppressor cells. Eur. J. Clin. Invest. 2018 48 S2 Suppl. 2 e12989 10.1111/eci.12989 29956819
    [Google Scholar]
  44. Zhang Z. Peng Y. Peng X. Xiao D. Shi Y. Tao Y. Effects of radiation therapy on tumor microenvironment: An updated review. Chin. Med. J. 2023 136 23 2802 2811 10.1097/CM9.0000000000002535 37442768
    [Google Scholar]
  45. Veglia F. Sanseviero E. Gabrilovich D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 2021 21 8 485 498 10.1038/s41577‑020‑00490‑y 33526920
    [Google Scholar]
  46. Nepal M.R. Shah S. Kang K.T. Dual roles of myeloid-derived suppressor cells in various diseases: A review. Arch. Pharm. Res. 2024 47 7 597 616 10.1007/s12272‑024‑01504‑2 39008186
    [Google Scholar]
  47. Kumar R. de Mooij T. Peterson T.E. Kaptzan T. Johnson A.J. Daniels D.J. Parney I.F. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane. PLoS One 2017 12 6 e0179012 10.1371/journal.pone.0179012 28666020
    [Google Scholar]
  48. Xu H. Zhao X. Luo J. Combination of tumor antigen drainage and immune activation to promote a cancer-immunity cycle against glioblastoma. Cell. Mol. Life Sci. 2024 81 1 275 10.1007/s00018‑024‑05300‑5 38907858
    [Google Scholar]
  49. Dubinski D. Wölfer J. Hasselblatt M. Schneider-Hohendorf T. Bogdahn U. Stummer W. Wiendl H. Grauer O.M. CD4 + T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro-oncol. 2016 18 6 807 818 10.1093/neuonc/nov280 26578623
    [Google Scholar]
  50. Raychaudhuri B. Rayman P. Huang P. Grabowski M. Hambardzumyan D. Finke J.H. Vogelbaum M.A. Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. J. Neurooncol. 2015 122 2 293 301 10.1007/s11060‑015‑1720‑6 25579983
    [Google Scholar]
  51. Locarno C.V. Simonelli M. Carenza C. Capucetti A. Stanzani E. Lorenzi E. Persico P. Della Bella S. Passoni L. Mavilio D. Bonecchi R. Locati M. Savino B. Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology 2020 225 1 151853 10.1016/j.imbio.2019.10.002 31703822
    [Google Scholar]
  52. Fujita M. Kohanbash G. Fellows-Mayle W. Hamilton R.L. Komohara Y. Decker S.A. Ohlfest J.R. Okada H. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011 71 7 2664 2674 10.1158/0008‑5472.CAN‑10‑3055 21324923
    [Google Scholar]
  53. Lin H. Liu C. Hu A. Zhang D. Yang H. Mao Y. Understanding the immunosuppressive microenvironment of glioma: Mechanistic insights and clinical perspectives. J. Hematol. Oncol. 2024 17 1 31 10.1186/s13045‑024‑01544‑7 38720342
    [Google Scholar]
  54. Zhang Y. Luo F. Li A. Qian J. Yao Z. Feng X. Chu Y. Systemic injection of TLR1/2 agonist improves adoptive antigen-specific T cell therapy in glioma-bearing mice. Clin. Immunol. 2014 154 1 26 36 10.1016/j.clim.2014.06.004 24928324
    [Google Scholar]
  55. Zhu X. Fujita M. Snyder L.A. Okada H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J. Neurooncol. 2011 104 1 83 92 10.1007/s11060‑010‑0473‑5 21116835
    [Google Scholar]
  56. Kamran N. Kadiyala P. Saxena M. Candolfi M. Li Y. Moreno-Ayala M.A. Raja N. Shah D. Lowenstein P.R. Castro M.G. Immunosuppressive myeloid cells’ blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy. Mol. Ther. 2017 25 1 232 248 10.1016/j.ymthe.2016.10.003 28129117
    [Google Scholar]
  57. Lootens T. Roman B.I. Stevens C.V. De Wever O. Raedt R. Glioblastoma-associated mesenchymal stem/stromal cells and cancer-associated fibroblasts: Partners in crime? Int. J. Mol. Sci. 2024 25 4 2285 10.3390/ijms25042285 38396962
