Skip to content
2000
image of Non-coding RNAs-based Therapy and Angiogenesis: A New Era for the Management of Gliomas

Abstract

The relentless pursuit of understanding and combating glioblastoma (GBM), one of the most formidable foes in the realm of cancer, requires a deeper exploration of its intricate dynamics. Gliomas, particularly GBM, are known for their lethal nature, and a significant aspect of their pathogenesis lies in their ability to manipulate the blood vessels that sustain them. This complex relationship is governed by a multitude of molecular mechanisms involving a diverse array of cell types within the tumor microenvironment. Central to this intricate web of regulation are non-coding RNAs (ncRNAs), enigmatic molecules that have recently emerged as key players in cancer biology. These ncRNAs wield a remarkable influence on gene expression, often epigenetic modifications and intricate control over angiogenesis-related molecules. Their role in GBM angiogenesis adds another layer of complexity to our understanding of this disease. In the realm of cancer therapeutics, targeting angiogenesis has become a prominent strategy. However, the efficacy of current anti-angiogenic treatments against GBM is often transient, as these tumors can rapidly develop resistance, becoming even more aggressive. GBM employs a diverse set of strategies to foster its abnormal vasculature, which, in turn, holds the key to understanding why anti-angiogenic therapies often fall short of expectations. This review aims to shed light on potential strategies and novel perspectives to overcome GBM 's resistance to anti-angiogenic therapy. By exploring innovative approaches, including those centered on ncRNAs, we strive to chart a course toward more effective treatments. This journey into the depths of GBM 's complexities offers not only hope but also a blueprint for future research and therapeutic development. As we uncover the intricate mechanisms at play, we inch closer to the day when GBM is no longer an insurmountable adversary in the fight against cancer.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232356703250325075309
2025-04-11
2025-10-25
Loading full text...

Full text loading...

References

  1. Luo Y. Hitz B.C. Gabdank I. Hilton J.A. Kagda M.S. Lam B. Myers Z. Sud P. Jou J. Lin K. Baymuradov U.K. Graham K. Litton C. Miyasato S.R. Strattan J.S. Jolanki O. Lee J.W. Tanaka F.Y. Adenekan P. O’Neill E. Cherry J.M. New developments on the encyclopedia of dna elements (encode) data portal. Nucleic Acids Res. 2020 48 D1 D882 D889 10.1093/nar/gkz1062 31713622
    [Google Scholar]
  2. Hirayama T. Shinozaki K. Research on plant abiotic stress responses in the post‐genome era: Past, present and future. Plant J. 2010 61 6 1041 1052 10.1111/j.1365‑313X.2010.04124.x 20409277
    [Google Scholar]
  3. Vervaeke P. Borgos S.E. Sanders N.N. Combes F. Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Adv. Drug Deliv. Rev. 2022 184 114236 10.1016/j.addr.2022.114236 35351470
    [Google Scholar]
