Skip to content
2000
image of Review Deciphering the Anticancer Efficacy of Oroxylin A Targeting Dysregulated Oncogenes

Abstract

Flavonoids exhibit anti-tumor properties against many human cancer cells, indicating their potential as effective anticancer medicines. Oroxylin A (OrA) is a monoflavonoid molecule that shows significant promise against several types of cancer and possesses a substantial anticancer impact while causing minimal harm to normal tissue. Limited studies have provided a systematic review deciphering the role of oroxylin A in combating breast carcinoma. Hence, we thoroughly analyzed existing research to report various mechanism by which OrA impedes tumor advancement in breast carcinoma, including autophagy, cell cycle arrest, angiogenesis suppression, apoptosis, and glycolysis inhibition. We collected several significant research related to the anticancer potential of oroxylin A and demonstrated anticancerous potential of OrA and its specific mode of action in several human carcinomas. Additionally, we have also incorporated several studies to decipher the structure, bioavailability, and anti-breast cancer potential of Oroxylin A in breast cancer. Overall, this review supports the potential of oroxylin A for developing better anti breast cancer therapeutic approach.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232362866250625123624
2025-07-09
2025-09-13
Loading full text...

Full text loading...

References

  1. Obeagu E.I. Obeagu G.U. Breast cancer: A review of risk factors and diagnosis. Medicine 2024 103 3 e36905 10.1097/MD.0000000000036905 38241592
    [Google Scholar]
  2. Kapinova A. Stefanicka P. Kubatka P. Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomed. Pharmacother. 2017 96 1465 1477 10.1016/j.biopha.2017.11.134 29198744
    [Google Scholar]
  3. Yen C. Zhao F. Yu Z. Zhu X. Li C.G. Interactions between natural products and tamoxifen in breast cancer: A comprehensive literature review. Front. Pharmacol. 2022 13 847113 10.3389/fphar.2022.847113 35721162
    [Google Scholar]
  4. Khan M.I. Bouyahya A. Hachlafi N.E.L. Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: A review on recent investigations. Environ. Sci. Pollut. Res. Int. 2022 29 17 24411 24444 10.1007/s11356‑021‑17795‑7 35064485
    [Google Scholar]
  5. Uramova S. Kubatka P. Dankova Z. Plant natural modulators in breast cancer prevention: Status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018 9 4 403 419 10.1007/s13167‑018‑0154‑6 30538792
    [Google Scholar]
  6. Wang Y. Mou Y. Lu S. Xia Y. Cheng B. Polymethoxylated flavonoids in citrus fruits: Absorption, metabolism, and anticancer mechanisms against breast cancer. PeerJ 2024 11 e16711 10.7717/peerj.16711 38188169
    [Google Scholar]
  7. Park M.Y. Kim Y. Ha S.E. Function and application of flavonoids in the breast cancer. Int. J. Mol. Sci. 2022 23 14 7732 10.3390/ijms23147732 35887080
    [Google Scholar]
  8. Sahoo S. Mohapatra P. Sahoo S.K. Flavonoids for the treatment of breast cancer, present status and future prospective. Anticancer. Agents Med. Chem. 2023 23 6 658 675 10.2174/1871520623666221024114521 36284374
    [Google Scholar]
  9. Criollo-Mendoza M.S. Heredia J.B. Vazquez-Olivo G. Avilés-Gaxiola S. Gutiérrez-Grijalva E.P. Garcia-Carrasco M. Antiproliferative activity and mechanisms of action of plant-derived flavonoids on breast cancer. Curr. Top. Med. Chem. 2023 23 20 1937 1951 10.2174/1568026623666230512123500 37183471
    [Google Scholar]
  10. Pandey P. Khan F. Yadav K. Screen natural terpenoids to identify potential Jab1 inhibitors for treating breast cancer. Trends in Immunotherapy 2023 7 1 2055 10.24294/ti.v7.i1.2055
