Skip to content
2000
image of CRISPR/Cas9 Technology for Modifying Immune Checkpoint in CAR-T Cell Therapy for Hematopoietic Malignancies

Abstract

Hematologic malignancies, which arise from dysregulation of hematopoiesis, are a group of cancers originating in cells with diminished capacity to differentiate into mature progeny and accumulating immature cells in blood-forming tissues such as lymph nodes and bone marrow. Immune-targeted therapies, such as Immune Checkpoint Blockade (ICB), chimeric antigen receptor T (CAR-T) cell therapy, and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, a precise, popular, and versatile genome engineering tool, has opened new avenues for the treatment of malignancies. Targeting immune checkpoints has revolutionized FDA approval in cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-1 (programmed death-1), and PDL1. According to the ICB and CAR techniques, the production of efficient CAR-T cells depends on the successful genetic modification of T cells, making them less susceptible to immune escape and suppression by cancer cells, which results in reduced off-target toxicity. Therefore, CRISPR/Cas9 has revolutionized the immune checkpoint-based approach for CAR-T cell therapy of hematologic malignancy. Continued research and clinical trials will undoubtedly pave the way for further advances in this field, ultimately benefiting patients and improving outcomes.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232357078250331180413
2025-04-14
2025-10-31
Loading full text...

Full text loading...

References

  1. Zhang X. Zhu L. Zhang H. Chen S. Xiao Y. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front. Immunol. 2022 13 927153 10.3389/fimmu.2022.927153 35757715
    [Google Scholar]
  2. Huang J. Huang X. Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front. Immunol. 2022 13 1019115 10.3389/fimmu.2022.1019115 36248810
    [Google Scholar]
  3. Schepisi G. Gianni C. Cursano M.C. Gallà V. Menna C. Casadei C. Bleve S. Lolli C. Martinelli G. Rosti G. De Giorgi U. Immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR)-T cell therapy: Potential treatment options against testicular germ cell tumors. Front. Immunol. 2023 14 1118610 10.3389/fimmu.2023.1118610 36860862
    [Google Scholar]
  4. McGowan E. Lin Q. Ma G. Yin H. Chen S. Lin Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomed. Pharmacother. 2020 121 109625 10.1016/j.biopha.2019.109625 31733578
    [Google Scholar]
  5. Ghaffari S. Khalili N. Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. J. Exp. Clin. Cancer Res. 2021 40 1 269 10.1186/s13046‑021‑02076‑5 34446084
    [Google Scholar]
  6. Yi L. Li J. CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim. Biophys. Acta 2016 1866 2 197 207 27641687
    [Google Scholar]
  7. Rodrigo S. Senasinghe K. Quazi S. Molecular and therapeutic effect of CRISPR in treating cancer. Med. Oncol. 2023 40 2 81 10.1007/s12032‑022‑01930‑6 36650384
    [Google Scholar]
  8. Wang L. Chen Y. Liu X. Li Z. Dai X. The application of CRISPR/Cas9 technology for cancer immunotherapy: Current status and problems. Front. Oncol. 2022 11 704999 10.3389/fonc.2021.704999 35111663
    [Google Scholar]
  9. Khan A. Sarkar E. CRISPR/Cas9 encouraged CAR-T cell immunotherapy reporting efficient and safe clinical results towards cancer. Cancer Treat. Res. Commun. 2022 33 100641 10.1016/j.ctarc.2022.100641 36193597
    [Google Scholar]
  10. Wieder T. Eigentler T. Brenner E. Röcken M. Immune checkpoint blockade therapy. J. Allergy Clin. Immunol. 2018 142 5 1403 1414 10.1016/j.jaci.2018.02.042 29596939
    [Google Scholar]
  11. Li C. Brant E. Budak H. Zhang B. CRISPR/Cas: A Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J. Zhejiang Univ. Sci. B 2021 22 4 253 284 10.1631/jzus.B2100009 33835761
    [Google Scholar]
  12. Ren J. Zhang X. Liu X. Fang C. Jiang S. June C.H. Zhao Y. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 2017 8 10 17002 17011 10.18632/oncotarget.15218 28199983
    [Google Scholar]
  13. Liu X. Zhang Y. Cheng C. Cheng A.W. Zhang X. Li N. Xia C. Wei X. Liu X. Wang H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017 27 1 154 157 10.1038/cr.2016.142 27910851
    [Google Scholar]
  14. Newby G.A. Liu D.R. In vivo somatic cell base editing and prime editing. Mol. Ther. 2021 29 11 3107 3124 10.1016/j.ymthe.2021.09.002 34509669
    [Google Scholar]
  15. Wellhausen N. Agarwal S. Rommel P.C. Gill S.I. June C.H. Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Curr. Opin. Immunol. 2022 74 76 84 10.1016/j.coi.2021.10.008 34798542
    [Google Scholar]
  16. Madison B.B. Patil D. Richter M. Li X. Tong M. Cranert S. Wang X. Martin R. Xi H. Tan Y. Weiss L. Marquez K. Coronella J. Shedlock D.J. Ostertag E.M. Cas-CLOVER is a novel high-fidelity nuclease for safe and robust generation of TSCM-enriched allogeneic CAR-T cells. Mol. Ther. Nucleic Acids 2022 29 979 995 10.1016/j.omtn.2022.06.003 36189080
    [Google Scholar]
  17. Shams F. Bayat H. Mohammadian O. Mahboudi S. Vahidnezhad H. Soosanabadi M. Rahimpour A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Bioimpacts 2022 12 4 371 391 10.34172/bi.2022.23871 35975201
    [Google Scholar]
  18. Wang Y. Zhang W. Han Q. Liu Y. Dai H. Guo Y. Bo J. Fan H. Zhang Y. Zhang Y. Chen M. Feng K. Wang Q. Fu X. Han W. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin. Immunol. 2014 155 2 160 175 10.1016/j.clim.2014.10.002 25444722
    [Google Scholar]
  19. Sang W. Shi M. Yang J. Cao J. Xu L. Yan D. Yao M. Liu H. Li W. Zhang B. Sun K. Song X. Sun C. Jiao J. Qin Y. Sang T. Ma Y. Wu M. Gao X. Cheng H. Yan Z. Li D. Sun H. Zhu F. Wang Y. Zeng L. Li Z. Zheng J. Xu K. Phase II trial of co‐administration of CD19‐ and CD20‐targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma. Cancer Med. 2020 9 16 5827 5838 10.1002/cam4.3259 32608579
    [Google Scholar]
  20. Fitzgerald J.C. Weiss S.L. Maude S.L. Barrett D.M. Lacey S.F. Melenhorst J.J. Shaw P. Berg R.A. June C.H. Porter D.L. Frey N.V. Grupp S.A. Teachey D.T. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit. Care Med. 2017 45 2 e124 e131 10.1097/CCM.0000000000002053 27632680
    [Google Scholar]
  21. Pan J. Niu Q. Deng B. Liu S. Wu T. Gao Z. Liu Z. Zhang Y. Qu X. Zhang Y. Liu S. Ling Z. Lin Y. Zhao Y. Song Y. Tan X. Zhang Y. Li Z. Yin Z. Chen B. Yu X. Yan J. Zheng Q. Zhou X. Gao J. Chang A.H. Feng X. Tong C. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia 2019 33 12 2854 2866 10.1038/s41375‑019‑0488‑7 31110217
    [Google Scholar]
  22. Fry T.J. Shah N.N. Orentas R.J. Stetler-Stevenson M. Yuan C.M. Ramakrishna S. Wolters P. Martin S. Delbrook C. Yates B. Shalabi H. Fountaine T.J. Shern J.F. Majzner R.G. Stroncek D.F. Sabatino M. Feng Y. Dimitrov D.S. Zhang L. Nguyen S. Qin H. Dropulic B. Lee D.W. Mackall C.L. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018 24 1 20 28 10.1038/nm.4441 29155426
    [Google Scholar]
  23. Zhu H. Deng H. Mu J. Lyu C. Jiang Y. Deng Q. Anti-CD22 CAR-T cell therapy as a salvage treatment in B cell malignancies refractory or relapsed after anti-CD19 CAR-T therapy. OncoTargets Ther. 2021 14 4023 4037 10.2147/OTT.S312904 34239307
    [Google Scholar]
  24. Wagner D.L. Fritsche E. Pulsipher M.A. Ahmed N. Hamieh M. Hegde M. Ruella M. Savoldo B. Shah N.N. Turtle C.J. Wayne A.S. Abou-el-Enein M. Immunogenicity of CAR T cells in cancer therapy. Nat. Rev. Clin. Oncol. 2021 18 6 379 393 10.1038/s41571‑021‑00476‑2 33633361
    [Google Scholar]
  25. Tan Y. Cai H. Li C. Deng B. Song W. Ling Z. Hu G. Yang Y. Niu P. Meng G. Cheng W. Xu J. Duan J. Wang Z. Yu X. Feng X. Zhou J. Pan J. A novel full-human CD22-CAR T cell therapy with potent activity against CD22low B-ALL. Blood Cancer J. 2021 11 4 71 10.1038/s41408‑021‑00465‑9 33839735
