Skip to content
2000
image of The Mitochondrial Deoxyribonucleic Acid Puzzle: Controversies, Challenges, and Critical Perspectives – A Narrative Review

Abstract

Human mitochondrial DNA (mtDNA) stands at the nexus of scientific intrigue and controversy, owing to its distinctive genetic features and indispensable role in cellular energy dynamics. This narrative review explores the complexities, controversies, and key issues in current research on human mtDNA. A comprehensive search on literature spanning from January 2000 to January 2025 was conducted across electronic databases including PubMed, Scopus, Web of Science, and Google Scholar. Keywords such as “mitochondrial DNA,” “mtDNA mutations,” “mtDNA inheritance,” “mitochondrial genetics,” “mitochondrial diseases,” and “future perspectives of mtDNA” were used to identify relevant studies published in peer-reviewed journals, books, and reputable conference proceedings. Articles selected for inclusion were limited to those written in English and focused on human mtDNA research. Review articles, original research papers, meta-analyses, and authoritative texts were prioritized. Information extracted from selected studies was synthesized to provide a comprehensive overview. The synthesized data were critically analyzed to highlight emerging trends, unresolved controversies, and future research directions in the field of mtDNA research. Decoding the complexities of human mtDNA offers profound insights into fundamental biological processes and evolutionary history. This review emphasizes the ongoing significance of mtDNA research in shaping the future of biomedical sciences and highlights the importance of continued exploration into its intricate molecular code.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232358476250708091107
2025-07-21
2025-08-18
Loading full text...

Full text loading...

References

  1. Osellame L.D. Blacker T.S. Duchen M.R. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. 2012 26 6 711 723 10.1016/j.beem.2012.05.003 23168274
    [Google Scholar]
  2. Casanova A. Wevers A. Navarro-Ledesma S. Pruimboom L. Mitochondria: It is all about energy. Front. Physiol. 2023 14 1114231 10.3389/fphys.2023.1114231 37179826
    [Google Scholar]
  3. Habbane M. Montoya J. Rhouda T. Sbaoui Y. Radallah D. Emperador S. Human mitochondrial DNA: Particularities and diseases. Biomedicines 2021 9 10 1364 10.3390/biomedicines9101364 34680481
    [Google Scholar]
  4. Annesley S.J. Fisher P.R. Mitochondria in health and disease. Cells 2019 8 7 680 10.3390/cells8070680 31284394
    [Google Scholar]
  5. Podolak A. Woclawek-Potocka I. Lukaszuk K. The role of mitochondria in human fertility and early embryo development: What can we learn for clinical application of assessing and improving mitochondrial DNA? Cells 2022 11 5 797 10.3390/cells11050797 35269419
    [Google Scholar]
  6. Nicholls T.J. Gustafsson C.M. Separating and segregating the human Mitochondrial genome. Trends Biochem. Sci. 2018 43 11 869 881 10.1016/j.tibs.2018.08.007 30224181
    [Google Scholar]
  7. Yan C. Duanmu X. Zeng L. Liu B. Song Z. Mitochondrial DNA: Distribution, mutations, and elimination. Cells 2019 8 4 379 10.3390/cells8040379 31027297
    [Google Scholar]
  8. Mishra P. Chan D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 2014 15 10 634 646 10.1038/nrm3877 25237825
    [Google Scholar]
  9. Lenaz G. Genova M.L. Supramolecular organisation of the mitochondrial respiratory chain: A new challenge for the mechanism and control of oxidative phosphorylation. Adv. Exp. Med. Biol. 2012 748 107 144 10.1007/978‑1‑4614‑3573‑0_5 22729856
    [Google Scholar]