    [Google Scholar]
  58. Shi T. Zhu J. Zhang X. Mao X. The role of hypoxia and cancer stem cells in development of glioblastoma. Cancers 2023 15 9 2613 10.3390/cancers15092613 37174078
    [Google Scholar]
  59. Larionov A. Hammer C.M. Fiedler K. Filgueira L. Dynamics of endothelial cell diversity and plasticity in health and disease. Cells 2024 13 15 1276 10.3390/cells13151276 39120307
    [Google Scholar]
  60. Carlson J.C. Cantu Gutierrez M. Lozzi B. Huang-Hobbs E. Turner W.D. Tepe B. Zhang Y. Herman A.M. Rao G. Creighton C.J. Wythe J.D. Deneen B. Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro-oncol. 2021 23 6 932 944 10.1093/neuonc/noaa297 33367832
    [Google Scholar]
  61. De Fazio E. Pittarello M. Gans A. Ghosh B. Slika H. Alimonti P. Tyler B. Intrinsic and microenvironmental drivers of glioblastoma invasion. Int. J. Mol. Sci. 2024 25 5 2563 10.3390/ijms25052563 38473812
    [Google Scholar]
  62. Wu J. Al-Zahrani A. Beylerli O. Sufianov R. Talybov R. Meshcheryakova S. Sufianova G. Gareev I. Sufianov A. Circulating miRNAs as diagnostic and prognostic biomarkers in high-grade gliomas. Front. Oncol. 2022 12 898537 10.3389/fonc.2022.898537 35646622
    [Google Scholar]
  63. Sloan A.R. Silver D.J. Kint S. Gallo M. Lathia J.D. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro-oncol. 2024 26 5 785 795 10.1093/neuonc/noae011 38394444
    [Google Scholar]
  64. Wang Z. Yuan Y. Ji X. Xiao X. Li Z. Yi X. Zhu Y. Guo T. Wang Y. Chen L. Liu Y. The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis. Cancer Lett. 2021 513 1 13 10.1016/j.canlet.2021.05.002 34010715
    [Google Scholar]
  65. Buzatu I. Tache D.E. Manea Carneluti E.V. Zlatian O. ELTD1 review: New regulator of angiogenesis in glioma. Curr. Health Sci. J. 2023 49 4 495 502 10.12865/CHSJ.49.04.03 38559823
    [Google Scholar]
  66. Armulik A. Genové G. Mäe M. Nisancioglu M.H. Wallgard E. Niaudet C. He L. Norlin J. Lindblom P. Strittmatter K. Johansson B.R. Betsholtz C. Pericytes regulate the blood–brain barrier. Nature 2010 468 7323 557 561 10.1038/nature09522 20944627
    [Google Scholar]
  67. Girolamo F. Errede M. Bizzoca A. Virgintino D. Ribatti D. Central nervous system pericytes contribute to health and disease. Cells 2022 11 10 1707 10.3390/cells11101707 35626743
    [Google Scholar]
  68. Moro M. Balestrero F.C. Grolla A.A. Pericytes: Jack-of-all-trades in cancer-related inflammation. Front. Pharmacol. 2024 15 1426033 10.3389/fphar.2024.1426033 39086395
    [Google Scholar]
  69. You W.K. Yotsumoto F. Sakimura K. Adams R.H. Stallcup W.B. NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function. Angiogenesis 2014 17 1 61 76 10.1007/s10456‑013‑9378‑1 23925489
    [Google Scholar]
  70. Guerra D.A.P. Paiva A.E. Sena I.F.G. Azevedo P.O. Silva W.N. Mintz A. Birbrair A. Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis 2018 21 4 667 675 10.1007/s10456‑018‑9621‑x 29761249
    [Google Scholar]
  71. Jhaveri N. Chen T.C. Hofman F.M. Tumor vasculature and glioma stem cells: Contributions to glioma progression. Cancer Lett. 2016 380 2 545 551 10.1016/j.canlet.2014.12.028 25527451
    [Google Scholar]
  72. Salinas M.D. Valdor R. Chaperone-mediated autophagy in pericytes: A key target for the development of new treatments against glioblastoma progression. Int. J. Mol. Sci. 2022 23 16 8886 10.3390/ijms23168886 36012149