  4. Nahand J.S. Karimzadeh M.R. Nezamnia M. Fatemipour M. Khatami A. Jamshidi S. Moghoofei M. Taghizadieh M. Hajighadimi S. Shafiee A. Sadeghian M. Bokharaei-Salim F. Mirzaei H. The role of mir‐146a in viral infection. IUBMB Life 2020 72 3 343 360 10.1002/iub.2222 31889417
    [Google Scholar]
  5. Gareev I. Beylerli O. Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark. Res. 2024 12 1 17 10.1186/s40364‑024‑00568‑y 38308370
    [Google Scholar]
  6. Beylerli O. Gareev I. Sufianov A. Ilyasova T. Zhang F. The role of microrna in the pathogenesis of glial brain tumors. Noncoding RNA Res. 2022 7 2 71 76 10.1016/j.ncrna.2022.02.005 35330864
    [Google Scholar]
  7. Fang L. Deng Z. Shatseva T. Yang J. Peng C. Du W.W. Yee A.J. Ang L.C. He C. Shan S.W. Yang B.B. Microrna mir-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene 2011 30 7 806 821 10.1038/onc.2010.465 20956944
    [Google Scholar]
  8. Tchaicha J.H. Reyes S.B. Shin J. Hossain M.G. Lang F.F. McCarty J.H. Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by β8 integrin. Cancer Res. 2011 71 20 6371 6381 10.1158/0008‑5472.CAN‑11‑0991 21859829
    [Google Scholar]
  9. Lo Dico A. Costa V. Martelli C. Diceglie C. Rajata F. Rizzo A. Mancone C. Tripodi M. Ottobrini L. Alessandro R. Conigliaro A. Mir675-5p acts on hif-1α to sustain hypoxic responses: A new therapeutic strategy for glioma. Theranostics 2016 6 8 1105 1118 10.7150/thno.14700 27279905
    [Google Scholar]
  10. Shi Z. Wang J. Yan Z. You Y. Li C. Qian X. Yin Y. Zhao P. Wang Y. Wang X. Li M. Liu L.Z. Liu N. Jiang B.H. Mir-128 inhibits tumor growth and angiogenesis by targeting p70s6k1. PLoS One 2012 7 3 e32709 10.1371/journal.pone.0032709 22442669
    [Google Scholar]
  11. Yue X. Wang P. Xu J. Zhu Y. Sun G. Pang Q. Tao R. Microrna-205 functions as a tumor suppressor in human glioblastoma cells by targeting VEGF-a. Oncol. Rep. 2012 27 4 1200 1206 10.3892/or.2011.1588 22159356
    [Google Scholar]
  12. Beylerli O. Gareev I. Sufianov A. Ilyasova T. Guang Y. Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res. 2022 7 2 66 70 10.1016/j.ncrna.2022.02.004 35310927
    [Google Scholar]
  13. Peng Z. Liu C. Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol. Cancer 2018 17 1 61 10.1186/s12943‑018‑0812‑2 29458374
    [Google Scholar]
  14. Chen Z. Li S. Shen L. Wei X. Zhu H. Wang X. Yang M. Zheng X. Nf-kappa b interacting long noncoding RNA enhances the warburg effect and angiogenesis and is associated with decreased survival of patients with gliomas. Cell Death Dis. 2020 11 5 323 10.1038/s41419‑020‑2520‑2 32382013
    [Google Scholar]
  15. Yang C. Zheng J. Liu X. Xue Y. He Q. Dong Y. Wang D. Li Z. Liu L. Ma J. Cai H. Liu Y. Role of ankhd1/linc00346/znf655 feedback loop in regulating the glioma angiogenesis via staufen1-mediated mrna decay. Mol. Ther. Nucleic Acids 2020 20 866 878 10.1016/j.omtn.2020.05.004 32464549
    [Google Scholar]
  16. Jia P. Cai H. Liu X. Chen J. Ma J. Wang P. Liu Y. Zheng J. Xue Y. Long non-coding RNA h19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microrna-29a. Cancer Lett. 2016 381 2 359 369 10.1016/j.canlet.2016.08.009 27543358
