Skip to content
2000
image of Transcriptomic Signatures in TP53 Positive and Negative Tumor Samples in NSCLC

Abstract

Introduction

Lung cancer, specifically non-small cell lung cancer (NSCLC), is a leading cause of cancer-related mortality worldwide. TP53, a crucial tumor suppressor gene, is often mutated in various cancers, including lung cancer. This study focuses on the differences in transcriptomic profiles between TP53-mutated (TP53+) and TP53-wildtype (TP53-) NSCLC tumor samples, aiming to develop a gene signature that can predict overall survival and immune response, particularly in the context of immunotherapy. It aims to identify differentially expressed genes (DEGs) associated with TP53 status in non-small cell lung cancer and develop a gene signature that can predict overall survival and immune response.

Methods

Gene expression profiles from TP53-positive and TP53-negative NSCLC tumor samples were analyzed. Data were sourced from the GEO database (GSE8569, n = 69) and the TCGA database (n = 1026). Differential expression analysis was conducted to identify DEGs, which were further analyzed using LASSO regression to develop a prognostic gene signature. Quantitative PCR (qPCR) was performed to validate the expression of selected genes.

Results

A total of 535 DEGs (168 up-regulated, 367 down-regulated) were identified in TP53+ samples. Further analysis with TCGA data narrowed this down to 29 genes, from which 12 were identified as prognostic features using LASSO analysis. This 12-gene signature effectively stratified patients into low- and high-risk groups for overall survival. Differences in immune cell infiltration and immune pathway activity were significant between these groups, indicating the potential of the gene signature to predict immune response. Among the genes analyzed, BMP2, LPXN, IER3, ANLN, TNNT1, OGT, KRT8, BARX2, PRC1, and SNX30 showed statistically significant differences in qPCR results.

Discussion

The 12-gene signature demonstrates robust predictive capability for survival outcomes and immune response patterns in NSCLC patients, suggesting its potential clinical utility in precision oncology. The observed correlation between TP53 mutation status and immune microenvironment alterations provides valuable insights into the mechanistic basis of immunotherapy resistance and response.

Conclusion

This study identifies a TP53-associated transcriptomic signature that is significantly associated with overall survival in lung cancer patients. The gene signature also correlates with differences in immune cell infiltration patterns between risk groups, offering potential insights into the tumor immune microenvironment. These findings may contribute to future efforts to stratify patients and guide immunotherapy decisions, pending further experimental validation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232357300250805021330
2025-08-08
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cgt/10.2174/0115665232357300250805021330/BMS-CGT-2024-165.html?itemId=/content/journals/cgt/10.2174/0115665232357300250805021330&mimeType=html&fmt=ahah