    [Google Scholar]
  26. Pan J. Tan Y. Wang G. Deng B. Ling Z. Song W. Seery S. Zhang Y. Peng S. Xu J. Duan J. Wang Z. Yu X. Zheng Q. Xu X. Yuan Y. Yan F. Tian Z. Tang K. Zhang J. Chang A.H. Feng X. Donor-derived CD7 chimeric antigen receptor T cells for T-Cell acute lymphoblastic leukemia: First-in-human, phase I trial. J. Clin. Oncol. 2021 39 30 3340 3351 10.1200/JCO.21.00389 34324392
    [Google Scholar]
  27. Fraietta J.A. Lacey S.F. Orlando E.J. Pruteanu-Malinici I. Gohil M. Lundh S. Boesteanu A.C. Wang Y. O’Connor R.S. Hwang W.T. Pequignot E. Ambrose D.E. Zhang C. Wilcox N. Bedoya F. Dorfmeier C. Chen F. Tian L. Parakandi H. Gupta M. Young R.M. Johnson F.B. Kulikovskaya I. Liu L. Xu J. Kassim S.H. Davis M.M. Levine B.L. Frey N.V. Siegel D.L. Huang A.C. Wherry E.J. Bitter H. Brogdon J.L. Porter D.L. June C.H. Melenhorst J.J. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 2018 24 5 563 571 10.1038/s41591‑018‑0010‑1 29713085
    [Google Scholar]
  28. van der Sluis I.M. de Lorenzo P. Kotecha R.S. Attarbaschi A. Escherich G. Nysom K. Stary J. Ferster A. Brethon B. Locatelli F. Schrappe M. Scholte-van Houtem P.E. Valsecchi M.G. Pieters R. Blinatumomab added to chemotherapy in infant lymphoblastic leukemia. N. Engl. J. Med. 2023 388 17 1572 1581 10.1056/NEJMoa2214171 37099340
    [Google Scholar]
  29. Liu X. Zhao Y. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Curr. Res. Transl. Med. 2018 66 2 39 42 10.1016/j.retram.2018.04.003 29691200
    [Google Scholar]
  30. Ruella M. Kenderian S.S. Next-generation chimeric antigen receptor T-Cell therapy: Going off the shelf. BioDrugs 2017 31 6 473 481 10.1007/s40259‑017‑0247‑0 29143249
    [Google Scholar]
  31. Depil S. Duchateau P. Grupp S.A. Mufti G. Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: Development and challenges. Nat. Rev. Drug Discov. 2020 19 3 185 199 10.1038/s41573‑019‑0051‑2 31900462
    [Google Scholar]
  32. Nianias A. Themeli M. Induced pluripotent stem cell (iPSC)–derived lymphocytes for adoptive cell immunotherapy: Recent advances and challenges. Curr. Hematol. Malig. Rep. 2019 14 4 261 268 10.1007/s11899‑019‑00528‑6 31243643
    [Google Scholar]
  33. Ren J. Liu X. Fang C. Jiang S. June C.H. Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 2017 23 9 2255 2266 10.1158/1078‑0432.CCR‑16‑1300 27815355
    [Google Scholar]
  34. Stenger D. Stief T.A. Kaeuferle T. Willier S. Rataj F. Schober K. Vick B. Lotfi R. Wagner B. Grünewald T.G.P. Kobold S. Busch D.H. Jeremias I. Blaeschke F. Feuchtinger T. Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood 2020 136 12 1407 1418 10.1182/blood.2020005185 32483603
    [Google Scholar]
  35. Shalem O. Sanjana N.E. Hartenian E. Shi X. Scott D.A. Mikkelsen T.S. Heckl D. Ebert B.L. Root D.E. Doench J.G. Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014 343 6166 84 87 10.1126/science.1247005 24336571
    [Google Scholar]
  36. Tschumi B.O. Dumauthioz N. Marti B. CART cells are prone to Fas-and DR5-mediated cell death. J. Immunother. Cancer 2018 6 1 1 9 29298730
    [Google Scholar]
  37. Kumar J. Kumar R. Kumar Singh A. Tsakem E.L. Kathania M. Riese M.J. Theiss A.L. Davila M.L. Venuprasad K. Deletion of Cbl-b inhibits CD8 + T-cell exhaustion and promotes CAR T-cell function. J. Immunother. Cancer 2021 9 1 e001688 10.1136/jitc‑2020‑001688 33462140
    [Google Scholar]
  38. Møller S.H. Hsueh P.C. Yu Y.R. Zhang L. Ho P.C. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging. Cell Metab. 2022 34 3 378 395 10.1016/j.cmet.2022.02.003 35235773
    [Google Scholar]
  39. Riese M.J. Moon E.K. Johnson B.D. Albelda S.M. Diacylglycerol kinases (DGKs): Novel targets for improving T cell activity in cancer. Front. Cell Dev. Biol. 2016 4 108 10.3389/fcell.2016.00108 27800476
    [Google Scholar]
  40. Jung I.Y. Kim Y.Y. Yu H.S. Lee M. Kim S. Lee J. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 2018 78 16 4692 4703 10.1158/0008‑5472.CAN‑18‑0030 29967261
    [Google Scholar]
  41. Leone R.D. Sun I.M. Oh M.H. Sun I.H. Wen J. Englert J. Powell J.D. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol. Immunother. 2018 67 8 1271 1284 10.1007/s00262‑018‑2186‑0 29923026
    [Google Scholar]
  42. Mastelic-Gavillet B. Navarro Rodrigo B. Décombaz L. Wang H. Ercolano G. Ahmed R. Lozano L.E. Ianaro A. Derré L. Valerio M. Tawadros T. Jichlinski P. Nguyen-Ngoc T. Speiser D.E. Verdeil G. Gestermann N. Dormond O. Kandalaft L. Coukos G. Jandus C. Ménétrier-Caux C. Caux C. Ho P.C. Romero P. Harari A. Vigano S. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. J. Immunother. Cancer 2019 7 1 257 10.1186/s40425‑019‑0719‑5 31601268
    [Google Scholar]
  43. Giuffrida L. Sek K. Henderson M.A. Lai J. Chen A.X.Y. Meyran D. Todd K.L. Petley E.V. Mardiana S. Mølck C. Stewart G.D. Solomon B.J. Parish I.A. Neeson P.J. Harrison S.J. Kats L.M. House I.G. Darcy P.K. Beavis P.A. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat. Commun. 2021 12 1 3236 10.1038/s41467‑021‑23331‑5 34050151
    [Google Scholar]
  44. Liu J. Zhou G. Zhang L. Zhao Q. Building potent chimeric antigen receptor T cells with CRISPR genome editing. Front. Immunol. 2019 10 456 10.3389/fimmu.2019.00456 30941126
    [Google Scholar]
  45. Fleischer L.C. Raikar MD S.S. Moot B.S. R. Engineering CD5-targeted chimeric antigen receptors and edited T cells for the treatment of T-Cell leukemia. Blood 2017 130 1914 10.1182/blood.V130.Suppl_1.1914.1914
    [Google Scholar]
  46. Cooper M.L. Choi J. Staser K. Ritchey J.K. Devenport J.M. Eckardt K. Rettig M.P. Wang B. Eissenberg L.G. Ghobadi A. Gehrs L.N. Prior J.L. Achilefu S. Miller C.A. Fronick C.C. O’Neal J. Gao F. Weinstock D.M. Gutierrez A. Fulton R.S. DiPersio J.F. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 2018 32 9 1970 1983 10.1038/s41375‑018‑0065‑5 29483708
    [Google Scholar]
  47. Zhao Z. Shi L. Zhang W. Han J. Zhang S. Fu Z. Cai J. CRISPR knock out of programmed cell death protein 1 enhances anti-tumor activity of cytotoxic T lymphocytes. Oncotarget 2018 9 4 5208 5215 10.18632/oncotarget.23730 29435173
    [Google Scholar]
  48. Guo X. Jiang H. Shi B. Zhou M. Zhang H. Shi Z. Du G. Luo H. Wu X. Wang Y. Sun R. Li Z. Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front. Pharmacol. 2018 9 1118 10.3389/fphar.2018.01118 30327605
    [Google Scholar]
  49. Vong Q. Nye C. Hause R. Inhibiting TGFβ signaling in CAR T-Cells may significantly enhance efficacy of tumor immunotherapy. Blood 2017 130 1791
    [Google Scholar]
  50. Shi L. Meng T. Zhao Z. Han J. Zhang W. Gao F. Cai J. CRISPR knock out CTLA-4 enhances the anti-tumor activity of cytotoxic T lymphocytes. Gene 2017 636 36 41 10.1016/j.gene.2017.09.010 28888577
    [Google Scholar]
  51. Zhang Y. Zhang X. Cheng C. Mu W. Liu X. Li N. Wei X. Liu X. Xia C. Wang H. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front. Med. 2017 11 4 554 562 10.1007/s11684‑017‑0543‑6 28625015
    [Google Scholar]
  52. Sterner R.M. Sakemura R. Cox M.J. Yang N. Khadka R.H. Forsman C.L. Hansen M.J. Jin F. Ayasoufi K. Hefazi M. Schick K.J. Walters D.K. Ahmed O. Chappell D. Sahmoud T. Durrant C. Nevala W.K. Patnaik M.M. Pease L.R. Hedin K.E. Kay N.E. Johnson A.J. Kenderian S.S. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019 133 7 697 709 10.1182/blood‑2018‑10‑881722 30463995
    [Google Scholar]
  53. Künkele A. Johnson A.J. Rolczynski L.S. Chang C.A. Hoglund V. Kelly-Spratt K.S. Jensen M.C. Functional tuning of CARs reveals signaling threshold above which CD8+ CTL antitumor potency is attenuated due to cell Fas–FasL-dependent AICD. Cancer Immunol. Res. 2015 3 4 368 379 10.1158/2326‑6066.CIR‑14‑0200 25576337