  10. Yusoff A.A.M. Ahmad F. Idris Z. Jaafar H. Abdullah J.M. Understanding mitochondrial DNA in brain tumorigenesis. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. InTech 2015 10.5772/58965
    [Google Scholar]
  11. Spelbrink J.N. Functional organization of mammalian mitochondrial DNA in nucleoids: History, recent developments, and future challenges. IUBMB Life 2010 62 1 19 32 10.1002/iub.282 20014006
    [Google Scholar]
  12. Maniura-Weber K. Goffart S. Garstka H.L. Montoya J. Wiesner R.J. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res. 2004 32 20 6015 6027 10.1093/nar/gkh921 15547250
    [Google Scholar]
  13. Ishikawa K. Takenaga K. Akimoto M. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008 320 5876 661 664 10.1126/science.1156906 18388260
    [Google Scholar]
  14. de Melo K.P. Camargo M. Mechanisms for sperm mitochondrial removal in embryos. Biochim. Biophys. Acta Mol. Cell Res. 2021 1868 2 118916 10.1016/j.bbamcr.2020.118916 33276010
    [Google Scholar]
  15. Wei W. Chinnery P.F. Inheritance of mitochondrial DNA in humans: Implications for rare and common diseases. J. Intern. Med. 2020 287 6 634 644 10.1111/joim.13047 32187761
    [Google Scholar]
  16. Stewart J.B. Chinnery P.F. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 2021 22 2 106 118 10.1038/s41576‑020‑00284‑x 32989265
    [Google Scholar]
  17. Birky C.W. The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annu. Rev. Genet. 2001 35 1 125 148 10.1146/annurev.genet.35.102401.090231 11700280
    [Google Scholar]
  18. Sato M. Sato K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta Mol. Cell Res. 2013 1833 8 1979 1984 10.1016/j.bbamcr.2013.03.010 23524114
    [Google Scholar]
  19. Sato M. Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 2011 334 6059 1141 1144 10.1126/science.1210333 21998252
    [Google Scholar]
  20. Fischer C. Prosser R. Lobo R. Egli D. Paternal mitochondrial DNA present in human embryos. Fertil. Steril. 2018 110 4 e146 e147 10.1016/j.fertnstert.2018.07.433
    [Google Scholar]
  21. Baumann K. Eliminating paternal mitochondria. Nat. Rev. Mol. Cell Biol. 2016 17 8 464 10.1038/nrm.2016.99 27440316
    [Google Scholar]
  22. Green D.R. Mitochondrial quality control: Just walk away. Cell Metab. 2021 33 6 1069 1071 10.1016/j.cmet.2021.05.011 34077713
    [Google Scholar]
  23. Marlow F.L. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline. Stem Cell Res. 2017 21 178 186 10.1016/j.scr.2017.03.004 28336253
    [Google Scholar]
  24. Shoubridge E.A. Barrientos A. Mitochondrial molecular genetics and human disease. Hum. Mol. Genet. 2024 33 R1 R1 R2 10.1093/hmg/ddae049 38779767
    [Google Scholar]
  25. Matzuk M.M. Burns K.H. Viveiros M.M. Eppig J.J. Intercellular communication in the mammalian ovary: Oocytes carry the conversation. Science 2002 296 5576 2178 2180 10.1126/science.1071965 12077402
    [Google Scholar]
  26. Tilly J.L. Commuting the death sentence: How oocytes strive to survive. Nat. Rev. Mol. Cell Biol. 2001 2 11 838 848 10.1038/35099086 11715050
    [Google Scholar]
  27. Perez G.I. Trbovich A.M. Gosden R.G. Tilly J.L. Mitochondria and the death of oocytes. Nature 2000 403 6769 500 501 10.1038/35000651 10676949
    [Google Scholar]
  28. Sutovsky P. Van Leyen K. McCauley T. Day B.N. Sutovsky M. Degradation of paternal mitochondria after fertilization: Implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod. Biomed. Online 2004 8 1 24 33 10.1016/S1472‑6483(10)60495‑6 14759284
    [Google Scholar]
  29. May-Panloup P. Chrétien M.F. Savagner F. Increased sperm mitochondrial DNA content in male infertility. Hum. Reprod. 2003 18 3 550 556 10.1093/humrep/deg096 12615823
    [Google Scholar]