References

  1. Li Y. Lv Y. Zhu Y. Low-temperature plasma-activated medium inhibited proliferation and progression of lung cancer by targeting the PI3K/Akt and MAPK pathways. Oxid. Med. Cell. Longev. 2022 2022 1 18 10.1155/2022/9014501 35340201
    [Google Scholar]
  2. Zhang L. Liu X. Liu Y. Lysophosphatidylcholine inhibits lung cancer cell proliferation by regulating fatty acid metabolism enzyme long‐chain acyl‐coenzyme A synthase 5. Clin. Transl. Med. 2023 13 1 1180 10.1002/ctm2.1180 36639836
    [Google Scholar]
  3. Rodríguez-Cano F. Calvo V. Garitaonaindía Y. Cost-effectiveness of diagnostic tests during follow-up in lung cancer patients: An evidence-based study. Transl. Lung Cancer Res. 2023 12 2 247 256 10.21037/tlcr‑22‑540 36895936
    [Google Scholar]
  4. Liu Z. Zhang J. Ge Y. Huang M. Wang Y. Rare combined small cell lung carcinoma and lung squamous cell carcinoma response to pd-1 inhibitor as third-line therapy: A case report. Cancer Manag. Res. 2023 15 197 201 10.2147/CMAR.S397711 36860892
    [Google Scholar]
  5. Huang Y. Xiao L. Daba M.Y. Characterization of molecular subtypes based on chromatin regulators and identification of the role of NPAS2 in lung adenocarcinoma. Clin. Epigenetics 2023 15 1 72 10.1186/s13148‑023‑01486‑w 37120564
    [Google Scholar]
  6. Ye Q. Raese R. Luo D. MicroRNA, mRNA, and proteomics biomarkers and therapeutic targets for improving lung cancer treatment outcomes. Cancers 2023 15 8 2294 10.3390/cancers15082294 37190222
    [Google Scholar]
  7. Lancaster H.L. Heuvelmans M.A. Oudkerk M. Low‐dose computed tomography lung cancer screening: Clinical evidence and implementation research. J. Intern. Med. 2022 292 1 68 80 10.1111/joim.13480 35253286
    [Google Scholar]
  8. Gould G.S. Hurst J.R. Trofor A. Recognising the importance of chronic lung disease: A consensus statement from the global alliance for chronic diseases (Lung Diseases group). Respir. Res. 2023 24 1 15 10.1186/s12931‑022‑02297‑y 36639661
    [Google Scholar]
  9. Han Y. Li Y. Comprehensive exploration of M2 macrophages and its related genes for predicting clinical outcomes and drug sensitivity in lung squamous cell carcinoma. J. Oncol. 2022 2022 1 12 10.1155/2022/1163924 36157235
    [Google Scholar]
  10. Liu L. Wei Y. Teng Y. Yan J. Li F. Chen Y. Health-related quality of life and utility scores of lung cancer patients treated with traditional Chinese medicine in China. Patient Prefer. Adherence 2022 16 297 306 10.2147/PPA.S344622 35153476
    [Google Scholar]
  11. Wang M. Herbst R.S. Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021 27 8 1345 1356 10.1038/s41591‑021‑01450‑2 34385702
    [Google Scholar]
  12. Mascarenhas J. Lu M. Kosiorek H. Oral idasanutlin in patients with polycythemia vera. Blood 2019 134 6 525 533 10.1182/blood.2018893545 31167802
    [Google Scholar]
  13. Pennisi R. Musarra-Pizzo M. Velletri T. Cancer-related intracellular signalling pathways activated by doxorubicin/cyclodextrin-graphene-based nanomaterials. Biomolecules 2022 12 1 63 10.3390/biom12010063 35053211
    [Google Scholar]
  14. Zhou Z. Jin H. Xu J. A gene signature driven by abnormally methylated DEGs was developed for TP53 wild-type ovarian cancer samples by integrative omics analysis of DNA methylation and gene expression data. Ann. Transl. Med. 2023 11 1 20 10.21037/atm‑22‑5764 36760264
    [Google Scholar]