    [Google Scholar]
  11. Negi A.S. Anti-Breast cancer terpenoids of natural origins. In Natural Product Drug Discovery. Elsevier 2021 29 68 10.1016/B978‑0‑12‑821277‑6.00003‑9
    [Google Scholar]
  12. Ateba S.B. Mvondo M.A. Ngeu S.T. Natural terpenoids against female breast cancer: A 5-year recent research. Curr. Med. Chem. 2018 25 27 3162 3213 10.2174/0929867325666180214110932 29446727
    [Google Scholar]
  13. Abotaleb M. Liskova A. Kubatka P. Büsselberg D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020 10 2 221 10.3390/biom10020221 32028623
    [Google Scholar]
  14. Ávila-Gálvez M.Á. Giménez-Bastida J.A. Espín J.C. González-Sarrías A. Dietary phenolics against breast cancer. A critical evidence-based review and future perspectives. Int. J. Mol. Sci. 2020 21 16 5718 10.3390/ijms21165718 32784973
    [Google Scholar]
  15. Oluwole O. Fernando W.M.A.D.B. Lumanlan J. Ademuyiwa O. Jayasena V. Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health – A review. Int. J. Food Sci. Technol. 2022 57 10 6326 6335 10.1111/ijfs.15936
    [Google Scholar]
  16. Rampogu S. Balasubramaniyam T. Lee J.H. Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed. Pharmacother. 2022 155 113760 10.1016/j.biopha.2022.113760 36271547
    [Google Scholar]
  17. Yu J. Wang X. Du P. Shi H. The therapeutic potential and application of marine alkaloids in treating breast cancer. Front. Mar. Sci. 2024 11 1440928 10.3389/fmars.2024.1440928
    [Google Scholar]
  18. Rajabi S. Maresca M. Yumashev A.V. Choopani R. Hajimehdipoor H. The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules 2021 11 4 534 10.3390/biom11040534 33916780
    [Google Scholar]
  19. Hashem S. Ali T.A. Akhtar S. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother. 2022 150 113054 10.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  20. Yuan L. Cai Y. Zhang L. Liu S. Li P. Li X. Promoting apoptosis, a promising way to treat breast cancer with natural products: A comprehensive review. Front. Pharmacol. 2022 12 801662 10.3389/fphar.2021.801662 35153757
    [Google Scholar]
  21. Zhang J. Wu Y. Li Y. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. Phytomedicine 2024 129 155600 10.1016/j.phymed.2024.155600 38614043
    [Google Scholar]
  22. Razak N.A. Abu N. Ho W.Y. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci. Rep. 2019 9 1 1514 10.1038/s41598‑018‑37796‑w 30728391
    [Google Scholar]
  23. Ahmed S.A. Mendonca P. Messeha S.S. Soliman K.F.A. Anticancer effects of fucoxanthin through cell cycle arrest, apoptosis induction, and angiogenesis inhibition in triple-negative breast cancer cells. Molecules 2023 28 18 6536 10.3390/molecules28186536 37764312
    [Google Scholar]
  24. Break M.K.B. Hussein W. Huwaimel B. Artemisia sieberi Besser essential oil inhibits the growth and migration of breast cancer cells via induction of S-phase arrest, caspase-independent cell death and downregulation of ERK. J. Ethnopharmacol. 2023 312 116492 10.1016/j.jep.2023.116492 37059248
    [Google Scholar]
  25. Peng B. Zhang S.Y. Chan K.I. Zhong Z.F. Wang Y.T. Novel anti-cancer products targeting AMPK: Natural herbal medicine against breast cancer. Molecules 2023 28 2 740 10.3390/molecules28020740 36677797
    [Google Scholar]
  26. Zhang X. Gao H. Wei D. ROS responsive nanoparticles encapsulated with natural medicine remodel autophagy homeostasis in breast cancer. ACS Appl. Mater. Interfaces 2023 15 25 29827 29840 10.1021/acsami.3c03068 37314154
    [Google Scholar]
  27. Wu Q. Sharma D. Autophagy and breast cancer: Connected in growth, progression, and therapy. Cells 2023 12 8 1156 10.3390/cells12081156 37190065
    [Google Scholar]