    [Google Scholar]
  17. Jiang X. Yan Y. Hu M. Chen X. Wang Y. Dai Y. Wu D. Wang Y. Zhuang Z. Xia H. Increased level of h19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J. Neurosurg. 2016 124 1 129 136 10.3171/2014.12.JNS1426 26274999
    [Google Scholar]
  18. Liu Z.Z. Tian Y.F. Wu H. Ouyang S.Y. Kuang W.L. Lncrna h19 promotes glioma angiogenesis through mir-138/hif-1α/VEGF axis. Neoplasma 2020 67 1 111 118 10.4149/neo_2019_190121N61 31777264
    [Google Scholar]
  19. Zhou Q. Liu Z-Z. Wu H. Kuang W-L. Lncrna h19 promotes cell proliferation, migration and angiogenesis of glioma by regulating wnt5a/beta-catenin pathway via targeting mir-342. Cell. Mol. Neurobiol. 2020 Online ahead of print 10.1007/s10571‑020‑00995‑z 33161527
    [Google Scholar]
  20. Liu J. Zhang Q. Yang D. Xie F. Wang Z. The role of long non-coding RNAs in angiogenesis and anti-angiogenic therapy resistance in cancer. Mol. Ther. Nucleic Acids 2022 28 397 407 10.1016/j.omtn.2022.03.012 35505957
    [Google Scholar]
  21. Zhu Y. Zhang X. Qi L. Cai Y. Yang P. Xuan G. Jiang Y. Hulc long noncoding RNA silencing suppresses angiogenesis by regulating esm-1 via the pi3k/akt/mtor signaling pathway in human gliomas. Oncotarget 2016 7 12 14429 14440 10.18632/oncotarget.7418 26894862
    [Google Scholar]
  22. Ma Y. Wang P. Xue Y. Qu C. Zheng J. Liu X. Ma J. Liu Y. Pvt1 affects growth of glioma microvascular endothelial cells by negatively regulating mir-186. Tumour Biol. 2017 a 39 3 10.1177/1010428317694326 28351322
    [Google Scholar]
  23. Zhang G. Chen L. Khan A.A. Li B. Gu B. Lin F. Su X. Yan J. mirna‐124‐3p/neuropilin‐1(NRP‐1) axis plays an important role in mediating glioblastoma growth and angiogenesis. Int. J. Cancer 2018 143 3 635 644 10.1002/ijc.31329 29457830
    [Google Scholar]
  24. Wang C. Chen Y. Wang Y. Liu X. Liu Y. Li Y. Chen H. Fan C. Wu D. Yang J. Inhibition of cox-2, mpges-1 and cyp4a by isoliquiritigenin blocks the angiogenic akt signaling in glioma through cerna effect of mir-194-5p and lncrna neat1. J. Exp. Clin. Cancer Res. 2019 38 1 371 10.1186/s13046‑019‑1361‑2 31438982
    [Google Scholar]
  25. Wang D. Zheng J. Liu X. Xue Y. Liu L. Ma J. He Q. Li Z. Cai H. Liu Y. Retracted: Knockdown of usf1 inhibits the vasculogenic mimicry of glioma cells via stimulating snhg16/mir-212-3p and linc00667/mir-429 axis. Mol. Ther. Nucleic Acids 2019 14 465 482 10.1016/j.omtn.2018.12.017 30743215
    [Google Scholar]
  26. Xu H. Zhao G. Zhang Y. Jiang H. Wang W. Zhao D. Yu H. Qi L. Long non-coding RNA paxip1-as1 facilitates cell invasion and angiogenesis of glioma by recruiting transcription factor ets1 to upregulate kif14 expression. J. Exp. Clin. Cancer Res. 2019 38 1 486 10.1186/s13046‑019‑1474‑7 31823805
    [Google Scholar]
  27. Chang L. Bian Z. Xiong X. Liu J. Wang D. Zhou F. Zhang J. Zhang Y. Long non-coding RNA linc00320 inhibits tumorigenicity of glioma cells and angiogenesis through downregulation of nfkb1-mediated aqp9. Front. Cell. Neurosci. 2020 14 542552 10.3389/fncel.2020.542552 33414706
    [Google Scholar]