  15. Gao J. Chen X. Li X. Differentiating TP53 mutation status in pancreatic ductal adenocarcinoma using multiparametric MRI-derived radiomics. Front. Oncol. 2021 11 632130 10.3389/fonc.2021.632130 34079753
    [Google Scholar]
  16. Yu J. Li Y. Zhang D. Wan D. Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp. Hematol. Oncol. 2020 9 1 4 10.1186/s40164‑020‑00161‑7 32231866
    [Google Scholar]
  17. Kim J.Y. Jung J. Kim K.M. Lee J. Im YH. TP53 mutations predict poor response to immunotherapy in patients with metastatic solid tumors. Cancer Med. 2023 12 11 12438 12451 10.1002/cam4.5953 37081749
    [Google Scholar]
  18. Lindemann A. Takahashi H. Patel A.A. Osman A.A. Myers J.N. Targeting the DNA damage response in OSCC with TP 53 mutations. J. Dent. Res. 2018 97 6 635 644 10.1177/0022034518759068 29489434
    [Google Scholar]
  19. McCubrey J.A. Yang L.V. Abrams S.L. Effects of TP53 mutations and miRs on immune responses in the tumor microenvironment important in pancreatic cancer progression. Cells 2022 11 14 2155 10.3390/cells11142155 35883598
    [Google Scholar]
  20. Zhao H. Jin X. Causal associations between dietary antioxidant vitamin intake and lung cancer: A Mendelian randomization study. Front. Nutr. 2022 9 965911 10.3389/fnut.2022.965911 36118777
    [Google Scholar]
  21. Angulo B. Suarez-Gauthier A. Lopez-Rios F. Expression signatures in lung cancer reveal a profile for EGFR ‐mutant tumours and identify selective PIK3CA overexpression by gene amplification. J. Pathol. 2008 214 3 347 356 10.1002/path.2267 17992665
    [Google Scholar]
  22. Cortez M.A. Masrorpour F. Ivan C. Bone morphogenetic protein 7 promotes resistance to immunotherapy. Nat. Commun. 2020 11 1 4840 10.1038/s41467‑020‑18617‑z 32973129
    [Google Scholar]
  23. Wu C. Liu X. Zhong L. Identification of cuproptosis-related genes in nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev. 2023 2023 1 18 10.1155/2023/9245667 36865349
    [Google Scholar]
  24. Xiang T. Zhang S. Li Q. GPHB5 is a biomarker in women with metabolic syndrome: Results from cross-sectional and intervention studies. Front. Endocrinol. 2022 13 893142 10.3389/fendo.2022.893142 35757403
    [Google Scholar]
  25. Yu L. Ding L. Wang Z.Y. Hybrid metabolic activity-related prognostic model and its effect on tumor in renal cell carcinoma. J. Healthc. Eng. 2022 2022 1 17 10.1155/2022/1147545 36591111
    [Google Scholar]
  26. Fang Z. Kong F. Zeng J. Integrated analysis based on vesicle trafficking‐related genes identifying CNIH4 as a novel therapeutic target for glioma. Cancer Med. 2023 12 11 12943 12959 10.1002/cam4.5947 37062068
    [Google Scholar]
  27. Therneau T.M. Grambsch P.M. Modeling Survival Data: Extending the Cox Model. New York Springer 2000 10.1007/978‑1‑4757‑3294‑8
    [Google Scholar]
  28. Wang N. Bai X. Wang X. A novel fatty acid metabolism-associated risk model for prognosis prediction in acute myeloid leukaemia. Curr. Oncol. 2023 30 2 2524 2542 10.3390/curroncol30020193 36826154
    [Google Scholar]
  29. Lu Y. Chen S. Wang Q. Zhang J. Pei X. PRR7-AS1 correlates with immune cell infiltration and is a diagnostic and prognostic marker for hepatocellular carcinoma. J. Oncol. 2022 2022 1 8 10.1155/2022/1939368 36059812
    [Google Scholar]
  30. Chen C.R. Chang R.S. Chen C.S. Identification of prognostic genes in gliomas based on increased microenvironment stiffness. Cancers 2022 14 15 3659 10.3390/cancers14153659 35954323
    [Google Scholar]