  30. Sutovsky P. Moreno R. Ramalho-Santos J. Dominko T. Thompson W.E. Schatten G. A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci. 2001 114 9 1665 1675 10.1242/jcs.114.9.1665 11309198
    [Google Scholar]
  31. Springate L. Frasier T.R. Gamete compatibility genes in mammals: Candidates, applications and a potential path forward. R. Soc. Open Sci. 2017 4 8 170577 10.1098/rsos.170577 28878999
    [Google Scholar]
  32. O’Connell M. McClure N. Lewis S.E.M. A comparison of mitochondrial and nuclear DNA status in testicular sperm from fertile men and those with obstructive azoospermia. Hum. Reprod. 2002 17 6 1571 1577 10.1093/humrep/17.6.1571 12042280
    [Google Scholar]
  33. Park Y.J. Pang M.G. Mitochondrial functionality in male fertility: From spermatogenesis to fertilization. Antioxidants 2021 10 1 98 10.3390/antiox10010098 33445610
    [Google Scholar]
  34. Wolff J.N. Nafisinia M. Sutovsky P. Ballard J.W.O. Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity 2013 110 1 57 62 10.1038/hdy.2012.60 23010820
    [Google Scholar]
  35. Wolff J.N. Gemmell N.J. Lost in the zygote: The dilution of paternal mtDNA upon fertilization. Heredity 2008 101 5 429 434 10.1038/hdy.2008.74 18685570
    [Google Scholar]
  36. Seli E. Wang T. Horvath T.L. Mitochondrial unfolded protein response: A stress response with implications for fertility and reproductive aging. Fertil. Steril. 2019 111 2 197 204 10.1016/j.fertnstert.2018.11.048 30691623
    [Google Scholar]
  37. St John J. Sakkas D. Dimitriadi K. Failure of elimination of paternal mitochondrial DNA in abnormal embryos. Lancet 2000 355 9199 200 10.1016/S0140‑6736(99)03842‑8 10675122
    [Google Scholar]
  38. Vissing J. Paternal comeback in mitochondrial DNA inheritance. Proc. Natl. Acad. Sci. USA 2019 116 5 1475 1476 10.1073/pnas.1821192116 30635426
    [Google Scholar]
  39. Carelli V. Keeping in shape the dogma of mitochondrial DNA maternal inheritance. PLoS Genet. 2015 11 5 e1005179 10.1371/journal.pgen.1005179 25973886
    [Google Scholar]
  40. Lee W. Zamudio-Ochoa A. Buchel G. Molecular basis for maternal inheritance of human mitochondrial DNA. Nat. Genet. 2023 55 10 1632 1639 10.1038/s41588‑023‑01505‑9 37723262
    [Google Scholar]
  41. Havird J.C. Forsythe E.S. Williams A.M. Werren J.H. Dowling D.K. Sloan D.B. Selfish mitonuclear conflict. Curr. Biol. 2019 29 11 R496 R511 10.1016/j.cub.2019.03.020 31163164
    [Google Scholar]
  42. Beekman M. Dowling D.K. Aanen D.K. The costs of being male: Are there sex-specific effects of uniparental mitochondrial inheritance? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014 369 1646 20130440 10.1098/rstb.2013.0440 24864311
    [Google Scholar]
  43. Connallon T Camus MF Morrow EH Dowling DK Coadaptation of mitochondrial and nuclear genes, and the cost of mother's curse. Proc Biol Sci 2018 285 1871 20172257 10.1098/rspb.2017.2257 29343598
    [Google Scholar]
  44. St John J. The control of mtDNA replication during differentiation and development. Biochim. Biophys. Acta 2014 1840 4 1345 1354 10.1016/j.bbagen.2013.10.036 24183916
    [Google Scholar]
  45. Luo S. Valencia C.A. Zhang J. Biparental inheritance of mitochondrial DNA in humans. Proc. Natl. Acad. Sci. USA 2018 115 51 13039 13044 10.1073/pnas.1810946115 30478036
    [Google Scholar]
  46. Vaught R.C. Dowling D.K. Maternal inheritance of mitochondria: Implications for male fertility? Reproduction 2018 155 4 R159 R168 10.1530/REP‑17‑0600 29581388
    [Google Scholar]
  47. Chiaratti M.R. Garcia B.M. Carvalho K.F. Machado T.S. Ribeiro F.K.S. Macabelli C.H. The role of mitochondria in the female germline: Implications to fertility and inheritance of mitochondrial diseases. Cell Biol. Int. 2018 42 6 711 724 10.1002/cbin.10947 29418047