  28. Yuan Y. Long H. Zhou Z. Fu Y. Jiang B. PI3K–AKT-Targeting breast cancer treatments: Natural products and synthetic compounds. Biomolecules 2023 13 1 93 10.3390/biom13010093 36671478
    [Google Scholar]
  29. Liu Q. Yang Y. Cheng M. The marine natural product, dicitrinone B, induces apoptosis through autophagy blockade in breast cancer. Int. J. Mol. Med. 2022 50 4 130 10.3892/ijmm.2022.5186 36052845
    [Google Scholar]
  30. Cohen I. Tagliaferri M. Tripathy D. Traditional Chinese medicine in the treatment of breast cancer. Semin. Oncol. 2002 29 6 563 574 10.1053/sonc.2002.50005 12516039
    [Google Scholar]
  31. Li T. Feng Z. Yao M. Liao Q. Zhao Z. Zhang L. Comparative pharmacokinetic and tissue distribution study of baicalin, baicalein, wogonoside, wogonin and oroxylin-A after oral administration of Component compatibility of SHT and total flavonoids fractions of Radix scutellariae to rats. Anal. Methods 2014 6 15 5799 5807 10.1039/C4AY00701H
    [Google Scholar]
  32. Yang Z. Zhang Q. Yu L. Zhu J. Cao Y. Gao X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol. 2021 264 113249 10.1016/j.jep.2020.113249 32810619
    [Google Scholar]
  33. Wang Y. Li J.W. Qin Y.N. Clinical observation on the effect of Chinese medicine-“TCM formula” intervention on recurrence and metastasis of triple negative breast cancer. Complement. Ther. Med. 2020 52 102456 10.1016/j.ctim.2020.102456 32951717
    [Google Scholar]
  34. Chimento A. Sirianni R. Saturnino C. Caruso A. Stefania Sinicropi M. Pezzi V. Resveratrol and its analogs as antitumoral agents for breast cancer treatment. Mini Rev. Med. Chem. 2016 16 9 699 709 10.2174/1389557516666160321113255 26996623
    [Google Scholar]
  35. Behroozaghdam M. Dehghani M. Zabolian A. Resveratrol in breast cancer treatment: From cellular effects to molecular mechanisms of action. Cell. Mol. Life Sci. 2022 79 11 539 10.1007/s00018‑022‑04551‑4 36194371
    [Google Scholar]
  36. Gregoriou Y. Gregoriou G. Yilmaz V. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics 2021 5 1 113 124 10.7150/ntno.51955 33391978
    [Google Scholar]
  37. Elekofehinti O.O. Iwaloye O. Olawale F. Ariyo E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021 28 2 250 272 10.3390/pathophysiology28020017 35366261
    [Google Scholar]
  38. Zhong X.D. Chen L.J. Xu X.Y. Berberine as a potential agent for breast cancer therapy. Front. Oncol. 2022 12 993775 10.3389/fonc.2022.993775 36119505
    [Google Scholar]
  39. Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem. Biol. Drug Des. 2023 102 1 177 200 10.1111/cbdd.14231 36905314
    [Google Scholar]
  40. Devarajan N. Nathan J. Mathangi R. Mahendra J. Ganesan S.K. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J. Biochem. Mol. Toxicol. 2023 37 3 e23278 10.1002/jbt.23278 36588295
    [Google Scholar]
  41. Mana T. Devi O.B. Singh Y.D. Therapeutic application of berberine: A consolidated review. Curr. Pharmacol. Rep. 2023 9 5 329 340 10.1007/s40495‑023‑00330‑2
    [Google Scholar]
  42. Huang M. Zhai B.T. Fan Y. Targeted drug delivery systems for curcumin in breast cancer therapy. Int. J. Nanomedicine 2023 18 4275 4311 10.2147/IJN.S410688 37534056
    [Google Scholar]
  43. Zhu J. Li Q. Wu Z. Xu Y. Jiang R. Curcumin for treating breast cancer: A review of molecular mechanisms, combinations with anticancer drugs, and nanosystems. Pharmaceutics 2024 16 1 79 10.3390/pharmaceutics16010079 38258090
    [Google Scholar]
  44. Wang Y. Yu J. Cui R. Lin J. Ding X. Curcumin in treating breast cancer: A review. SLAS Technol. 2016 21 6 723 731 10.1177/2211068216655524 27325106
    [Google Scholar]