  31. Geng X. Chi W. Lin X. Determining the mechanism of action of the Qishan formula against lung adenocarcinoma by integration of network pharmacology, molecular docking, and proteomics. Medicine 2023 102 13 33384 10.1097/MD.0000000000033384 37000102
    [Google Scholar]
  32. Liang G. Zeng M. Gao M. lncRNA IGF2-AS regulates nucleotide metabolism by mediating HMGA1 to promote pyroptosis of endothelial progenitor cells in sepsis patients. Oxid. Med. Cell. Longev. 2022 2022 1 16 10.1155/2022/9369035 35082972
    [Google Scholar]
  33. Ohmori K. Kamei A. Watanabe Y. Abe K. Gene expression over time during cell transformation due to non-genotoxic carcinogen treatment of Bhas 42 cells. Int. J. Mol. Sci. 2022 23 6 3216 10.3390/ijms23063216 35328637
    [Google Scholar]
  34. Zeng L. Lyu X. Yuan J. STMN1 promotes tumor metastasis in non-small cell lung cancer through microtubule-dependent and nonmicrotubule-dependent pathways. Int. J. Biol. Sci. 2024 20 4 1509 1527 10.7150/ijbs.84738 38385074
    [Google Scholar]
  35. Saed L. Jeleń A. Mirowski M. Sałagacka-Kubiak A. Prognostic significance of HMGA1 expression in lung cancer based on bioinformatics analysis. Int. J. Mol. Sci. 2022 23 13 6933 10.3390/ijms23136933 35805937
    [Google Scholar]
  36. Zheng H. Cheng Z.J. Liang B. N 6 -methyladenosine modification of ANLN enhances hepatocellular carcinoma bone metastasis. Int. J. Biol. Sci. 2023 19 4 1009 1023 10.7150/ijbs.73570 36923927
    [Google Scholar]
  37. Zhang X. Li L. Huang S. Comprehensive analysis of ANLN in human tumors: A prognostic biomarker associated with cancer immunity. Oxid. Med. Cell. Longev. 2022 2022 1 14 10.1155/2022/5322929 35340220
    [Google Scholar]
  38. Wu G. Wang Y. Wan Y. Establishing an 8‐gene immune prognostic model based on TP53 status for lung adenocarcinoma. J. Clin. Lab. Anal. 2022 36 7 24538 10.1002/jcla.24538 35689561
    [Google Scholar]
  39. Suzuki C. Daigo Y. Ishikawa N. ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 2005 65 24 11314 11325 10.1158/0008‑5472.CAN‑05‑1507 16357138
    [Google Scholar]
  40. Li S. Wang W. Yu H. Characterization of genomic instability-related genes predicts survival and therapeutic response in lung adenocarcinoma. BMC Cancer 2023 23 1 1115 10.1186/s12885‑023‑11580‑0 37974107
    [Google Scholar]
  41. Ahamed W. Yu R.M.C. Pan Y. HTRA1 regulates subclinical inflammation and activates proangiogenic response in the retina and choroid. Int. J. Mol. Sci. 2022 23 18 10206 10.3390/ijms231810206 36142120
    [Google Scholar]
  42. Lu Z. Peng H. Li R. Xu X. Peng J. BarH-like homeobox 2 represses the transcription of keratin 16 and affects Ras signaling pathway to suppress nasopharyngeal carcinoma progression. Bioengineered 2022 13 2 3122 3136 10.1080/21655979.2022.2026549 35037835
    [Google Scholar]
  43. Chen H. Zhang M. Zhang W. Downregulation of BarH‐like homeobox 2 promotes cell proliferation, migration and aerobic glycolysis through Wnt/β‐catenin signaling, and predicts a poor prognosis in non‐small cell lung carcinoma. Thorac. Cancer 2018 9 3 390 399 10.1111/1759‑7714.12593 29341468
    [Google Scholar]
  44. Yu J. Li G. Tian Y. Huo S. Establishment of a Lymph node metastasis-associated prognostic signature for lung adenocarcinoma. Genet. Res. 2023 2023 1 15 10.1155/2023/6585109 36793937
    [Google Scholar]
  45. Xu J.Q. Fu Y.L. Zhang J. Targeting glycolysis in non-small cell lung cancer: Promises and challenges. Front. Pharmacol. 2022 13 1037341 10.3389/fphar.2022.1037341 36532721