  28. Begliarzade S. Sufianov A. Ilyasova T. Shumadalova A. Sufianov R. Beylerli O. Yan Z. Circular RNA in cervical cancer: Fundamental mechanism and clinical potential. Noncoding RNA Res. 2024 9 1 116 124 10.1016/j.ncrna.2023.11.009 38035041
    [Google Scholar]
  29. He Z. Ruan X. Liu X. Zheng J. Liu Y. Liu L. Ma J. Shao L. Wang D. Shen S. Yang C. Xue Y. Fus/circ_002136/mir-138-5p/sox13 feedback loop regulates angiogenesis in glioma. J. Exp. Clin. Cancer Res. 2019 38 1 65 10.1186/s13046‑019‑1065‑7 30736838
    [Google Scholar]
  30. Yang P. Qiu Z. Jiang Y. Dong L. Yang W. Gu C. Li G. Zhu Y. Silencing of cznf292 circular RNA suppresses human glioma tube formation via the wnt/β-catenin signaling pathway. Oncotarget 2016 7 39 63449 63455 10.18632/oncotarget.11523 27613831
    [Google Scholar]
  31. He Q. Zhao L. Liu Y. Liu X. Zheng J. Yu H. Cai H. Ma J. Liu L. Wang P. Li Z. Xue Y. circ-shkbp1 regulates the angiogenesis of u87 glioma-exposed endothelial cells through mir-544a/foxp1 and mir-379/foxp2 pathways. Mol. Ther. Nucleic Acids 2018 10 331 348 10.1016/j.omtn.2017.12.014 29499945
    [Google Scholar]
  32. Meng Q. Li S. Liu Y. Zhang S. Jin J. Zhang Y. Guo C. Liu B. Sun Y. Circular RNA circscaf11 accelerates the glioma tumorigenesis through the mir-421/sp1/VEGFa axis. Mol. Ther. Nucleic Acids 2019 17 669 677 10.1016/j.omtn.2019.06.022 31400609
    [Google Scholar]
  33. Song J. Murakami H. Tsutsui H. Tang X. Matsumura M. Itakura K. Kanazawa I. Sun K. Yokoyama K.K. Genomic organization and expression of a human gene for myc-associated zinc finger protein (maz). J. Biol. Chem. 1998 273 32 20603 20614 10.1074/jbc.273.32.20603 9685418
    [Google Scholar]
  34. Parks C.L. Shenk T. The serotonin 1a receptor gene contains a tata-less promoter that responds to maz and sp1. J. Biol. Chem. 1996 271 8 4417 4430 10.1074/jbc.271.8.4417 8626793
    [Google Scholar]
  35. Bossone S.A. Asselin C. Patel A.J. Marcu K.B. Maz, a zinc finger protein, binds to c-myc and c2 gene sequences regulating transcriptional initiation and termination. Proc. Natl. Acad. Sci. USA 1992 89 16 7452 7456 10.1073/pnas.89.16.7452 1502157
    [Google Scholar]
  36. Ray B.K. Shakya A. Turk J.R. Apte S.S. Ray A. Induction of the mmp-14 gene in macrophages of the atherosclerotic plaque: Role of saf-1 in the induction process. Circ. Res. 2004 95 11 1082 1090 10.1161/01.RES.0000150046.48115.80 15528467
    [Google Scholar]
  37. Sohl M. Lanner F. Farnebo F. Characterization of the murine ephrin-b2 promoter. Gene 2009 437 1-2 54 59 10.1016/j.gene.2009.02.017 19268698
    [Google Scholar]
  38. Ray B.K. Shakya A. Ray A. Vascular endothelial growth factor expression in arthritic joint is regulated by saf-1 transcription factor. J. Immunol. 2007 178 3 1774 1782 10.4049/jimmunol.178.3.1774 17237427
    [Google Scholar]
  39. Smits M. Wurdinger T. Hof B. Drexhage J.A.R. Geerts D. Wesseling P. Noske D.P. Vandertop W.P. Vries H.E. Reijerkerk A. Myc‐associated zinc finger protein (maz) is regulated by mir‐125b and mediates VEGF‐induced angiogenesis in glioblastoma. FASEB J. 2012 26 6 2639 2647 10.1096/fj.11‑202820 22415301