  45. Yu P. Li J. Luo Y. Mechanistic role of Scutellaria baicalensis georgi in breast cancer therapy. Am. J. Chin. Med. 2023 51 2 279 308 10.1142/S0192415X23500155 36655686
    [Google Scholar]
  46. Pei T. Yan M. Huang Y. Wei Y. Martin C. Zhao Q. Specific flavonoids and their biosynthetic pathway in Scutellaria baicalensis. Front Plant Sci 2022 13 866282 10.3389/fpls.2022.866282 35310641
    [Google Scholar]
  47. Shah R.C. Mehta C.R. Wheeler T.S. 131. The constitution of oroxylin-A, a yellow colouring matter from the root-bark of Oroxylum indicum, vent. J Chem Soc. Resumed 1936 591 593
    [Google Scholar]
  48. Li H.B. Chen F. Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. J. Chromatogr. A 2005 1074 1-2 107 110 10.1016/j.chroma.2005.03.088 15941045
    [Google Scholar]
  49. Elkin Y.N. Kulesh N.I. Shishmarev V.M. Kargin V.M. Manyakhin A.Y. Scutellaria baicalensis: The end of the flavone biosynthesis pathway. Acta Biol. Cracov. Ser.; Bot. 2022 64 1
    [Google Scholar]
  50. Ancuceanu R. Dinu M. Dinu-Pirvu C. Anuţa V. Negulescu V. Pharmacokinetics of B-ring unsubstituted flavones. Pharmaceutics 2019 11 8 370 10.3390/pharmaceutics11080370 31374885
    [Google Scholar]
  51. Sajeev A. Hegde M. Daimary U.D. Modulation of diverse oncogenic signaling pathways by oroxylin A: An important strategy for both cancer prevention and treatment. Phytomedicine 2022 105 154369 10.1016/j.phymed.2022.154369 35985182
    [Google Scholar]
  52. De Grano R.V.R. Vashchenko E.V. Nisar M. Sung H.H.Y. Vashchenko V.V. Williams I.D. Crystal structures of the flavonoid Oroxylin A and the regioisomers Negletein and Wogonin. Acta Crystallogr. C Struct. Chem. 2020 76 5 490 499 10.1107/S2053229620005550 32367831
    [Google Scholar]
  53. Lu L. Guo Q. Zhao L. Overview of oroxylin A: A promising flavonoid compound. Phytother. Res. 2016 30 11 1765 1774 10.1002/ptr.5694 27539056
    [Google Scholar]
  54. Yuan D. Guo Y. Pu F. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 2024 430 137115 10.1016/j.foodchem.2023.137115 37566979
    [Google Scholar]
  55. Gera A. Yadav L. Patil C.R. Posa M.K. Chandrakanth B. Kumar S. Oroxylin A. Posa M.K. Chandrakanth B. Kumar S. Oroxylin A. Nature’s arsenal against liver fibrosis, cancer, and inflammatory diseases. Health Sci. Rep. 2023 10 100143 10.1016/j.hsr.2023.100143
    [Google Scholar]
  56. Yang G. Ge S. Singh R. Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 2017 49 2 105 138 10.1080/03602532.2017.1293682 28266877
    [Google Scholar]
  57. Liu W. Xu X. Feng F. Wu C. Simultaneous quantification of oroxylin A and its metabolite oroxylin A-7-O-glucuronide: Application to a pharmacokinetic study in rat. Chromatographia 2011 74 1-2 75 81 10.1007/s10337‑011‑2020‑8
    [Google Scholar]
  58. Noh K. Kang Y. Nepal M. Role of intestinal microbiota in baicalin-induced drug interaction and its pharmacokinetics. Molecules 2016 21 3 337 10.3390/molecules21030337 26978333
    [Google Scholar]
  59. Go W.J. Ryu J.H. Qiang F. Han H.K. Evaluation of the flavonoid oroxylin A as an inhibitor of P-glycoprotein-mediated cellular efflux. J. Nat. Prod. 2009 72 9 1616 1619 10.1021/np9003036 19739602
    [Google Scholar]
  60. Zhu L. Zhao L. Wang H. Oroxylin A reverses P-glycoprotein-mediated multidrug resistance of MCF7/ADR cells by G2/M arrest. Toxicol. Lett. 2013 219 2 107 115 10.1016/j.toxlet.2013.01.019 23470866
    [Google Scholar]
  61. Cai Y. Li S. Li T. Zhou R. Wai A.T.S. Yan R. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7- O -β- d -glucuronide and their aglycones from an aqueous extract of Scutellariae Radix in the rat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016 1026 124 133 10.1016/j.jchromb.2015.11.049 26809374
    [Google Scholar]