    [Google Scholar]
  46. Opris H. Baciut M. Bran S. Characterization of eggshell as a bio-regeneration material. Med. Pharm. Rep. 2022 96 1 93 100 10.15386/mpr‑2476 36818316
    [Google Scholar]
  47. Wu Y. Peng Z. Gu S. Wang H. Xiang W. A risk score signature consisting of six immune genes predicts overall survival in patients with lower-grade gliomas. Comput. Math. Methods Med. 2022 2022 1 17 10.1155/2022/2558548 35186111
    [Google Scholar]
  48. Huang Z. Wei H. Wang X. Icariin promotes osteogenic differentiation of BMSCs by upregulating BMAL1 expression via BMP signaling. Mol. Med. Rep. 2020 21 3 1590 1596 10.3892/mmr.2020.10954 32016461
    [Google Scholar]
  49. Li B. An W. Wang H. BMP2/SMAD pathway activation in JAK2/p53-mutant megakaryocyte/erythroid progenitors promotes leukemic transformation. Blood 2022 139 25 3630 3646 10.1182/blood.2021014465 35421216
    [Google Scholar]
  50. Zhang W. Yan Z. Zhao F. He Q. Xu H. TGF-β score based on silico analysis can robustly predict prognosis and immunological characteristics in lower-grade glioma: The evidence from multicenter studies. Recent Patents Anticancer Drug Discov. 2024 19 5 610 621 10.2174/1574892819666230915143632 37718518
    [Google Scholar]
  51. Park J.H. Koh E.B. Seo Y.J. Oh H.S. Byun J.H. BMP-9 improves the osteogenic differentiation ability over BMP-2 through p53 signaling in vitro in human periosteum-derived cells. Int. J. Mol. Sci. 2023 24 20 15252 10.3390/ijms242015252 37894931
    [Google Scholar]
  52. An S. Xu X. Bao Y. Su F. Jiang Y. Cephalomannine reduces radiotherapy resistance in non-small cell lung cancer cells by blocking the β-catenin-BMP2 signaling pathway. Tissue Cell 2024 91 102577 10.1016/j.tice.2024.102577 39368268
    [Google Scholar]
  53. Chawhan A.P. Dsouza N. Identifying the key hub genes linked with lung squamous cell carcinoma by examining the differentially expressed and survival genes. Mol. Genet. Genomics 2024 299 1 76 10.1007/s00438‑024‑02169‑8 39097557
    [Google Scholar]
  54. Zhang Y. Qiu F. Ye T. Epiregulin increases stemness-associated genes expression and promotes chemoresistance of non-small cell lung cancer via ERK signaling. Stem Cell Res. Ther. 2022 13 1 197 10.1186/s13287‑022‑02859‑3 35551652
    [Google Scholar]
  55. Jehl A. Conrad O. Burgy M. Blocking EREG/GPX4 sensitizes head and neck cancer to cetuximab through ferroptosis induction. Cells 2023 12 5 733 10.3390/cells12050733 36899869
    [Google Scholar]
  56. Sunaga N. Miura Y. Masuda T. Sakurai R. Role of epiregulin in lung tumorigenesis and therapeutic resistance. Cancers 2024 16 4 710 10.3390/cancers16040710 38398101
    [Google Scholar]
  57. Kido T. Kong H. Lau Y.F.C. The X-linked tumor suppressor TSPX regulates genes involved in the EGFR signaling pathway and cell viability to suppress lung adenocarcinoma. Genes 2025 16 1 75 10.3390/genes16010075 39858622
    [Google Scholar]
  58. Xiu W. Zhang Y. Tang D. Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway. Cell. Oncol. 2024 47 6 2201 2215 10.1007/s13402‑024‑00999‑7 39373858
    [Google Scholar]
  59. Bu H. Li Y. Jin C. Overexpression of PRC1 indicates a poor prognosis in ovarian cancer. Int. J. Oncol. 2020 56 3 685 696 10.3892/ijo.2020.4959 31922238
    [Google Scholar]
  60. Liu L. Huang Z. Zhang P. Identification of a polycomb group-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. J. Thorac. Dis. 2023 15 5 2402 2424 10.21037/jtd‑22‑1324 37324109