    [Google Scholar]
  54. Li C. Mei H. Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief. Funct. Genomics 2020 19 3 175 182 10.1093/bfgp/elz042 31950135
    [Google Scholar]
  55. Sterner R.M. Cox M.J. Sakemura R. Kenderian S.S. Using CRISPR/Cas9 to knock out GM-CSF in CAR-T cells. J. Vis. Exp. 2019 149 e59629 10.3791/59629‑v 31380838
    [Google Scholar]
  56. Wiede F. Lu K.H. Du X. Zeissig M.N. Xu R. Goh P.K. Xirouchaki C.E. Hogarth S.J. Greatorex S. Sek K. Daly R.J. Beavis P.A. Darcy P.K. Tonks N.K. Tiganis T. PTP1B is an intracellular checkpoint that limits T-cell and CAR T-cell antitumor immunity. Cancer Discov. 2022 12 3 752 773 10.1158/2159‑8290.CD‑21‑0694 34794959
    [Google Scholar]
  57. Yoshikawa T. Wu Z. Inoue S. Kasuya H. Matsushita H. Takahashi Y. Kuroda H. Hosoda W. Suzuki S. Kagoya Y. Genetic ablation of PRDM1 in antitumor T cells enhances therapeutic efficacy of adoptive immunotherapy. Blood 2022 139 14 2156 2172 10.1182/blood.2021012714 34861037
    [Google Scholar]
  58. Raikar S.S. Fleischer L.C. Moot R. Fedanov A. Paik N.Y. Knight K.A. Doering C.B. Spencer H.T. Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. OncoImmunology 2018 7 3 e1407898 10.1080/2162402X.2017.1407898 29399409
    [Google Scholar]
  59. Dong M.B. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 2019 178 5 1189 1204 10.1016/j.cell.2019.07.044
    [Google Scholar]
  60. Klepsch V. Pommermayr M. Humer D. Brigo N. Hermann-Kleiter N. Baier G. Targeting the orphan nuclear receptor NR2F6 in T cells primes tumors for immune checkpoint therapy. Cell Commun. Signal. 2020 18 1 8 10.1186/s12964‑019‑0454‑z 31937317
    [Google Scholar]
  61. Salerno F. Wolkers M.C. T-cells require post-transcriptional regulation for accurate immune responses. Biochem. Soc. Trans. 2015 43 6 1201 1207 10.1042/BST20150154 26614661
    [Google Scholar]
  62. Lu Y. Xue J. Deng T. Zhou X. Yu K. Deng L. Huang M. Yi X. Liang M. Wang Y. Shen H. Tong R. Wang W. Li L. Song J. Li J. Su X. Ding Z. Gong Y. Zhu J. Wang Y. Zou B. Zhang Y. Li Y. Zhou L. Liu Y. Yu M. Wang Y. Zhang X. Yin L. Xia X. Zeng Y. Zhou Q. Ying B. Chen C. Wei Y. Li W. Mok T. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat. Med. 2020 26 5 732 740 10.1038/s41591‑020‑0840‑5 32341578
    [Google Scholar]
  63. Ghaffari S. Torabi-Rahvar M. Omidkhoda A. Ahmadbeigi N. Impact of various culture conditions on ex vivo expansion of polyclonal T cells for adoptive immunotherapy. Acta Pathol. Microbiol. Scand. Suppl. 2019 127 12 737 745 10.1111/apm.12981 31273832
    [Google Scholar]
  64. Alizadeh D. Wong R.A. Yang X. Wang D. Pecoraro J.R. Kuo C.F. Aguilar B. Qi Y. Ann D.K. Starr R. Urak R. Wang X. Forman S.J. Brown C.E. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 2019 7 5 759 772 10.1158/2326‑6066.CIR‑18‑0466 30890531
    [Google Scholar]
  65. Jaspers J.E. Khan J.F. Godfrey W.D. Lopez A.V. Ciampricotti M. Rudin C.M. Brentjens R.J. IL-18–secreting CAR T cells targeting DLL3 are highly effective in small cell lung cancer models. J. Clin. Invest. 2023 133 9 e166028 10.1172/JCI166028 36951942
    [Google Scholar]
  66. Ma X. Shou P. Smith C. Chen Y. Du H. Sun C. Porterfield Kren N. Michaud D. Ahn S. Vincent B. Savoldo B. Pylayeva-Gupta Y. Zhang S. Dotti G. Xu Y. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 2020 38 4 448 459 10.1038/s41587‑019‑0398‑2 32015548
    [Google Scholar]
  67. Jiang W. He Y. He W. Wu G. Zhou X. Sheng Q. Zhong W. Lu Y. Ding Y. Lu Q. Ye F. Hua H. Exhausted CD8+ T cells in the tumor immune microenvironment: New pathways to therapy. Front. Immunol. 2021 11 622509 10.3389/fimmu.2020.622509 33633741
    [Google Scholar]
  68. Tie Y. Tang F. Wei Y. Wei X. Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J. Hematol. Oncol. 2022 15 1 61 10.1186/s13045‑022‑01282‑8 35585567
    [Google Scholar]
  69. Dahmani A. Delisle J.S. TGF-β in T cell biology: Implications for cancer immunotherapy. Cancers 2018 10 6 194 10.3390/cancers10060194 29891791
    [Google Scholar]
  70. Yang L. Pang Y. Moses H.L. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010 31 6 220 227 10.1016/j.it.2010.04.002 20538542
    [Google Scholar]
  71. Tang N. Cheng C. Zhang X. Qiao M. Li N. Mu W. Wei X.F. Han W. Wang H. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 2020 5 4 e133977 10.1172/jci.insight.133977 31999649
    [Google Scholar]
  72. Waring P. Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol. Cell Biol. 1999 77 4 312 317 10.1046/j.1440‑1711.1999.00837.x 10457197
    [Google Scholar]
  73. Krammer P.H. CD95's deadly mission in the immune system. Nature 2000 407 6805 789 795 10.1038/35037728
    [Google Scholar]
  74. Chen X. Zdravkovic M. Liu X. Guo M. Zachar V. Ebbesen P. Role of the Fas/Fas ligand pathway in apoptotic cell death induced by the human T cell lymphotropic virus type I Tax transactivator. J. Gen. Virol. 1997 78 12 3277 3285 10.1099/0022‑1317‑78‑12‑3277 9400978
    [Google Scholar]
  75. Postow M.A. Sidlow R. Hellmann M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018 378 2 158 168 10.1056/NEJMra1703481 29320654
    [Google Scholar]
  76. Rupp L.J. Schumann K. Roybal K.T. Gate R.E. Ye C.J. Lim W.A. Marson A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 2017 7 1 737 10.1038/s41598‑017‑00462‑8 28389661
    [Google Scholar]
  77. Zhang Y. Mu W. Wang H. Gene editing in T cell therapy. J. Genet. Genomics 2017 44 9 415 422 10.1016/j.jgg.2017.09.002 28967616
    [Google Scholar]
  78. Osborn M.J. Webber B.R. Knipping F. Lonetree C. Tennis N. DeFeo A.P. McElroy A.N. Starker C.G. Lee C. Merkel S. Lund T.C. Kelly-Spratt K.S. Jensen M.C. Voytas D.F. von Kalle C. Schmidt M. Gabriel R. Hippen K.L. Miller J.S. Scharenberg A.M. Tolar J. Blazar B.R. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol. Ther. 2016 24 3 570 581 10.1038/mt.2015.197 26502778
    [Google Scholar]
  79. Legut M. Dolton G. Mian A.A. Ottmann O.G. Sewell A.K. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 2018 131 3 311 322 10.1182/blood‑2017‑05‑787598 29122757
    [Google Scholar]
  80. Eyquem J. Mansilla-Soto J. Giavridis T. van der Stegen S.J.C. Hamieh M. Cunanan K.M. Odak A. Gönen M. Sadelain M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017 543 7643 113 117 10.1038/nature21405 28225754
    [Google Scholar]
  81. Yi J.S. Cox M.A. Zajac A.J. T‐cell exhaustion: Characteristics, causes and conversion. Immunology 2010 129 4 474 481 10.1111/j.1365‑2567.2010.03255.x 20201977
    [Google Scholar]
  82. Carnevale J. Shifrut E. Kale N. Nyberg W.A. Blaeschke F. Chen Y.Y. Li Z. Bapat S.P. Diolaiti M.E. O’Leary P. Vedova S. Belk J. Daniel B. Roth T.L. Bachl S. Anido A.A. Prinzing B. Ibañez-Vega J. Lange S. Haydar D. Luetke-Eversloh M. Born-Bony M. Hegde B. Kogan S. Feuchtinger T. Okada H. Satpathy A.T. Shannon K. Gottschalk S. Eyquem J. Krenciute G. Ashworth A. Marson A. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 2022 609 7925 174 182 10.1038/s41586‑022‑05126‑w 36002574
    [Google Scholar]
  83. Belk J.A. Yao W. Freitas K.A. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 2022 40 7 768 786 10.1016/j.ccell.2022.06.001
    [Google Scholar]
  84. Trefny M.P. Kirchhammer N. Auf der Maur P. Natoli M. Schmid D. Germann M. Fernandez Rodriguez L. Herzig P. Lötscher J. Akrami M. Stinchcombe J.C. Stanczak M.A. Zingg A. Buchi M. Roux J. Marone R. Don L. Lardinois D. Wiese M. Jeker L.T. Bentires-Alj M. Rossy J. Thommen D.S. Griffiths G.M. Läubli H. Hess C. Zippelius A. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nat. Commun. 2023 14 1 86 10.1038/s41467‑022‑35583‑w 36732507