    [Google Scholar]
  73. Muthukrishnan S.D. Qi H. Wang D. Elahi L. Pham A. Alvarado A.G. Li T. Gao F. Kawaguchi R. Lai A. Kornblum H.I. Low- and high-grade glioma-associated vascular cells differentially regulate tumor growth. Mol. Cancer Res. 2024 22 7 656 667 10.1158/1541‑7786.MCR‑23‑1069 38441553
    [Google Scholar]
  74. Zhang X.N. Yang K.D. Chen C. He Z.C. Wang Q.H. Feng H. Lv S.Q. Wang Y. Mao M. Liu Q. Tan Y.Y. Wang W.Y. Li T.R. Che L.R. Qin Z.Y. Wu L.X. Luo M. Luo C.H. Liu Y.Q. Yin W. Wang C. Guo H.T. Li Q.R. Wang B. Chen W. Wang S. Shi Y. Bian X.W. Ping Y.F. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Res. 2021 31 10 1072 1087 10.1038/s41422‑021‑00528‑3 34239070
    [Google Scholar]
  75. Waisman A. Johann L. Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J. Mol. Med. 2018 96 12 1279 1292 10.1007/s00109‑018‑1709‑7 30386908
    [Google Scholar]
  76. Hambardzumyan D. Gutmann D.H. Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 2016 19 1 20 27 10.1038/nn.4185 26713745
    [Google Scholar]
  77. Prinz M. Masuda T. Wheeler M.A. Quintana F.J. Microglia and central nervous system–associated macrophages—from origin to disease modulation. Annu. Rev. Immunol. 2021 39 1 251 277 10.1146/annurev‑immunol‑093019‑110159 33556248
    [Google Scholar]
  78. Li M.Y. Ye W. Luo K.W. Immunotherapies targeting tumor-associated macrophages (TAMs) in cancer. Pharmaceutics 2024 16 7 865 10.3390/pharmaceutics16070865 39065562
    [Google Scholar]
  79. Ye W. Liu Z. Liu F. Luo C. Heme Oxygenase-1 predicts risk stratification and immunotherapy efficacy in lower grade gliomas. Front. Cell Dev. Biol. 2021 9 760800 10.3389/fcell.2021.760800 34858984
    [Google Scholar]
  80. Li J. Zhang Y. Liang C. Yan X. Hui X. Liu Q. Advancing precision medicine in gliomas through single-cell sequencing: Unveiling the complex tumor microenvironment. Front. Cell Dev. Biol. 2024 12 1396836 10.3389/fcell.2024.1396836 39156969
    [Google Scholar]
  81. Rodgers L.T. Villano J.L. Hartz A.M.S. Bauer B. Glioblastoma standard of care: Effects on tumor evolution and reverse translation in preclinical models. Cancers 2024 16 15 2638 10.3390/cancers16152638 39123366
    [Google Scholar]
  82. Idu A.A. Albu Kaya M.G. Rău I. Radu N. Dinu-Pîrvu C.E. Ghica M.V. Novel collagen membrane formulations with irinotecan or minocycline for potential application in brain cancer. Materials 2024 17 14 3510 10.3390/ma17143510 39063802
    [Google Scholar]
  83. Xue S. Hu M. Iyer V. Yu J. Blocking the PD-1/PD-L1 pathway in glioma: A potential new treatment strategy. J. Hematol. Oncol. 2017 10 1 81 10.1186/s13045‑017‑0455‑6 28388955
    [Google Scholar]
  84. Sheeler C. Rosa J.G. Ferro A. McAdams B. Borgenheimer E. Cvetanovic M. Glia in neurodegeneration: The housekeeper, the defender and the perpetrator. Int. J. Mol. Sci. 2020 21 23 9188 10.3390/ijms21239188 33276471
    [Google Scholar]
  85. Lu E. Gareev I. Yuan C. Liang Y. Sun J. Chen X. Beylerli O. Sufianov A. Zhao S. Yang G. The mechanisms of current platinum anticancer drug resistance in the glioma. Curr. Pharm. Des. 2022 28 23 1863 1869 10.2174/1381612828666220607105746 35674307
    [Google Scholar]