    [Google Scholar]
  61. Shi J. Hao S. Liu X. Li Y. Zheng X. Feiyiliu Mixture sensitizes EGFRDel19/T790M/C797S mutant non-small cell lung cancer to osimertinib by attenuating the PRC1/Wnt/EGFR pathway. Front. Pharmacol. 2023 14 1093017 10.3389/fphar.2023.1093017 36744262
    [Google Scholar]
  62. Zhao R. Guo Y. Zhang L. CBX4 plays a bidirectional role in transcriptional regulation and lung adenocarcinoma progression. Cell Death Dis. 2024 15 5 378 10.1038/s41419‑024‑06745‑z 38816356
    [Google Scholar]
  63. Zhong P. Shu R. Wu H. Liu Z. Shen X. Hu Y. Low KRT15 expression is associated with poor prognosis in patients with breast invasive carcinoma. Exp. Ther. Med. 2021 21 4 305 10.3892/etm.2021.9736 33717248
    [Google Scholar]
  64. Chen F.Q. Zheng H. Gu T. Modification of STIM2 by m6A RNA methylation inhibits metastasis of cholangiocarcinoma. Ann. Transl. Med. 2022 10 2 40 10.21037/atm‑21‑6485 35282134
    [Google Scholar]
  65. Tao L. Xiang D. Xie Y. Bronson R.T. Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat. Commun. 2017 8 1 14431 10.1038/ncomms14431 28194015
    [Google Scholar]
  66. Li G. Guo J. Mou Y. Keratin gene signature expression drives epithelial-mesenchymal transition through enhanced TGF-β signaling pathway activation and correlates with adverse prognosis in lung adenocarcinoma. Heliyon 2024 10 3 24549 10.1016/j.heliyon.2024.e24549 38322947
    [Google Scholar]
  67. Sun S. Chen S. Wang N. DNA methylation profiling deciphers three EMT subtypes with distinct prognoses and therapeutic vulnerabilities in breast cancer. J. Cancer 2024 15 15 4922 4938 10.7150/jca.96096 39132156
    [Google Scholar]
  68. Zhu T. Zhou P. Yang L. Fang X. Zhi X. Troponin T1 silencing inhibits paclitaxel resistance and the development of breast cancer via suppressing rat sarcoma virus / rapidly accelerated fibrosarcoma 1 pathway. Environ. Toxicol. 2024 39 4 2064 2076 10.1002/tox.24084 38095131
    [Google Scholar]
  69. Gong Z. Huang X. Cao Q. Wu Y. Zhang Q.A. CLRN3-Based CD8+ T-related gene signature predicts prognosis and immunotherapy response in colorectal cancer. Biomolecules 2024 14 8 891 10.3390/biom14080891 39199281
    [Google Scholar]
  70. Jiang C. Xu F. Yi D. Testosterone promotes the migration, invasion and EMT process of papillary thyroid carcinoma by up-regulating Tnnt1. J. Endocrinol. Invest. 2023 47 1 149 166 10.1007/s40618‑023‑02132‑1 37477865
    [Google Scholar]
  71. Cai C. Kilari S. Zhao C. Adventitial delivery of nanoparticles encapsulated with 1α, 25-dihydroxyvitamin D3 attenuates restenosis in a murine angioplasty model. Sci. Rep. 2021 11 1 4772 10.1038/s41598‑021‑84444‑x 33637886
    [Google Scholar]
  72. Vanhooren J. Van Camp L. Depreter B. Deciphering the non-coding RNA landscape of pediatric acute myeloid leukemia. Cancers 2022 14 9 2098 10.3390/cancers14092098 35565228
    [Google Scholar]
  73. Ito T. Ozaki S. Chanasong R. Activation of ERK/IER3/PP2A-B56γ-positive feedback loop in lung adenocarcinoma by allelic deletion of B56γ gene. Oncol. Rep. 2016 35 5 2635 2642 10.3892/or.2016.4677 26986830
    [Google Scholar]
  74. Khan A. Li W. Ambreen A. Wei D.Q. Wang Y. Mao Y. A protein coupling and molecular simulation analysis of the clinical mutants of androgen receptor revealed a higher binding for Leupaxin, to increase the prostate cancer invasion and motility. Comput. Biol. Med. 2022 146 105537 10.1016/j.compbiomed.2022.105537 35504219