    [Google Scholar]
  85. Morgan R.A. Yang J.C. Kitano M. Dudley M.E. Laurencot C.M. Rosenberg S.A. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 2010 18 4 843 851 10.1038/mt.2010.24 20179677
    [Google Scholar]
  86. Teachey D.T. Lacey S.F. Shaw P.A. Melenhorst J.J. Maude S.L. Frey N. Pequignot E. Gonzalez V.E. Chen F. Finklestein J. Barrett D.M. Weiss S.L. Fitzgerald J.C. Berg R.A. Aplenc R. Callahan C. Rheingold S.R. Zheng Z. Rose-John S. White J.C. Nazimuddin F. Wertheim G. Levine B.L. June C.H. Porter D.L. Grupp S.A. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016 6 6 664 679 10.1158/2159‑8290.CD‑16‑0040 27076371
    [Google Scholar]
  87. Ruff M.W. Siegler E.L. Kenderian S.S. A concise review of neurologic complications associated with chimeric antigen receptor T-cell immunotherapy. Neurol. Clin. 2020 38 4 953 963 10.1016/j.ncl.2020.08.001 33040871
    [Google Scholar]
  88. Siegler E.L. Kenderian S.S. Neurotoxicity and cytokine release syndrome after chimeric antigen receptor T cell therapy: Insights into mechanisms and novel therapies. Front. Immunol. 2020 11 1973 10.3389/fimmu.2020.01973 32983132
    [Google Scholar]
  89. Neelapu S.S. Locke F.L. Bartlett N.L. Lekakis L.J. Miklos D.B. Jacobson C.A. Braunschweig I. Oluwole O.O. Siddiqi T. Lin Y. Timmerman J.M. Stiff P.J. Friedberg J.W. Flinn I.W. Goy A. Hill B.T. Smith M.R. Deol A. Farooq U. McSweeney P. Munoz J. Avivi I. Castro J.E. Westin J.R. Chavez J.C. Ghobadi A. Komanduri K.V. Levy R. Jacobsen E.D. Witzig T.E. Reagan P. Bot A. Rossi J. Navale L. Jiang Y. Aycock J. Elias M. Chang D. Wiezorek J. Go W.Y. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 2017 377 26 2531 2544 10.1056/NEJMoa1707447 29226797
    [Google Scholar]
  90. Kim M.Y. Kenderian S.S. Schreeder D. Klichinsky M. Kozlowski M. Schestova O. Ruella M. Gill S. Genome editing using CRISPR-Cas9 to increase the therapeutic index of antigen-specific immunotherapy in acute myeloid leukemia. Mol. Ther. 2016 24 S108 10.1016/S1525‑0016(16)33082‑9
    [Google Scholar]
  91. Campana D. Behm F.G. Immunophenotyping of leukemia. J. Immunol. Methods 2000 243 1-2 59 75 10.1016/S0022‑1759(00)00228‑3 10986407
    [Google Scholar]
  92. Milush J.M. Long B.R. Snyder-Cappione J.E. Cappione A.J. III York V.A. Ndhlovu L.C. Lanier L.L. Michaëlsson J. Nixon D.F. Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4. Blood 2009 114 23 4823 4831 10.1182/blood‑2009‑04‑216374 19805616
    [Google Scholar]
  93. Gomes-Silva D. Srinivasan M. Sharma S. Lee C.M. Wagner D.L. Davis T.H. Rouce R.H. Bao G. Brenner M.K. Mamonkin M. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 2017 130 3 285 296 10.1182/blood‑2017‑01‑761320 28539325
    [Google Scholar]
  94. Hosseinkhani N. Derakhshani A. Kooshkaki O. Abdoli Shadbad M. Hajiasgharzadeh K. Baghbanzadeh A. Safarpour H. Mokhtarzadeh A. Brunetti O. Yue S. Silvestris N. Baradaran B. Immune checkpoints and CAR-T cells: The pioneers in future cancer therapies? Int. J. Mol. Sci. 2020 21 21 8305 10.3390/ijms21218305 33167514
    [Google Scholar]
  95. Kunimasa K. Goto T. Immunosurveillance and immunoediting of lung cancer: Current perspectives and challenges. Int. J. Mol. Sci. 2020 21 2 597 10.3390/ijms21020597 31963413
    [Google Scholar]
  96. Jiang Y. Li Y. Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015 6 6 e1792 10.1038/cddis.2015.162 26086965
    [Google Scholar]
  97. Kim G.R. Choi J.M. Current understanding of cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling in T-Cell biology and disease therapy. Mol. Cells 2022 45 8 513 521 10.14348/molcells.2022.2056 35950451
    [Google Scholar]
  98. Valk E. Rudd C.E. Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol. 2008 29 6 272 279 10.1016/j.it.2008.02.011 18468488
    [Google Scholar]
  99. Wang X.B. Zheng C.Y. Giscombe R. Lefvert A.K. Regulation of surface and intracellular expression of CTLA-4 on human peripheral T cells. Scand. J. Immunol. 2001 54 5 453 458 10.1046/j.1365‑3083.2001.00985.x 11696196
    [Google Scholar]
  100. Carreno B.M. Bennett F. Chau T.A. Ling V. Luxenberg D. Jussif J. Baroja M.L. Madrenas J. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J. Immunol. 2000 165 3 1352 1356 10.4049/jimmunol.165.3.1352 10903737
    [Google Scholar]
  101. Walker L.S.K. Sansom D.M. Confusing signals: Recent progress in CTLA-4 biology. Trends Immunol. 2015 36 2 63 70 10.1016/j.it.2014.12.001 25582039
    [Google Scholar]
  102. Munn D.H. Mellor A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 2007 117 5 1147 1154 10.1172/JCI31178 17476344
    [Google Scholar]
  103. Fraser J.H. Rincón M. McCoy K.D. Le Gros G. CTLA4 ligation attenuates AP-1, NFAT and NF-κB activity in activated T cells. Eur. J. Immunol. 1999 29 3 838 844 10.1002/(SICI)1521‑4141(199903)29:03<838::AID‑IMMU838>3.0.CO;2‑P 10092086
    [Google Scholar]
  104. Greenwald R.J. Oosterwegel M.A. van der Woude D. Kubal A. Mandelbrot D.A. Boussiotis V.A. Sharpe A.H. CTLA-4 regulates cell cycle progression during a primary immune response. Eur. J. Immunol. 2002 32 2 366 373 10.1002/1521‑4141(200202)32:2<366::AID‑IMMU366>3.0.CO;2‑5 11807776
    [Google Scholar]
  105. Buchbinder E.I. Desai A. CTLA-4 and PD-1 pathways. Am. J. Clin. Oncol. 2016 39 1 98 106 10.1097/COC.0000000000000239 26558876
    [Google Scholar]
  106. Keir M.E. Butte M.J. Freeman G.J. Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008 26 1 677 704 10.1146/annurev.immunol.26.021607.090331 18173375
    [Google Scholar]
  107. Zitvogel L. Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. OncoImmunology 2012 1 8 1223 1225 10.4161/onci.21335 23243584
    [Google Scholar]
  108. Mortensen J.B. Monrad I. Enemark M.B. Ludvigsen M. Kamper P. Bjerre M. d’Amore F. Soluble programmed cell death protein 1 (sPD‐1) and the soluble programmed cell death ligands 1 and 2 (sPD‐L1 and sPD‐L2) in lymphoid malignancies. Eur. J. Haematol. 2021 107 1 81 91 10.1111/ejh.13621 33721375
    [Google Scholar]
  109. Nielsen C. Ohm-Laursen L. Barington T. Husby S. Lillevang S.T. Alternative splice variants of the human PD-1 gene. Cell. Immunol. 2005 235 2 109 116 10.1016/j.cellimm.2005.07.007 16171790
    [Google Scholar]
  110. Niu M. Liu Y. Yi M. Jiao D. Wu K. Biological characteristics and clinical significance of soluble PD-1/PD-L1 and exosomal PD-L1 in cancer. Front. Immunol. 2022 13 827921 10.3389/fimmu.2022.827921 35386715
    [Google Scholar]
  111. Ruffo E. Wu R.C. Bruno T.C. Workman C.J. Vignali D.A.A. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin. Immunol. 2019 42 101305 10.1016/j.smim.2019.101305 31604537
    [Google Scholar]
  112. Zhao L. Wang H. Xu K. Liu X. He Y. Update on lymphocyte-activation gene 3 (LAG-3) in cancers: From biological properties to clinical applications. Chin. Med. J. (Engl.) 2022 135 10 1203 1212 10.1097/CM9.0000000000001981 35170503
    [Google Scholar]
  113. Huo J.L. Wang Y.T. Fu W.J. Lu N. Liu Z.S. The promising immune checkpoint LAG-3 in cancer immunotherapy: From basic research to clinical application. Front. Immunol. 2022 13 956090 10.3389/fimmu.2022.956090 35958563
    [Google Scholar]
  114. Kouo T. Huang L. Pucsek A.B. Cao M. Solt S. Armstrong T. Jaffee E. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 2015 3 4 412 423 10.1158/2326‑6066.CIR‑14‑0150 25691328
    [Google Scholar]
  115. Shi A.P. Tang X.Y. Xiong Y.L. Zheng K.F. Liu Y.J. Shi X.G. Lv Y. Jiang T. Ma N. Zhao J.B. Immune checkpoint LAG3 and its ligand FGL1 in cancer. Front. Immunol. 2022 12 785091 10.3389/fimmu.2021.785091 35111155