  86. Wang Q.W. Sun L.H. Zhang Y. Wang Z. Zhao Z. Wang Z.L. Wang K.Y. Li G.Z. Xu J.B. Ren C.Y. Ma W.P. Wang H.J. Li S.W. Zhu Y.J. Jiang T. Bao Z.S. MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas. J. Immunother. Cancer 2021 9 10 e002451 10.1136/jitc‑2021‑002451 34667077
    [Google Scholar]
  87. Díaz-Castro B. Robel S. Mishra A. Astrocyte endfeet in brain function and pathology: Open questions. Annu. Rev. Neurosci. 2023 46 1 101 121 10.1146/annurev‑neuro‑091922‑031205 36854317
    [Google Scholar]
  88. Jensen C.J. Massie A. De Keyser J. Immune players in the CNS: The astrocyte. J. Neuroimmune Pharmacol. 2013 8 4 824 839 10.1007/s11481‑013‑9480‑6 23821340
    [Google Scholar]
  89. Marchetti D. Li J. Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 2000 60 17 4767 4770 10987284
    [Google Scholar]
  90. Catalano M. Limatola C. Trettel F. Non-neoplastic astrocytes: Key players for brain tumor progression. Front. Cell. Neurosci. 2024 17 1352130 10.3389/fncel.2023.1352130 38293652
    [Google Scholar]
  91. Lin Q. Liu Z. Ling F. Xu G. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication. Mol. Med. Rep. 2016 13 2 1329 1335 10.3892/mmr.2015.4680 26676970
    [Google Scholar]
  92. He X. Guo Y. Yu C. Zhang H. Wang S. Epithelial-mesenchymal transition is the main way in which glioma-associated microglia/macrophages promote glioma progression. Front. Immunol. 2023 14 1097880 10.3389/fimmu.2023.1097880 36969175
    [Google Scholar]
  93. Beylerli O. Gareev I. Sufianov A. Ilyasova T. Zhang F. The role of microRNA in the pathogenesis of glial brain tumors. Noncoding RNA Res. 2022 7 2 71 76 10.1016/j.ncrna.2022.02.005 35330864
    [Google Scholar]
  94. Xu C. Yuan X. Hou P. Li Z. Wang C. Fang C. Tan Y. Development of glioblastoma organoids and their applications in personalized therapy. Cancer Biol. Med. 2023 20 5 353 368 10.20892/j.issn.2095‑3941.2023.0061 37283493
    [Google Scholar]
  95. Surget A. Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: A mechanistic and integrative perspective. Mol. Psychiatry 2022 27 1 403 421 10.1038/s41380‑021‑01136‑8 33990771
    [Google Scholar]
  96. Venkatesh H.S. Tam L.T. Woo P.J. Lennon J. Nagaraja S. Gillespie S.M. Ni J. Duveau D.Y. Morris P.J. Zhao J.J. Thomas C.J. Monje M. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 2017 549 7673 533 537 10.1038/nature24014 28959975
    [Google Scholar]
  97. Qin L. Liu Z. Guo S. Han Y. Wang X. Ren W. Chen J. Zhen H. Nie C. Xing K.K. Chen T. Südhof T.C. Sun Y. Zhang B. Astrocytic Neuroligin-3 influences gene expression and social behavior but is dispensable for synapse number. Mol. Psychiatry 2024 30 1 84 96 10.1038/s41380‑024‑02659‑6 39003414
    [Google Scholar]
  98. Drexler R. Khatri R. Sauvigny T. Mohme M. Maire C.L. Ryba A. Zghaibeh Y. Dührsen L. Salviano-Silva A. Lamszus K. Westphal M. Gempt J. Wefers A.K. Neumann J.E. Bode H. Hausmann F. Huber T.B. Bonn S. Jütten K. Delev D. Weber K.J. Harter P.N. Onken J. Vajkoczy P. Capper D. Wiestler B. Weller M. Snijder B. Buck A. Weiss T. Göller P.C. Sahm F. Menstel J.A. Zimmer D.N. Keough M.B. Ni L. Monje M. Silverbush D. Hovestadt V. Suvà M.L. Krishna S. Hervey-Jumper S.L. Schüller U. Heiland D.H. Hänzelmann S. Ricklefs F.L. A prognostic neural epigenetic signature in high-grade glioma. Nat. Med. 2024 30 6 1622 1635 10.1038/s41591‑024‑02969‑w 38760585
    [Google Scholar]