    [Google Scholar]
  48. Chatzovoulou K. Mayeur A. Gigarel N. Mitochondrial DNA mutations do not impact early human embryonic development. Mitochondrion 2021 58 59 63 10.1016/j.mito.2021.02.012 33639270
    [Google Scholar]
  49. Zhang R. Nakahira K. Choi A.M.K. Gu Z. Heteroplasmy concordance between mitochondrial DNA and RNA. Sci. Rep. 2019 9 1 12942 10.1038/s41598‑019‑49279‑7 31506522
    [Google Scholar]
  50. McCormick E.M. Muraresku C.C. Falk M.J. Mitochondrial Genomics: A complex field now coming of age. Curr. Genet. Med. Rep. 2018 6 2 52 61 10.1007/s40142‑018‑0137‑x 30386685
    [Google Scholar]
  51. Wei W. Pagnamenta A.T. Gleadall N. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat. Commun. 2020 11 1 1740 10.1038/s41467‑020‑15336‑3 32269217
    [Google Scholar]
  52. Lutz-Bonengel S. Parson W. No further evidence for paternal leakage of mitochondrial DNA in humans yet. Proc. Natl. Acad. Sci. USA 2019 116 6 1821 1822 10.1073/pnas.1820533116 30674683
    [Google Scholar]
  53. Dayama G. Emery S.B. Kidd J.M. Mills R.E. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res. 2014 42 20 12640 12649 10.1093/nar/gku1038 25348406
    [Google Scholar]
  54. Ju Y.S. Tubio J.M.C. Mifsud W. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res. 2015 25 6 814 824 10.1101/gr.190470.115 25963125
    [Google Scholar]
  55. Luo S. Valencia C.A. Zhang J. Reply to Lutz-Bonengel et al.: Biparental mtDNA transmission is unlikely to be the result of nuclear mitochondrial DNA segments. Proc. Natl. Acad. Sci. USA 2019 116 6 1823 1824 10.1073/pnas.1821357116 30674682
    [Google Scholar]
  56. Bai R. Cui H. Devaney J.M. Interference of nuclear mitochondrial DNA segments in mitochondrial DNA testing resembles biparental transmission of mitochondrial DNA in humans. Genet. Med. 2021 23 8 1514 1521 10.1038/s41436‑021‑01166‑1 33846581
    [Google Scholar]
  57. Rius R. Cowley M.J. Riley L. Puttick C. Thorburn D.R. Christodoulou J. Biparental inheritance of mitochondrial DNA in humans is not a common phenomenon. Genet. Med. 2019 21 12 2823 2826 10.1038/s41436‑019‑0568‑0 31171843
    [Google Scholar]
  58. Parakatselaki M.E. Zhu C.T. Rand D. Ladoukakis E.D. NUMTs can imitate biparental transmission of mtDNA—A case in Drosophila melanogaster. Genes 2022 13 6 1023 10.3390/genes13061023 35741785
    [Google Scholar]
  59. Annis S. Fleischmann Z. Khrapko M. Quasi-Mendelian paternal inheritance of mitochondrial DNA: A notorious artifact, or anticipated behavior? Proc. Natl. Acad. Sci. USA 2019 116 30 14797 14798 10.1073/pnas.1821436116 31311874
    [Google Scholar]
  60. Salas A. Schönherr S. Bandelt H.J. Gómez-Carballa A. Weissensteiner H. Extraordinary claims require extraordinary evidence in asserted mtDNA biparental inheritance. Forensic Sci. Int. Genet. 2020 47 102274 10.1016/j.fsigen.2020.102274 32330850
    [Google Scholar]
  61. Shokolenko I. Alexeyev M. Mitochondrial DNA: Consensuses and Controversies. DNA 2022 2 2 131 148 10.3390/dna2020010 36381197
    [Google Scholar]
  62. Monzel A.S. Enríquez J.A. Picard M. Multifaceted mitochondria: Moving mitochondrial science beyond function and dysfunction. Nat. Metab. 2023 5 4 546 562 10.1038/s42255‑023‑00783‑1 37100996
    [Google Scholar]
  63. Wallace D.C. Mitochondrial DNA variation in human radiation and disease. Cell 2015 163 1 33 38 10.1016/j.cell.2015.08.067 26406369
    [Google Scholar]
  64. Russell O.M. Gorman G.S. Lightowlers R.N. Turnbull D.M. Mitochondrial diseases: Hope for the future. Cell 2020 181 1 168 188 10.1016/j.cell.2020.02.051 32220313
    [Google Scholar]
  65. Hernández C. Mitochondrial DNA in human diversity and health: From the golden age to the omics era. Genes 2023 14 8 1534 10.3390/genes14081534 37628587