    [Google Scholar]
  116. Xu F. Liu J. Liu D. Liu B. Wang M. Hu Z. Du X. Tang L. He F. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 2014 74 13 3418 3428 10.1158/0008‑5472.CAN‑13‑2690 24769443
    [Google Scholar]
  117. Qiu D. Liu X. Wang W. Jiang X. Wu X. Zheng J. Zhou K. Kong X. Wu X. Jin Z. TIGIT axis: Novel immune checkpoints in anti-leukemia immunity. Clin. Exp. Med. 2022 23 2 165 174 10.1007/s10238‑022‑00817‑0 35419661
    [Google Scholar]
  118. Jin S. Zhang Y. Zhou F. Chen X. Sheng J. Zhang J. TIGIT: A promising target to overcome the barrier of immunotherapy in hematological malignancies. Front. Oncol. 2022 12 1091782 10.3389/fonc.2022.1091782 36605439
    [Google Scholar]
  119. Lozano E. Dominguez-Villar M. Kuchroo V. Hafler D.A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol. 2012 188 8 3869 3875 10.4049/jimmunol.1103627 22427644
    [Google Scholar]
  120. Joller N. Lozano E. Burkett P.R. Patel B. Xiao S. Zhu C. Xia J. Tan T.G. Sefik E. Yajnik V. Sharpe A.H. Quintana F.J. Mathis D. Benoist C. Hafler D.A. Kuchroo V.K. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014 40 4 569 581 10.1016/j.immuni.2014.02.012 24745333
    [Google Scholar]
  121. Yu X. Harden K. C Gonzalez L. Francesco M. Chiang E. Irving B. Tom I. Ivelja S. Refino C.J. Clark H. Eaton D. Grogan J.L. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 2009 10 1 48 57 10.1038/ni.1674 19011627
    [Google Scholar]
  122. Huang X. Zhang X. Li E. Zhang G. Wang X. Tang T. Bai X. Liang T. VISTA: An immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J. Hematol. Oncol. 2020 13 1 83 10.1186/s13045‑020‑00917‑y 32600443
    [Google Scholar]
  123. ElTanbouly M.A. Zhao Y. Nowak E. Li J. Schaafsma E. Le Mercier I. Ceeraz S. Lines J.L. Peng C. Carriere C. Huang X. Day M. Koehn B. Lee S.W. Silva Morales M. Hogquist K.A. Jameson S.C. Mueller D. Rothstein J. Blazar B.R. Cheng C. Noelle R.J. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science 2020 367 6475 eaay0524 10.1126/science.aay0524 31949051
    [Google Scholar]
  124. Wang L. Rubinstein R. Lines J.L. Wasiuk A. Ahonen C. Guo Y. Lu L.F. Gondek D. Wang Y. Fava R.A. Fiser A. Almo S. Noelle R.J. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 2011 208 3 577 592 10.1084/jem.20100619 21383057
    [Google Scholar]
  125. Xu W. Hiếu T. Malarkannan S. Wang L. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell. Mol. Immunol. 2018 15 5 438 446 10.1038/cmi.2017.148 29375120
    [Google Scholar]
  126. Friedlaender A. Addeo A. Banna G. New emerging targets in cancer immunotherapy: The role of TIM3. ESMO Open 2019 4 Suppl. 3 e000497 10.1136/esmoopen‑2019‑000497 31275616
    [Google Scholar]
  127. Sauer N. Janicka N. Szlasa W. Skinderowicz B. Kołodzińska K. Dwernicka W. Oślizło M. Kulbacka J. Novickij V. Karłowicz-Bodalska K. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol. Immunother. 2023 72 11 3405 3425 10.1007/s00262‑023‑03516‑1 37567938
    [Google Scholar]
  128. Zhu C. Anderson A.C. Schubart A. Xiong H. Imitola J. Khoury S.J. Zheng X.X. Strom T.B. Kuchroo V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005 6 12 1245 1252 10.1038/ni1271 16286920
    [Google Scholar]
  129. Oomizu S. Arikawa T. Niki T. Kadowaki T. Ueno M. Nishi N. Yamauchi A. Hattori T. Masaki T. Hirashima M. Cell surface galectin-9 expressing Th cells regulate Th17 and Foxp3+ Treg development by galectin-9 secretion. PLoS One 2012 7 11 e48574 10.1371/journal.pone.0048574 23144904
    [Google Scholar]
  130. Lv Y. Ma X. Ma Y. Du Y. Feng J. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis. 2023 10 6 2366 2382 10.1016/j.gendis.2022.05.020 37554219
    [Google Scholar]
  131. Dankner M. Gray-Owen S.D. Huang Y.H. Blumberg R.S. Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. OncoImmunology 2017 6 7 00 10.1080/2162402X.2017.1328336 28811966
    [Google Scholar]
  132. Chiba S. Baghdadi M. Akiba H. Yoshiyama H. Kinoshita I. Dosaka-Akita H. Fujioka Y. Ohba Y. Gorman J.V. Colgan J.D. Hirashima M. Uede T. Takaoka A. Yagita H. Jinushi M. Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 2012 13 9 832 842 10.1038/ni.2376 22842346
    [Google Scholar]
  133. Getu A.A. Tigabu A. Zhou M. Lu J. Fodstad Ø. Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol. Cancer 2023 22 1 43 10.1186/s12943‑023‑01751‑9 36859240
    [Google Scholar]
  134. Zhou W.T. Jin W.L. B7-H3/CD276: An emerging cancer immunotherapy. Front. Immunol. 2021 12 701006 10.3389/fimmu.2021.701006 34349762
    [Google Scholar]
  135. Kanchan R.K. Doss D. Khan P. Nasser M.W. Mahapatra S. To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim. Biophys. Acta Rev. Cancer 2022 1877 5 188783 10.1016/j.bbcan.2022.188783 36028149
    [Google Scholar]
  136. Zhao B. Li H. Xia Y. Wang Y. Wang Y. Shi Y. Xing H. Qu T. Wang Y. Ma W. Immune checkpoint of B7-H3 in cancer: From immunology to clinical immunotherapy. J. Hematol. Oncol. 2022 15 1 153 10.1186/s13045‑022‑01364‑7 36284349
    [Google Scholar]
  137. Kang X. Kim J. Deng M. John S. Chen H. Wu G. Phan H. Zhang C.C. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016 15 1 25 40 10.1080/15384101.2015.1121324 26636629
    [Google Scholar]
  138. Deng M. Chen H. Liu X. Huang R. He Y. Yoo B. Xie J. John S. Zhang N. An Z. Zhang C.C. Leukocyte immunoglobulin-like receptor subfamily B: Therapeutic targets in cancer. Antib. Ther. 2021 4 1 16 33 10.1093/abt/tbab002 33928233
    [Google Scholar]
  139. Zeller T. Münnich I.A. Windisch R. Hilger P. Schewe D.M. Humpe A. Kellner C. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front. Immunol. 2023 14 1240275 10.3389/fimmu.2023.1240275 37781391
    [Google Scholar]
  140. Sordo-Bahamonde C. Lorenzo-Herrero S. Martínez-Pérez A. Gonzalez-Rodriguez A.P. Payer Á.R. González-García E. Aguilar-García C. González-Rodríguez S. López-Soto A. García-Torre A. Gonzalez S. BTLA dysregulation correlates with poor outcome and diminished T cell-mediated antitumor responses in chronic lymphocytic leukemia. Cancer Immunol. Immunother. 2023 72 7 2529 2539 10.1007/s00262‑023‑03435‑1 37041226
    [Google Scholar]
  141. Quan L. Lan X. Meng Y. Guo X. Guo Y. Zhao L. Chen X. Liu A. BTLA marks a less cytotoxic T-cell subset in diffuse large B-cell lymphoma with high expression of checkpoints. Exp. Hematol. 2018 60 47 56.e1 10.1016/j.exphem.2018.01.003 29353075
    [Google Scholar]
  142. O’Neill R.E. Du W. Mohammadpour H. Alqassim E. Qiu J. Chen G. McCarthy P.L. Lee K.P. Cao X. T Cell–Derived CD70 delivers an immune checkpoint function in inflammatory T cell responses. J. Immunol. 2017 199 10 3700 3710 10.4049/jimmunol.1700380 29046346
    [Google Scholar]
  143. Flieswasser T. Van den Eynde A. Van Audenaerde J. De Waele J. Lardon F. Riether C. de Haard H. Smits E. Pauwels P. Jacobs J. The CD70-CD27 axis in oncology: The new kids on the block. J. Exp. Clin. Cancer Res. 2022 41 1 12 10.1186/s13046‑021‑02215‑y 34991665
    [Google Scholar]
  144. Starzer A.M. Berghoff A.S. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open 2019 4 Suppl. 3 e000629 10.1136/esmoopen‑2019‑000629 32152062
    [Google Scholar]
  145. Crocker P.R. Paulson J.C. Varki A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 2007 7 4 255 266 10.1038/nri2056 17380156
    [Google Scholar]
  146. Smith K.G.C. Tarlinton D.M. Doody G.M. Hibbs M.L. Fearon D.T. Inhibition of the B cell by CD22: A requirement for Lyn. J. Exp. Med. 1998 187 5 807 811 10.1084/jem.187.5.807 9480991
    [Google Scholar]
  147. Clark E.A. Giltiay N.V. CD22: A regulator of innate and adaptive B cell responses and autoimmunity. Front. Immunol. 2018 9 2235 10.3389/fimmu.2018.02235 30323814