  99. Taylor K.R. Barron T. Hui A. Spitzer A. Yalçin B. Ivec A.E. Geraghty A.C. Hartmann G.G. Arzt M. Gillespie S.M. Kim Y.S. Maleki Jahan S. Zhang H. Shamardani K. Su M. Ni L. Du P.P. Woo P.J. Silva-Torres A. Venkatesh H.S. Mancusi R. Ponnuswami A. Mulinyawe S. Keough M.B. Chau I. Aziz-Bose R. Tirosh I. Suvà M.L. Monje M. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 2023 623 7986 366 374 10.1038/s41586‑023‑06678‑1 37914930
    [Google Scholar]
  100. Biffi G. Tuveson D.A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 2021 101 1 147 176 10.1152/physrev.00048.2019 32466724
    [Google Scholar]
  101. Shu B. Xie J.L. Xu Y.B. Yu J.X. Shi Y. Liu J. Wang P. Liu X.S. Qi S.H. Directed differentiation of skin-derived precursors into fibroblast-like cells. Int. J. Clin. Exp. Pathol. 2014 7 4 1478 1486 24817943
    [Google Scholar]
  102. Park J. Lee D. Shim J.K. Yoon S.J. Moon J.H. Kim E.H. Chang J.H. Lee S.J. Kang S.G. Mesenchymal stem-like cells derived from the ventricle more effectively enhance invasiveness of glioblastoma than those derived from the tumor. Yonsei Med. J. 2023 64 3 157 166 10.3349/ymj.2022.0430 36825341
    [Google Scholar]
  103. Ho I.A.W. Toh H.C. Ng W.H. Teo Y.L. Guo C.M. Hui K.M. Lam P.Y.P. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 2013 31 1 146 155 10.1002/stem.1247 23034897
    [Google Scholar]
  104. Santillán-Guaján S.M. Shahi M.H. Castresana J.S. Mesenchymal-stem-cell-based therapy against gliomas. Cells 2024 13 7 617 10.3390/cells13070617 38607056
    [Google Scholar]
  105. D’Alessio A. Proietti G. Lama G. Biamonte F. Lauriola L. Moscato U. Vescovi A. Mangiola A. Angelucci C. Sica G. Analysis of angiogenesis related factors in glioblastoma, peritumoral tissue and their derived cancer stem cells. Oncotarget 2016 7 48 78541 78556 10.18632/oncotarget.12398 27705944
    [Google Scholar]
  106. Zhang Q. Wang J. Zhang J. Liu F. Potential functions and therapeutic implications of glioma-resident mesenchymal stem cells. Cell Biol. Toxicol. 2023 39 3 853 866 10.1007/s10565‑023‑09808‑7 37138122
    [Google Scholar]
  107. Ahir B.K. Engelhard H.H. Lakka S.S. Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Mol. Neurobiol. 2020 57 5 2461 2478 10.1007/s12035‑020‑01892‑8 32152825
    [Google Scholar]
  108. Ribatti D. Annese T. Tamma R. Vascular co-option in resistance to anti-angiogenic therapy. Front. Oncol. 2023 13 1323350 10.3389/fonc.2023.1323350 38148844
    [Google Scholar]
  109. Khasraw M. Simeonovic M. Grommes C. Bevacizumab for the treatment of high-grade glioma. Expert Opin. Biol. Ther. 2012 12 8 1101 1111 10.1517/14712598.2012.694422 22663137
    [Google Scholar]
  110. Gareev I. Beylerli O. Liang Y. Xiang H. Liu C. Xu X. Yuan C. Ahmad A. Yang G. The role of microRNAs in therapeutic resistance of malignant primary brain tumors. Front. Cell Dev. Biol. 2021 9 740303 10.3389/fcell.2021.740303 34692698
    [Google Scholar]
  111. Gareev I. Beylerli O. Tamrazov R. Ilyasova T. Shumadalova A. Du W. Yang B. Methods of miRNA delivery and possibilities of their application in neuro-oncology. Noncoding RNA Res. 2023 8 4 661 674 10.1016/j.ncrna.2023.10.002 37860265
    [Google Scholar]
  112. Motevasseli M. Darvishi M. Khoshnevisan A. Zeinalizadeh M. Saffar H. Bayat S. Najafi A. Abbaspour M.J. Mamivand A. Olson S.B. Tabrizi M. Distinct tumor-TAM interactions in IDH-stratified glioma microenvironments unveiled by single-cell and spatial transcriptomics. Acta Neuropathol. Commun. 2024 12 1 133 10.1186/s40478‑024‑01837‑5 39148129