    [Google Scholar]
  66. Wen H. Deng H. Li B. Mitochondrial diseases: From molecular mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025 10 1 9 10.1038/s41392‑024‑02044‑3 39788934
    [Google Scholar]
  67. Aldossary A.M. Tawfik E.A. Alomary M.N. Recent advances in mitochondrial diseases: From molecular insights to therapeutic perspectives. Saudi Pharm. J. 2022 30 8 1065 1078 10.1016/j.jsps.2022.05.011 36164575
    [Google Scholar]
  68. Mustafa MF Fakurazi S Abdullah MA Maniam S Pathogenic mitochondria DNA mutations: Current detection tools and interventions. genes 2020 11 2 192 10.3390/genes11020192 32059522
    [Google Scholar]
  69. Liu M. Ji W. Zhao X. Liu X. Hu J.F. Cui J. Therapeutic potential of engineering the mitochondrial genome. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 7 166804 10.1016/j.bbadis.2023.166804 37429560
    [Google Scholar]
  70. Ryzhkova A. Sazonova M. Sinyov V. Mitochondrial diseases caused by mtDNA mutations: A mini-review. Ther. Clin. Risk Manag. 2018 14 1933 1942 10.2147/TCRM.S154863 30349272
    [Google Scholar]
  71. Bharadwaj A. A review over Mitochondrial Diseases due to mtDNA mutations: Recent advances and remedial aspects. Infect. Disord. Drug Targets 2024 10.2174/0118715265304029240801092834 39234902
    [Google Scholar]
  72. Zong Y. Li H. Liao P. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024 9 1 124 10.1038/s41392‑024‑01839‑8 38744846
    [Google Scholar]
  73. Di Donfrancesco A. Massaro G. Di Meo I. Tiranti V. Bottani E. Brunetti D. Gene therapy for mitochondrial diseases: Current status and future perspective. Pharmaceutics 2022 14 6 1287 10.3390/pharmaceutics14061287 35745859
    [Google Scholar]
  74. Keshavan N. Minczuk M. Viscomi C. Rahman S. Gene therapy for mitochondrial disorders. J. Inherit. Metab. Dis. 2024 47 1 145 175 10.1002/jimd.12699 38171948
    [Google Scholar]
  75. Song M. Ye L. Yan Y. Mitochondrial diseases and mtDNA editing. Genes Dis. 2024 11 3 101057 10.1016/j.gendis.2023.06.026 38292200
    [Google Scholar]
  76. Gao Y. Guo L. Wang F. Wang Y. Li P. Zhang D. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: A review. Cytotherapy 2024 26 1 11 24 10.1016/j.jcyt.2023.10.004 37930294
    [Google Scholar]
  77. Phan H.T.L. Lee H. Kim K. Trends and prospects in mitochondrial genome editing. Exp. Mol. Med. 2023 55 5 871 878 10.1038/s12276‑023‑00973‑7 37121968
    [Google Scholar]
  78. Castillo S.R. Simone B.W. Clark K.J. Devaux P. Ekker S.C. Unconstrained precision mitochondrial genome editing with αDdCBEs. Hum. Gene Ther. 2024 35 19-20 798 813 10.1089/hum.2024.073 39212664
    [Google Scholar]
  79. Soldatov V.O. Kubekina M.V. Skorkina M.Y. Current advances in gene therapy of mitochondrial diseases. J. Transl. Med. 2022 20 1 562 10.1186/s12967‑022‑03685‑0 36471396
    [Google Scholar]
  80. Silva-Pinheiro P. Minczuk M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 2022 23 4 199 214 10.1038/s41576‑021‑00432‑x 34857922
    [Google Scholar]
  81. Chernega T. Choi J. Salmena L. Andreazza A.C. Mitochondrion-targeted RNA therapies as a potential treatment strategy for mitochondrial diseases. Mol. Ther. Nucleic Acids 2022 30 359 377 10.1016/j.omtn.2022.10.012 36420220
    [Google Scholar]
  82. Falabella M. Minczuk M. Hanna M.G. Viscomi C. Pitceathly R.D.S. Gene therapy for primary mitochondrial diseases: Experimental advances and clinical challenges. Nat. Rev. Neurol. 2022 18 11 689 698 10.1038/s41582‑022‑00715‑9 36257993
    [Google Scholar]
  83. Schmauck-Medina T. Molière A. Lautrup S. New hallmarks of ageing: A 2022 Copenhagen ageing meeting summary. Aging 2022 14 16 6829 6839 10.18632/aging.204248 36040386