  62. Liu G. Tian Y. Li G. Xu L. Song R. Zhang Z. Metabolism of saikosaponin a in rats: Diverse oxidations on the aglycone moiety in liver and intestine in addition to hydrolysis of glycosidic bonds. Drug Metab. Dispos. 2013 41 3 622 633 10.1124/dmd.112.048975 23277344
    [Google Scholar]
  63. Fernández-Tomé S. Ortega Moreno L. Chaparro M. Gisbert J.P. Gut microbiota and dietary factors as modulators of the mucus layer in inflammatory bowel disease. Int. J. Mol. Sci. 2021 22 19 10224 10.3390/ijms221910224 34638564
    [Google Scholar]
  64. Bai D. Sun T. Zhao J. Oroxylin A maintains the colonic mucus barrier to reduce disease susceptibility by reconstituting a dietary fiber-deprived gut microbiota. Cancer Lett. 2021 515 73 85 10.1016/j.canlet.2021.05.018 34052330
    [Google Scholar]
  65. Tuli H.S. Garg V.K. Kumar A. Anticancer potential of oroxylin A: From mechanistic insight to synergistic perspectives. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 2 191 212 10.1007/s00210‑022‑02298‑0 36214865
    [Google Scholar]
  66. Pathak K. Pathak M.P. Saikia R. Cancer chemotherapy via natural bioactive compounds. Curr. Drug Discov. Technol. 2022 19 4 e310322202888 10.2174/1570163819666220331095744 35362385
    [Google Scholar]
  67. Sun Y. Lu N. Ling Y. Oroxylin A suppresses invasion through down-regulating the expression of matrix metalloproteinase-2/9 in MDA-MB-435 human breast cancer cells. Eur. J. Pharmacol. 2009 603 1-3 22 28 10.1016/j.ejphar.2008.12.008 19100732
    [Google Scholar]
  68. Lu Z. Lu N. Li C. Oroxylin A inhibits matrix metalloproteinase-2/9 expression and activation by up-regulating tissue inhibitor of metalloproteinase-2 and suppressing the ERK1/2 signaling pathway. Toxicol. Lett. 2012 209 3 211 220 10.1016/j.toxlet.2011.12.022 22245252
    [Google Scholar]
  69. Wei L. Zhou Y. Dai Q. Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis. 2013 4 4 e601 e1 10.1038/cddis.2013.131 23598413
    [Google Scholar]
  70. Zhao K. Zhou Y. Qiao C. Oroxylin A promotes PTEN-mediated negative regulation of MDM2 transcription via SIRT3-mediated deacetylation to stabilize p53 and inhibit glycolysis in wt-p53 cancer cells. J. Hematol. Oncol. 2015 8 1 41 10.1186/s13045‑015‑0137‑1 25902914
    [Google Scholar]
  71. Wei L. Zhou Y. Qiao C. Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization. Cell Death Dis. 2015 6 4 e1714 e4 10.1038/cddis.2015.86 25855962
    [Google Scholar]
  72. Yang H. Li J. Zheng Y. Drug activity screening based on microsomes-hydrogel system in predicting metabolism induced antitumor effect of oroxylin A. Sci. Rep. 2016 6 1 21604 10.1038/srep21604 26905263
    [Google Scholar]
  73. Cheng Y. Zhao K. Li G. Oroxylin a inhibits hypoxia-induced invasion and migration of MCF-7 cells by suppressing the notch pathway. Anticancer Drugs 2014 25 7 778 789 10.1097/CAD.0000000000000103 24637576
    [Google Scholar]
  74. Sun X. Chang X. Wang Y. Xu B. Cao X. Oroxylin a suppresses the cell proliferation, migration, and EMT via NF‐κB signaling pathway in human breast cancer cells. BioMed Res. Int. 2019 2019 1 1 10 10.1155/2019/9241769 31341911
    [Google Scholar]
  75. An D. Song Z. Yi Y. Oroxylin A, a methylated metabolite of baicalein, exhibits a stronger inhibitory effect than baicalein on the CYP1B1‐mediated carcinogenic estradiol metabolite formation. Phytother. Res. 2019 33 4 1033 1043 10.1002/ptr.6297 30680817
    [Google Scholar]
  76. Cao Y. Cao W. Qiu Y. Oroxylin a suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacol. Res. 2020 159 104981 10.1016/j.phrs.2020.104981 32492489
    [Google Scholar]