    [Google Scholar]
  75. Allert C. Waclawiczek A. Zimmermann S.M.N. Protein tyrosine kinase 2b inhibition reverts niche-associated resistance to tyrosine kinase inhibitors in AML. Leukemia 2022 36 10 2418 2429 10.1038/s41375‑022‑01687‑x 36056084
    [Google Scholar]
  76. Chenchen S. Xueqian Q. Yahui L. STAT3 mediates ECM stiffness-dependent progression in ovarian cancer. Mol. Cell. Biochem. 2025 480 1 607 620 10.1007/s11010‑024‑04991‑5 38625514
    [Google Scholar]
  77. Sato K. Miura K. Tamori S. Akimoto K. Identification of a gene expression signature to predict the risk of early recurrence and the degree of immune cell infiltration in triple-negative breast cancer. Cancer Genomics Proteomics 2024 21 3 316 326 10.21873/cgp.20450 38670590
    [Google Scholar]
  78. Feng Z. Yin J. Zhang Z. O-GlcNAcylation of E3 ubiquitin ligase SKP2 promotes hepatocellular carcinoma proliferation. Oncogene 2024 43 15 1149 1159 10.1038/s41388‑024‑02977‑7 38396292
    [Google Scholar]
  79. Kron N.S. Fieber L.A. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021 16 6 0252647 10.1371/journal.pone.0252647 34116561
    [Google Scholar]
  80. Fang X.L. Li Q.J. Wang L. Identification of a gene score related to antigen processing and presentation machinery for predicting prognosis in head and neck squamous cell carcinoma and its potential implications for immunotherapy. Clin. Transl. Oncol. 2024 10.1007/s12094‑024‑03829‑2 39738932
    [Google Scholar]
  81. Leffers N. Lambeck A.J.A. de Graeff P. Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation. Gynecol. Oncol. 2008 110 3 365 373 10.1016/j.ygyno.2008.04.043 18571704
    [Google Scholar]
  82. Cai Y. Tian Y. Wang J. Identification of driver genes regulating the T-cell–infiltrating levels in hepatocellular carcinoma. Front. Genet. 2020 11 560546 10.3389/fgene.2020.560546 33381145
    [Google Scholar]
  83. Park J. Hsueh P.C. Li Z. Ho P.C. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity 2023 56 1 32 42 10.1016/j.immuni.2022.12.008 36630916
    [Google Scholar]
  84. Wang Y. Hu L. Zheng Y. Guo L. HMGA1 in cancer: Cancer classification by location. J. Cell. Mol. Med. 2019 23 4 2293 2302 10.1111/jcmm.14082 30614613
    [Google Scholar]
  85. Chen J. Ji K. Gu L. Fang Y. Pan M. Tian S. HMGA1 promotes macrophage recruitment via activation of NF-κB-CCL2 signaling in hepatocellular carcinoma. J. Immunol. Res. 2022 2022 1 10 10.1155/2022/4727198 35785026
    [Google Scholar]
  86. Cheng W.L. Feng P.H. Lee K.Y. The role of EREG/EGFR Pathway in tumor progression. Int. J. Mol. Sci. 2021 22 23 12828 10.3390/ijms222312828 34884633
    [Google Scholar]
  87. Baek A. Son S. Baek Y.M. Kim D.E. KRT8 (keratin 8) attenuates necrotic cell death by facilitating mitochondrial fission-mediated mitophagy through interaction with PLEC (plectin). Autophagy 2021 17 12 3939 3956 10.1080/15548627.2021.1897962 33783309
    [Google Scholar]
  88. Wang D. Shang Q. Mao J. Phosphorylation of KRT8 (keratin 8) by excessive mechanical load-activated PKN (protein kinase N) impairs autophagosome initiation and contributes to disc degeneration. Autophagy 2023 19 9 2485 2503 10.1080/15548627.2023.2186099 36897022
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232357300250805021330
Loading
/content/journals/cgt/10.2174/0115665232357300250805021330
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test