    [Google Scholar]
  148. Walter R.B. Expanding use of CD33-directed immunotherapy. Expert Opin. Biol. Ther. 2020 20 9 955 958 10.1080/14712598.2020.1788540 32580591
    [Google Scholar]
  149. Von Gunten S. Bochner B.S. Basic and clinical immunology of Siglecs. Ann. N. Y. Acad. Sci. 2008 1143 1 61 82 10.1196/annals.1443.011 19076345
    [Google Scholar]
  150. Crocker P.R. McMillan S.J. Richards H.E. CD33‐related siglecs as potential modulators of inflammatory responses. Ann. N. Y. Acad. Sci. 2012 1253 1 102 111 10.1111/j.1749‑6632.2011.06449.x 22352893
    [Google Scholar]
  151. Zhao L. CD33 in Alzheimer’s disease: Biology, pathogenesis, and therapeutics: A mini-review. Gerontology 2019 65 4 323 331 10.1159/000492596 30541012
    [Google Scholar]
  152. Dogan A. Siegel D. Tran N. Fu A. Fowler J. Belani R. Landgren O. B-cell maturation antigen expression across hematologic cancers: A systematic literature review. Blood Cancer J. 2020 10 6 73 10.1038/s41408‑020‑0337‑y 32606424
    [Google Scholar]
  153. Tai Y.T. Anderson K.C. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 2015 7 11 1187 1199 10.2217/imt.15.77 26370838
    [Google Scholar]
  154. Cho S.F. Anderson K.C. Tai Y.T. Targeting B cell maturation antigen (BCMA) in multiple myeloma: Potential uses of BCMA-based immunotherapy. Front. Immunol. 2018 9 1821 10.3389/fimmu.2018.01821 30147690
    [Google Scholar]
  155. Piedra-Quintero Z.L. Wilson Z. Nava P. Guerau-de-Arellano M. CD38: An immunomodulatory molecule in inflammation and autoimmunity. Front. Immunol. 2020 11 597959 10.3389/fimmu.2020.597959 33329591
    [Google Scholar]
  156. Dwivedi S. Rendón-Huerta E.P. Ortiz-Navarrete V. Montaño L.F. CD38 and regulation of the immune response cells in cancer. J. Oncol. 2021 2021 1 11 10.1155/2021/6630295 33727923
    [Google Scholar]
  157. Morandi F. Airoldi I. Marimpietri D. Bracci C. Faini A.C. Gramignoli R. CD38, a receptor with multifunctional activities: From modulatory functions on regulatory cell subsets and extracellular vesicles, to a target for therapeutic strategies. Cells 2019 8 12 1527 10.3390/cells8121527 31783629
    [Google Scholar]
  158. Bagchi S. Yuan R. Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 2021 16 1 223 249 10.1146/annurev‑pathol‑042020‑042741 33197221
    [Google Scholar]
  159. He X. Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020 30 8 660 669 10.1038/s41422‑020‑0343‑4 32467592
    [Google Scholar]
  160. Andrews L.P. Yano H. Vignali D.A.A. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: Breakthroughs or backups. Nat. Immunol. 2019 20 11 1425 1434 10.1038/s41590‑019‑0512‑0 31611702
    [Google Scholar]
  161. Kennedy A. Robinson M.A. Hinze C. Waters E. Williams C. Halliday N. Dovedi S. Sansom D.M. The CTLA ‐4 immune checkpoint protein regulates PD‐L1 : PD ‐1 interaction via transendocytosis of its ligand CD80. EMBO J. 2023 42 5 e111556 10.15252/embj.2022111556 36727298
    [Google Scholar]
  162. Pereira J.A. Lanzar Z. Clark J.T. Hart A.P. Douglas B.B. Shallberg L. O’Dea K. Christian D.A. Hunter C.A. PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis. Front. Immunol. 2023 14 997376 10.3389/fimmu.2023.997376 36960049
    [Google Scholar]
  163. Tang Q. Chen Y. Li X. Long S. Shi Y. Yu Y. Wu W. Han L. Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front. Immunol. 2022 13 964442 10.3389/fimmu.2022.964442 36177034
    [Google Scholar]
  164. Rowshanravan B. Halliday N. Sansom D.M. CTLA-4: A moving target in immunotherapy. Blood 2018 131 1 58 67 10.1182/blood‑2017‑06‑741033 29118008
    [Google Scholar]
  165. Wing J.B. Ise W. Kurosaki T. Sakaguchi S. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 2014 41 6 1013 1025 10.1016/j.immuni.2014.12.006 25526312
    [Google Scholar]
  166. Hossain M.A. Liu G. Dai B. Si Y. Yang Q. Wazir J. Birnbaumer L. Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med. Res. Rev. 2021 41 1 156 201 10.1002/med.21727 32844499
    [Google Scholar]
  167. Ruste V. Goldschmidt V. Laparra A. Messayke S. Danlos F.X. Romano-Martin P. Champiat S. Voisin A.L. Baldini C. Massard C. Laghouati S. Marabelle A. Lambotte O. Michot J.M. The determinants of very severe immune-related adverse events associated with immune checkpoint inhibitors: A prospective study of the French REISAMIC registry. Eur. J. Cancer 2021 158 217 224 10.1016/j.ejca.2021.08.048 34627664
    [Google Scholar]
  168. Sharma P. Goswami S. Raychaudhuri D. Siddiqui B.A. Singh P. Nagarajan A. Liu J. Subudhi S.K. Poon C. Gant K.L. Herbrich S.M. Anandhan S. Islam S. Amit M. Anandappa G. Allison J.P. Immune checkpoint therapy—current perspectives and future directions. Cell 2023 186 8 1652 1669 10.1016/j.cell.2023.03.006 37059068
    [Google Scholar]
  169. Nakazawa T. Natsume A. Nishimura F. Morimoto T. Matsuda R. Nakamura M. Yamada S. Nakagawa I. Motoyama Y. Park Y.S. Tsujimura T. Wakabayashi T. Nakase H. Effect of CRISPR/Cas9-mediated PD-1-disrupted primary human third-generation CAR-T cells targeting EGFRvIII on in vitro human glioblastoma cell growth. Cells 2020 9 4 998 10.3390/cells9040998 32316275
    [Google Scholar]
  170. Dötsch S. Svec M. Schober K. Hammel M. Wanisch A. Gökmen F. Jarosch S. Warmuth L. Barton J. Cicin-Sain L. D’Ippolito E. Busch D.H. Long-term persistence and functionality of adoptively transferred antigen-specific T cells with genetically ablated PD-1 expression. Proc. Natl. Acad. Sci. USA 2023 120 10 e2200626120 10.1073/pnas.2200626120 36853939
    [Google Scholar]
  171. Masopust D. Schenkel J.M. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 2013 13 5 309 320 10.1038/nri3442 23598650
    [Google Scholar]
  172. Wei W. Chen Z.N. Wang K. CRISPR/Cas9: A powerful strategy to improve CAR-T cell persistence. Int. J. Mol. Sci. 2023 24 15 12317 10.3390/ijms241512317 37569693
    [Google Scholar]
  173. Gao Q. Dong X. Xu Q. Zhu L. Wang F. Hou Y. Chao C. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T‐cell therapy. Cancer Med. 2019 8 9 4254 4264 10.1002/cam4.2257 31199589
    [Google Scholar]
  174. Su S. Hu B. Shao J. Shen B. Du J. Du Y. Zhou J. Yu L. Zhang L. Chen F. Sha H. Cheng L. Meng F. Zou Z. Huang X. Liu B. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci. Rep. 2016 6 1 20070 10.1038/srep20070 26818188
    [Google Scholar]
  175. Jacoby E. Nguyen S.M. Fountaine T.J. Welp K. Gryder B. Qin H. Yang Y. Chien C.D. Seif A.E. Lei H. Song Y.K. Khan J. Lee D.W. Mackall C.L. Gardner R.A. Jensen M.C. Shern J.F. Fry T.J. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 2016 7 1 12320 10.1038/ncomms12320 27460500
    [Google Scholar]
  176. MacLeod D.T. Antony J. Martin A.J. Moser R.J. Hekele A. Wetzel K.J. Brown A.E. Triggiano M.A. Hux J.A. Pham C.D. Bartsevich V.V. Turner C.A. Lape J. Kirkland S. Beard C.W. Smith J. Hirsch M.L. Nicholson M.G. Jantz D. McCreedy B. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol. Ther. 2017 25 4 949 961 10.1016/j.ymthe.2017.02.005 28237835
    [Google Scholar]
  177. Schmidts A. Marsh L.C. Srivastava A.A. Bouffard A.A. Boroughs A.C. Scarfò I. Larson R.C. Bedoya F. Choi B.D. Frigault M.J. Bailey S.R. Leick M.B. Vatsa S. Kann M.C. Prew M.S. Kleinstiver B.P. Joung J.K. Maus M.V. Cell-based artificial APC resistant to lentiviral transduction for efficient generation of CAR-T cells from various cell sources. J. Immunother. Cancer 2020 8 2 e000990 10.1136/jitc‑2020‑000990 32900862
    [Google Scholar]
  178. Siegler E.L. Simone B.W. Sakemura R. Tapper E.E. Horvei P. Cox M.J. Hefazi M. Manriquez Roman C. Can I. Schick K.J. Ruff M.W. Ekker S.C. Kenderian S.S. Efficient gene editing of CART cells with CRISPR-Cas12a for enhanced antitumor efficacy. Blood 2020 136 Suppl. 1 6 7 10.1182/blood‑2020‑141115