  77. Chen Y. Zheng J. Mo L. Oroxylin a suppresses breast cancer-induced osteoclastogenesis and osteolysis as a natural RON inhibitor. Phytomedicine 2024 129 155688 10.1016/j.phymed.2024.155688 38728920
    [Google Scholar]
  78. Knapinska A.M. Fields G.B. The expanding role of MT1-MMP in cancer progression. Pharmaceuticals 2019 12 2 77 10.3390/ph12020077 31137480
    [Google Scholar]
  79. Zhao L.Y. Mei J.X. Yu G. Role of the gut microbiota in anticancer therapy: From molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 2023 8 1 201 10.1038/s41392‑023‑01406‑7 37179402
    [Google Scholar]
  80. Li H. Qiu Z. Li F. Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol. Lett. 2017 14 5 5865 5870 10.3892/ol.2017.6924 29113219
    [Google Scholar]
  81. Mondal S. Adhikari N. Banerjee S. Amin S.A. Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020 194 112260 10.1016/j.ejmech.2020.112260 32224379
    [Google Scholar]
  82. Gandhi N. Das G. Metabolic reprogramming in breast cancer and its therapeutic implications. Cells 2019 8 2 89 10.3390/cells8020089 30691108
    [Google Scholar]
  83. Biswal B. Das S. Das B. Rath R. Alteration of cellular metabolism in cancer cells and its therapeutic prospects. J. Oral Maxillofac. Pathol. 2017 21 2 244 251 10.4103/jomfp.JOMFP_60_17 28932034
    [Google Scholar]
  84. Li Y. Meng Q. Yang M. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B 2019 9 6 1113 1144 10.1016/j.apsb.2019.10.001 31867160
    [Google Scholar]
  85. Alexander S. Friedl P. Cancer invasion and resistance: Interconnected processes of disease progression and therapy failure. Trends Mol. Med. 2012 18 1 13 26 10.1016/j.molmed.2011.11.003 22177734
    [Google Scholar]
  86. Wei L. Yao Y. Zhao K. Oroxylin a inhibits invasion and migration through suppressing ERK/GSK‐3β signaling in snail‐expressing non‐small‐cell lung cancer cells. Mol. Carcinog. 2016 55 12 2121 2134 10.1002/mc.22456 26741501
    [Google Scholar]
  87. Huo T. Wang X. Yu Z. Oroxylin A inhibits the migration of hepatocellular carcinoma cells by inducing NAG-1 expression. Acta Pharmacol. Sin. 2022 43 3 724 734 10.1038/s41401‑021‑00695‑4 34117368
    [Google Scholar]
  88. Ku W.T. Tung J.J. Lee T.J.F. Lai K.C. Long-term exposure to oroxylin A inhibits metastasis by suppressing CCL2 in oral squamous cell carcinoma cells. Cancers 2019 11 3 353 10.3390/cancers11030353 30871117
    [Google Scholar]
  89. Zappavigna S. Cossu A.M. Grimaldi A. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020 21 7 2605 10.3390/ijms21072605 32283655
    [Google Scholar]
  90. Jensen E.V. Hormone dependency of breast cancer. Cancer 1981 47 10 2319 2326 10.1002/1097‑0142(19810515)47:10<2319:AID‑CNCR2820471002>3.0.CO;2‑X 7272888
    [Google Scholar]
  91. Luo B. Yan D. Yan H. Yuan J. Cytochrome P450: Implications for human breast cancer. (Review) Oncol. Lett. 2021 22 1 548 10.3892/ol.2021.12809 34093769
    [Google Scholar]
  92. Shrihastini V. Muthuramalingam P. Adarshan S. Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview. Cancers 2021 13 24 6222 10.3390/cancers13246222 34944840
    [Google Scholar]
  93. Mitra S. Dash R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med. 2018 2018 1 8324696 10.1155/2018/8324696 29681985
    [Google Scholar]
  94. Sohel M. Aktar S. Biswas P. Exploring the anti‐cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review. Cancer Med. 2023 12 13 14556 14583 10.1002/cam4.5984 37132286
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232362866250625123624
Loading
/content/journals/cgt/10.2174/0115665232362866250625123624
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: signalling pathway ; Oroxylin A ; therapeutics ; breast cancer ; oncogenes ; flavonoid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test