    [Google Scholar]
  84. Picca A. Guerra F. Calvani R. The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp. Gerontol. 2023 178 112203 10.1016/j.exger.2023.112203 37172915
    [Google Scholar]
  85. Wolf A.M. MtDNA mutations and aging—Not a closed case after all? Signal Transduct. Target. Ther. 2021 6 1 56 10.1038/s41392‑021‑00479‑6 33563891
    [Google Scholar]
  86. Kong M. Guo L. Xu W. Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. Life Medicine 2022 1 2 149 167 10.1093/lifemedi/lnac014 39871923
    [Google Scholar]
  87. Song Y. Zhou Y. Zhou X. The role of mitophagy in innate immune responses triggered by mitochondrial stress. Cell Commun. Signal. 2020 18 1 186 10.1186/s12964‑020‑00659‑x 33239048
    [Google Scholar]
  88. Chen S. Liao Z. Xu P. Mitochondrial control of innate immune responses. Front. Immunol. 2023 14 1166214 10.3389/fimmu.2023.1166214 37325622
    [Google Scholar]
  89. VanPortfliet J.J. Chute C. Lei Y. Shutt T.E. West A.P. Mitochondrial DNA release and sensing in innate immune responses. Hum. Mol. Genet. 2024 33 R1 R80 R91 10.1093/hmg/ddae031 38779772
    [Google Scholar]
  90. West A.P. Shadel G.S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 2017 17 6 363 375 10.1038/nri.2017.21 28393922
    [Google Scholar]
  91. Picca A. Calvani R. Coelho-Junior H.J. Marzetti E. Cell death and inflammation: The role of mitochondria in health and disease. Cells 2021 10 3 537 10.3390/cells10030537 33802550
    [Google Scholar]
  92. Bryant J.D. Lei Y. VanPortfliet J.J. Winters A.D. West A.P. Assessing Mitochondrial DNA release into the cytosol and subsequent activation of innate immune‐related pathways in mammalian cells. Curr. Protoc. 2022 2 2 e372 10.1002/cpz1.372 35175686
    [Google Scholar]
  93. Li Y.X. Cui S.F. Meng W. Hu H.Y. Wang C. Mitochondrial DNA and cGAS-STING innate immune signaling pathway: Latest research progress. Sichuan Da Xue Xue Bao Yi Xue Ban 2021 52 3 387 395 10.12182/20210560501 34018355
    [Google Scholar]
  94. Wood M.R. Sturk-Andreaggi K. Ring J.D. Resolving mitochondrial haplogroups B2 and B4 with next-generation mitogenome sequencing to distinguish Native American from Asian haplotypes. Forensic Sci. Int. Genet. 2019 43 102143 10.1016/j.fsigen.2019.102143 31473588
    [Google Scholar]
  95. Marshall C. Taylor R. Sturk-Andreaggi K. Barritt-Ross S. Berg G.E. McMahon T.P. Mitochondrial DNA haplogrouping to assist with the identification of unknown service members from the World War II Battle of Tarawa. Forensic Sci. Int. Genet. 2020 47 102291 10.1016/j.fsigen.2020.102291 32315949
    [Google Scholar]
  96. Syndercombe Court D. Mitochondrial DNA in forensic use. Emerg. Top. Life Sci. 2021 5 3 415 426 10.1042/ETLS20210204 34374411
    [Google Scholar]
  97. Li H. Cao Y. Yang F. Quantitation of human mitochondrial DNA and whole mtGenomes sequencing of fingernail/hair shaft samples. Forensic Sci. Res. 2025 10 1 owae018 10.1093/fsr/owae018 40007636
    [Google Scholar]
  98. Connell J.R. Lea R.A. Haupt L.M. Griffiths L.R. Mitochondrial DNA analysis in population isolates: Challenges and implications for human identification. Curr. Mol. Biol. Rep. 2023 10 1 1 8 10.1007/s40610‑023‑00155‑4
    [Google Scholar]
  99. Cooley A.M. Mitochondrial DNA Analysis. Methods Mol. Biol. 2023 2685 331 349 10.1007/978‑1‑0716‑3295‑6_20 37439991
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232358476250708091107
Loading
/content/journals/cgt/10.2174/0115665232358476250708091107
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: inheritance ; mutation ; mitochondria ; Deoxyribonucleic acid ; mtDNA ; heteroplasmy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test