    [Google Scholar]
  113. Scherschinski L. Prem M. Kremenetskaia I. Tinhofer I. Vajkoczy P. Karbe A.G. Onken J.S. Regulation of the receptor tyrosine kinase AXL in response to therapy and its role in therapy resistance in glioblastoma. Int. J. Mol. Sci. 2022 23 2 982 10.3390/ijms23020982 35055167
    [Google Scholar]
  114. Yi M. Li T. Niu M. Zhang H. Wu Y. Wu K. Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct. Target. Ther. 2024 9 1 176 10.1038/s41392‑024‑01868‑3 39034318
    [Google Scholar]
  115. Stepanenko A.A. Sosnovtseva A.O. Valikhov M.P. Chernysheva A.A. Abramova O.V. Pavlov K.A. Chekhonin V.P. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front. Immunol. 2024 15 1326753 10.3389/fimmu.2024.1326753 38481999
    [Google Scholar]
  116. Rose S. Misharin A. Perlman H. A novel Ly6C/Ly6G‐based strategy to analyze the mouse splenic myeloid compartment. Cytometry A 2012 81A 4 343 350 10.1002/cyto.a.22012 22213571
    [Google Scholar]
  117. Kaminska B. Cyranowski S. Recent advances in understanding mechanisms of TGF beta signaling and its role in glioma pathogenesis. Adv. Exp. Med. Biol. 2020 1202 179 201 10.1007/978‑3‑030‑30651‑9_9 32034714
    [Google Scholar]
  118. Bilotta M.T. Antignani A. Fitzgerald D.J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol. 2022 13 954992 10.3389/fimmu.2022.954992 36341428
    [Google Scholar]
  119. Henrik Heiland D. Ravi V.M. Behringer S.P. Frenking J.H. Wurm J. Joseph K. Garrelfs N.W.C. Strähle J. Heynckes S. Grauvogel J. Franco P. Mader I. Schneider M. Potthoff A.L. Delev D. Hofmann U.G. Fung C. Beck J. Sankowski R. Prinz M. Schnell O. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun. 2019 10 1 2541 10.1038/s41467‑019‑10493‑6 31186414
    [Google Scholar]
  120. Khan F. Pang L. Dunterman M. Lesniak M.S. Heimberger A.B. Chen P. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy. J. Clin. Invest. 2023 133 1 e163446 10.1172/JCI163446 36594466
    [Google Scholar]
  121. De Leo A. Ugolini A. Veglia F. Myeloid Cells in glioblastoma microenvironment. Cells 2020 10 1 18 10.3390/cells10010018 33374253
    [Google Scholar]
  122. Schiffer D. Annovazzi L. Casalone C. Corona C. Mellai M. Glioblastoma: Microenvironment and niche concept. Cancers 2018 11 1 5 10.3390/cancers11010005 30577488
    [Google Scholar]
  123. Rodríguez-Camacho A. Flores-Vázquez J.G. Moscardini-Martelli J. Torres-Ríos J.A. Olmos-Guzmán A. Ortiz-Arce C.S. Cid-Sánchez D.R. Pérez S.R. Macías-González M.D.S. Hernández-Sánchez L.C. Heredia-Gutiérrez J.C. Contreras-Palafox G.A. Suárez-Campos J.J.E. Celis-López M.Á. Gutiérrez-Aceves G.A. Moreno-Jiménez S. Glioblastoma treatment: State-of-the-art and future perspectives. Int. J. Mol. Sci. 2022 23 13 7207 10.3390/ijms23137207 35806212
    [Google Scholar]
  124. Fu M. Zhou Z. Huang X. Chen Z. Zhang L. Zhang J. Hua W. Mao Y. Use of Bevacizumab in recurrent glioblastoma: A scoping review and evidence map. BMC Cancer 2023 23 1 544 10.1186/s12885‑023‑11043‑6 37316802
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232365123250325041507
Loading
/content/journals/cgt/10.2174/0115665232365123250325041507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test