    [Google Scholar]
  179. Tipanee J. Samara-Kuko E. Gevaert T. Chuah M.K. VandenDriessche T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol. Ther. 2022 30 10 3155 3175 10.1016/j.ymthe.2022.06.006 35711141
    [Google Scholar]
  180. Guo Y. Tong C. Su L. Zhang W. Jia H. Liu Y. Yang Q. Wu Z. Wang Y. Han W. CRISPR/Cas9 genome-edited universal CAR T cells in patients with relapsed/refractory lymphoma. Blood Adv. 2022 6 8 2695 2699 10.1182/bloodadvances.2021006232 35008103
    [Google Scholar]
  181. Hu Y. Zhou Y. Zhang M. Ge W. Li Y. Yang L. Wei G. Han L. Wang H. Yu S. Chen Y. Wang Y. He X. Zhang X. Gao M. Yang J. Li X. Ren J. Huang H. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia. Clin. Cancer Res. 2021 27 10 2764 2772 10.1158/1078‑0432.CCR‑20‑3863 33627493
    [Google Scholar]
  182. Ottaviano G. Georgiadis C. Gkazi S.A. Syed F. Zhan H. Etuk A. Preece R. Chu J. Kubat A. Adams S. Veys P. Vora A. Rao K. Qasim W. James J. Gilmour K. Inglott S. Thomas R. Mhaldien L. Hasnain A. Izotova N. Tailor N. Flutter B. Ahmed B. Braybrook T. Pinner D. Williams L. Ko K-Y. Taylor A. Eshilokun A. Staddon S. Amrolia P. Chiesa R. Lucchini G. Lazareva A. Mullanfiroze K. Hill A. Finch M. Mead R. Young L. Abbott C. Ancliff P. Ghorashian S. Samarasinghe S. Rao A. Bartram J. Pavasovic V. Cheng D. Eddaoudi A. Farzaneh F. Domning S. Heimke R. Gabriel R. Sauer M. Beier R. Madeleine K. Eckert C. Schilham M.W. Jansen-Hoogendijk A.M. Kim J.S. Kim D. TT52 CRISPR-CAR group Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Sci. Transl. Med. 2022 14 668 eabq3010 10.1126/scitranslmed.abq3010 36288281
    [Google Scholar]
  183. CRISPR Therapeutics shares positive results from Phase 1 CARBON trial of CTX110™ in patients with hard-to-treat CD19+ B-cell conditions. 2022 Available from: https://crisprtx.com/about-us/press-releases-and-presentations/crispr-therapeutics-reports-positive-results-from-its-phase-1-carbon-trial-of-ctx110-in-relapsed-or-refractory-cd19-b-cell-malignancies 2022
  184. Kenderian S.S. Ruella M. Shestova O. Klichinsky M. Aikawa V. Morrissette J.J.D. Scholler J. Song D. Porter D.L. Carroll M. June C.H. Gill S. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 2015 29 8 1637 1647 10.1038/leu.2015.52 25721896
    [Google Scholar]
  185. Stadtmauer E.A. Fraietta J.A. Davis M.M. Cohen A.D. Weber K.L. Lancaster E. Mangan P.A. Kulikovskaya I. Gupta M. Chen F. Tian L. Gonzalez V.E. Xu J. Jung I. Melenhorst J.J. Plesa G. Shea J. Matlawski T. Cervini A. Gaymon A.L. Desjardins S. Lamontagne A. Salas-Mckee J. Fesnak A. Siegel D.L. Levine B.L. Jadlowsky J.K. Young R.M. Chew A. Hwang W.T. Hexner E.O. Carreno B.M. Nobles C.L. Bushman F.D. Parker K.R. Qi Y. Satpathy A.T. Chang H.Y. Zhao Y. Lacey S.F. June C.H. CRISPR-engineered T cells in patients with refractory cancer. Science 2020 367 6481 eaba7365 10.1126/science.aba7365 32029687
    [Google Scholar]
  186. Ghoneim H.E. Fan Y. Moustaki A. De Novo epigenetic programs inhibit PD-1 blockade-mediated T cell Rejuvenation. Cell 2017 170 1 142 157 2017 10.1016/j.cell.2017.06.007
    [Google Scholar]
  187. Prinzing B. Zebley C.C. Petersen C.T. Fan Y. Anido A.A. Yi Z. Nguyen P. Houke H. Bell M. Haydar D. Brown C. Boi S.K. Alli S. Crawford J.C. Riberdy J.M. Park J.J. Zhou S. Velasquez M.P. DeRenzo C. Lazzarotto C.R. Tsai S.Q. Vogel P. Pruett-Miller S.M. Langfitt D.M. Gottschalk S. Youngblood B. Krenciute G. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 2021 13 620 eabh0272 10.1126/scitranslmed.abh0272 34788079
    [Google Scholar]
  188. Freitas K.A. Belk J.A. Sotillo E. Quinn P.J. Ramello M.C. Malipatlolla M. Daniel B. Sandor K. Klysz D. Bjelajac J. Xu P. Burdsall K.A. Tieu V. Duong V.T. Donovan M.G. Weber E.W. Chang H.Y. Majzner R.G. Espinosa J.M. Satpathy A.T. Mackall C.L. Enhanced T cell effector activity by targeting the Mediator kinase module. Science 2022 378 6620 eabn5647 10.1126/science.abn5647 36356142
    [Google Scholar]
  189. Morton L.T. Reijmers R.M. Wouters A.K. Kweekel C. Remst D.F.G. Pothast C.R. Falkenburg J.H.F. Heemskerk M.H.M. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic. Mol. Ther. 2020 28 1 64 74 10.1016/j.ymthe.2019.10.001 31636040
    [Google Scholar]
  190. Hu B. Automatic neutralization of IL6 storm and blockade of IL1 signaling during CART therapy to reduce cytokine toxicity and minimize neurotoxicity Molecul. Therap. 2020 33 1
    [Google Scholar]
  191. Chang C. Van Der Stegen S. Mili M. Clarke R. Lai Y-S. Witty A. Lindenbergh P. Yang B-H. Husain M. Shaked H. Groff B. Stokely L. Abujarour R. Lee T. Chu H-Y. Pribadi M. ORourke J. Gutierrez A. Riviere I. Sadelain M. Valamehr B. FT819: Translation of off-the-shelf TCR-Less Trac-1XX CAR-T cells in support of first-of-kind phase I clinical trial. Blood 2019 134 Suppl. 1 4434 10.1182/blood‑2019‑130584
    [Google Scholar]
  192. Xu H. Wang B. Ono M. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 2019 24 4 566 578 2019 10.1016/j.stem.2019.02.005.
    [Google Scholar]
  193. Hu K. Yin E.T.S. Hu Y. Huang H. Combination of CRISPR/Cas9 system and CAR-T cell therapy: A new era for refractory and relapsed hematological malignancies. Curr. Med. Sci. 2021 41 3 420 430 10.1007/s11596‑021‑2391‑5 34218353
    [Google Scholar]
  194. Humbert O. Samuelson C. Kiem H.P. CRISPR/Cas9 for the treatment of haematological diseases: A journey from bacteria to the bedside. Br. J. Haematol. 2021 192 1 33 49 10.1111/bjh.16807 32506752
    [Google Scholar]
  195. Azangou-Khyavy M. Ghasemi M. Khanali J. Boroomand-Saboor M. Jamalkhah M. Soleimani M. Kiani J. CRISPR/Cas: From tumor gene editing to T cell-based immunotherapy of cancer. Front. Immunol. 2020 11 2062 10.3389/fimmu.2020.02062 33117331
    [Google Scholar]
  196. Chew W.L. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018 10 1 e1408 10.1002/wsbm.1408 29083112
    [Google Scholar]
  197. Charlesworth C.T. Deshpande P.S. Dever D.P. Camarena J. Lemgart V.T. Cromer M.K. Vakulskas C.A. Collingwood M.A. Zhang L. Bode N.M. Behlke M.A. Dejene B. Cieniewicz B. Romano R. Lesch B.J. Gomez-Ospina N. Mantri S. Pavel-Dinu M. Weinberg K.I. Porteus M.H. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019 25 2 249 254 10.1038/s41591‑018‑0326‑x 30692695
    [Google Scholar]
  198. Ren A. Tong X. Xu N. Zhang T. Zhou F. Zhu H. CAR T-cell immunotherapy treating T-ALL: Challenges and opportunities. Vaccines 2023 11 1 165 10.3390/vaccines11010165 36680011
    [Google Scholar]
  199. Vakulskas C.A. Dever D.P. Rettig G.R. Turk R. Jacobi A.M. Collingwood M.A. Bode N.M. McNeill M.S. Yan S. Camarena J. Lee C.M. Park S.H. Wiebking V. Bak R.O. Gomez-Ospina N. Pavel-Dinu M. Sun W. Bao G. Porteus M.H. Behlke M.A. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 2018 24 8 1216 1224 10.1038/s41591‑018‑0137‑0 30082871
    [Google Scholar]
  200. Tao J. Bauer D.E. Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: From DNA to RNA editing. Nat. Commun. 2023 14 1 212 10.1038/s41467‑023‑35886‑6 36639728
    [Google Scholar]
  201. Dimitri A. Herbst F. Fraietta J.A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol. Cancer 2022 21 1 78 10.1186/s12943‑022‑01559‑z 35303871
    [Google Scholar]
  202. Mishra G. Srivastava K. Rais J. CRISPR-Cas9: A potent gene-editing tool for the treatment of cancer. Curr. Mol. Med. 2023 24 2 191 36788695
    [Google Scholar]
  203. Salas-Mckee J. Kong W. Gladney W.L. Jadlowsky J.K. Plesa G. Davis M.M. Fraietta J.A. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Hum. Vaccin. Immunother. 2019 15 5 1126 1132 10.1080/21645515.2019.1571893 30735463
    [Google Scholar]
  204. Ayanoğlu F.B. Elçi̇n A.E. Elçi̇n Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020 44 2 110 120 10.3906/biy‑1912‑52 32256147
    [Google Scholar]
  205. June C.H. O’Connor R.S. Kawalekar O.U. Ghassemi S. Milone M.C. CAR T cell immunotherapy for human cancer. Science 2018 359 6382 1361 1365 10.1126/science.aar6711 29567707
    [Google Scholar]
  206. Tao L. Farooq M.A. Gao Y. Zhang L. Niu C. Ajmal I. Zhou Y. He C. Zhao G. Yao J. Liu M. Jiang W. CD19-CAR-T cells bearing a KIR/PD-1-based inhibitory CAR eradicate CD19+ HLA-C1− malignant B cells while sparing CD19+ HLA-C1+ healthy B cells. Cancers 2020 12 9 2612 10.3390/cancers12092612 32933182
    [Google Scholar]
  207. Polgárová K. Otáhal P. Šálek C. Pytlík R. Chimeric antigen receptor based cellular therapy for treatment of T-cell malignancies. Front. Oncol. 2022 12 876758 10.3389/fonc.2022.876758 35600381
    [Google Scholar]
  208. Kim M.Y. Kenderian S.S. Ruella M. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for Acute Myeloid Leukemia. Cell 2018 173 6 1439 1453 10.1016/j.cell.2018.05.013
    [Google Scholar]
  209. Gaudelli N.M. Lam D.K. Rees H.A. Solá-Esteves N.M. Barrera L.A. Born D.A. Edwards A. Gehrke J.M. Lee S.J. Liquori A.J. Murray R. Packer M.S. Rinaldi C. Slaymaker I.M. Yen J. Young L.E. Ciaramella G. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 2020 38 7 892 900 10.1038/s41587‑020‑0491‑6 32284586
    [Google Scholar]
  210. Huang Z. Liu G. Current advancement in the application of prime editing. Front. Bioeng. Biotechnol. 2023 11 1039315 10.3389/fbioe.2023.1039315 36873365
    [Google Scholar]
  211. Xu Y. Chen C. Guo Y. Hu S. Sun Z. Effect of CRISPR/Cas9-edited PD-1/PD-L1 on tumor immunity and immunotherapy. Front. Immunol. 2022 13 848327 10.3389/fimmu.2022.848327 35300341
    [Google Scholar]
  212. Huang J. Zhou Y. Li J. Lu A. Liang C. CRISPR/Cas systems: Delivery and application in gene therapy. Front. Bioeng. Biotechnol. 2022 10 942325 10.3389/fbioe.2022.942325 36483767
    [Google Scholar]
  213. Mendell J.R. Al-Zaidy S. Shell R. Arnold W.D. Rodino-Klapac L.R. Prior T.W. Lowes L. Alfano L. Berry K. Church K. Kissel J.T. Nagendran S. L’Italien J. Sproule D.M. Wells C. Cardenas J.A. Heitzer M.D. Kaspar A. Corcoran S. Braun L. Likhite S. Miranda C. Meyer K. Foust K.D. Burghes A.H.M. Kaspar B.K. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 2017 377 18 1713 1722 10.1056/NEJMoa1706198 29091557
    [Google Scholar]
  214. Wang H.X. Song Z. Lao Y.H. Xu X. Gong J. Cheng D. Chakraborty S. Park J.S. Li M. Huang D. Yin L. Cheng J. Leong K.W. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl. Acad. Sci. USA 2018 115 19 4903 4908 10.1073/pnas.1712963115 29686087
    [Google Scholar]
  215. Rahimi H. Salehiabar M. Charmi J. Barsbay M. Ghaffarlou M. Roohi Razlighi M. Davaran S. Khalilov R. Sugiyama M. Nosrati H. Kaboli S. Danafar H. Webster T.J. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. Nano Today 2020 34 100895 10.1016/j.nantod.2020.100895
    [Google Scholar]
  216. Hu B. Zou Y. Zhang L. Tang J. Niedermann G. Firat E. Huang X. Zhu X. Nucleofection with plasmid DNA for CRISPR/Cas9-mediated inactivation of programmed cell death protein 1 in CD133-specific CAR T cells. Hum. Gene Ther. 2019 30 4 446 458 10.1089/hum.2017.234 29706119
    [Google Scholar]
  217. Sterner R.C. Sterner R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021 11 4 69 10.1038/s41408‑021‑00459‑7 33824268
    [Google Scholar]
  218. Majzner R.G. Mackall C.L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018 8 10 1219 1226 10.1158/2159‑8290.CD‑18‑0442 30135176
    [Google Scholar]
  219. Choi S.I. Yin J. Prospective approaches to enhancing CAR T cell therapy for glioblastoma. Front. Immunol. 2022 13 1008751 10.3389/fimmu.2022.1008751 36275671
    [Google Scholar]
  220. Uddin F. Rudin C.M. Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 2020 10 1387 10.3389/fonc.2020.01387 32850447
    [Google Scholar]
  221. Wu Y. Li M. Meng G. Ma Y. Ye J. Sun T. Ji C. Immune checkpoint‐related gene polymorphisms are associated with acute myeloid leukemia. Cancer Med. 2023 12 18 18588 18596 10.1002/cam4.6468 37602517
    [Google Scholar]
  222. Seipel K. Abbühl M. Bacher U. Nilius H. Daskalakis M. Pabst T. Clinical impact of single nucleotide polymorphism in CD-19 on treatment outcome in FMC63-CAR-T cell therapy. Cancers 2023 15 11 3058 10.3390/cancers15113058 37297020
    [Google Scholar]
  223. Seidel J.A. Otsuka A. Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol. 2018 8 86 10.3389/fonc.2018.00086 29644214
    [Google Scholar]
  224. Kantor A. McClements M. MacLaren R. CRISPR-Cas9 DNA base-editing and prime-editing. Int. J. Mol. Sci. 2020 21 17 6240 10.3390/ijms21176240 32872311
    [Google Scholar]
  225. Mollanoori H. Teimourian S. Therapeutic applications of CRISPR/Cas9 system in gene therapy. Biotechnol. Lett. 2018 40 6 907 914 10.1007/s10529‑018‑2555‑y 29704220
    [Google Scholar]
  226. Sadeqi Nezhad M. Yazdanifar M. Abdollahpour-Alitappeh M. Sattari A. Seifalian A. Bagheri N. Strengthening the CAR‐T cell therapeutic application using CRISPR/Cas9 technology. Biotechnol. Bioeng. 2021 118 10 3691 3705 10.1002/bit.27882 34241908
    [Google Scholar]
  227. Dai X. Park J.J. Du Y. Kim H.R. Wang G. Errami Y. Chen S. One-step generation of modular CAR-T cells with AAV–Cpf1. Nat. Methods 2019 16 3 247 254 10.1038/s41592‑019‑0329‑7 30804551
    [Google Scholar]
  228. Haapaniemi E. Botla S. Persson J. Schmierer B. Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 2018 24 7 927 930 10.1038/s41591‑018‑0049‑z 29892067
    [Google Scholar]
  229. Ihry R.J. Worringer K.A. Salick M.R. Frias E. Ho D. Theriault K. Kommineni S. Chen J. Sondey M. Ye C. Randhawa R. Kulkarni T. Yang Z. McAllister G. Russ C. Reece-Hoyes J. Forrester W. Hoffman G.R. Dolmetsch R. Kaykas A. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018 24 7 939 946 10.1038/s41591‑018‑0050‑6 29892062
    [Google Scholar]
  230. Kotowski M. Sharma S. CRISPR-based editing techniques for genetic manipulation of primary T cells. Methods Protoc. 2020 3 4 79 10.3390/mps3040079 33217926
    [Google Scholar]
  231. Gomez-Ospina N. Scharenberg S.G. Mostrel N. Bak R.O. Mantri S. Quadros R.M. Gurumurthy C.B. Lee C. Bao G. Suarez C.J. Khan S. Sawamoto K. Tomatsu S. Raj N. Attardi L.D. Aurelian L. Porteus M.H. Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nat. Commun. 2019 10 1 4045 10.1038/s41467‑019‑11962‑8 31492863
    [Google Scholar]
  232. Shin J. Jiang F. Liu J.J. Bray N.L. Rauch B.J. Baik S.H. Nogales E. Bondy-Denomy J. Corn J.E. Doudna J.A. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 2017 3 7 e1701620 10.1126/sciadv.1701620 28706995
    [Google Scholar]
  233. Shifrut E. Carnevale J. Tobin V. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 2018 175 7 1958 1971 10.1016/j.cell.2018.10.024
    [Google Scholar]
  234. Wang D. Prager B.C. Gimple R.C. Aguilar B. Alizadeh D. Tang H. Lv D. Starr R. Brito A. Wu Q. Kim L.J.Y. Qiu Z. Lin P. Lorenzini M.H. Badie B. Forman S.J. Xie Q. Brown C.E. Rich J.N. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 2021 11 5 1192 1211 10.1158/2159‑8290.CD‑20‑1243 33328215
    [Google Scholar]
  235. Teng F. Guo L. Cui T. Wang X.G. Xu K. Gao Q. Zhou Q. Li W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019 20 1 132 10.1186/s13059‑019‑1742‑z 31262344
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232357078250331180413
Loading
/content/journals/cgt/10.2174/0115665232357078250331180413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test