    [Google Scholar]
  40. Ferrara N. Gerber H.P. LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003 9 6 669 676 10.1038/nm0603‑669 12778165
    [Google Scholar]
  41. Wang G. Zhao Y. Zheng Y. mir-122/wnt/β-catenin regulatory circuitry sustains glioma progression. Tumour Biol. 2014 35 9 8565 8572 10.1007/s13277‑014‑2089‑4 24863942
    [Google Scholar]
  42. Mir R. Pradhan S.J. Patil P. Mulherkar R. Galande S. Wnt/β-catenin signaling regulated satb1 promotes colorectal cancer tumorigenesis and progression. Oncogene 2016 35 13 1679 1691 10.1038/onc.2015.232 26165840
    [Google Scholar]
  43. Wang Q. Xu B. Du J. Xu X. Shang C. Wang X. Wang J. Microrna-139-5p/flt1/wnt/β-catenin regulatory crosstalk modulates the progression of glioma. Int. J. Mol. Med. 2018 41 4 2139 2149 10.3892/ijmm.2018.3439 29393392
    [Google Scholar]
  44. Asem M. Buechler S. Wates R. Miller D. Stack M. Wnt5a signaling in cancer. Cancers (Basel) 2016 8 9 79 10.3390/cancers8090079 27571105
    [Google Scholar]
  45. Pu P. Zhang Z. Kang C. Jiang R. Jia Z. Wang G. Jiang H. Downregulation of wnt2 and β-catenin by sirna suppresses malignant glioma cell growth. Cancer Gene Ther. 2009 16 4 351 361 10.1038/cgt.2008.78 18949017
    [Google Scholar]
  46. Zeng A. Yin J. Li Y. Li R. Wang Z. Zhou X. Jin X. Shen F. Yan W. You Y. mir-129-5p targets wnt5a to block pkc/erk/nf-κb and jnk pathways in glioblastoma. Cell Death Dis. 2018 9 3 394 10.1038/s41419‑018‑0343‑1
    [Google Scholar]
  47. Cantley L.C. The phosphoinositide 3-kinase pathway. Science 2002 296 5573 1655 1657 10.1126/science.296.5573.1655 12040186
    [Google Scholar]
  48. Tsurushima H. Tsuboi K. Yoshii Y. Ohno T. Meguro K. Nose T. Expression of n-ras gene in gliomas. Neurol. Med. Chir. (Tokyo) 1996 36 10 704 708 10.2176/nmc.36.704 8937091
    [Google Scholar]
  49. Santarpia L. Myers J.N. Sherman S.I. Trimarchi F. Clayman G.L. El-Naggar A.K. Genetic alterations in the ras/raf/mitogen‐activated protein kinase and phosphatidylinositol 3‐kinase/akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 2010 116 12 2974 2983 10.1002/cncr.25061 20564403
    [Google Scholar]
  50. Wang L. Shi Z. Jiang C. Liu X. Chen Q. Qian X. Li D. Ge X. Wang X. Liu L.Z. You Y. Liu N. Jiang B.H. Mir-143 acts as a tumor suppressor by targeting n-ras and enhances temozolomide-induced apoptosis in glioma. Oncotarget 2014 5 14 5416 5427 10.18632/oncotarget.2116 24980823
    [Google Scholar]
  51. Beilerli A. Begliarzade S. Sufianov A. Ilyasova T. Liang Y. Beylerli O. Circulating cirs-7 as a potential non-invasive biomarker for epithelial ovarian cancer: An investigative study. Noncoding RNA Res. 2022 7 3 197 204 10.1016/j.ncrna.2022.07.004 35991513
    [Google Scholar]
  52. Ibrahim S.A. Yip G.W. Stock C. Pan J.W. Neubauer C. Poeter M. Pupjalis D. Koo C.Y. Kelsch R. Schüle R. Rescher U. Kiesel L. Götte M. Targeting of syndecan‐1 by microrna mir‐10b promotes breast cancer cell motility and invasiveness via a rho‐gtpase‐ and e‐cadherin‐dependent mechanism. Int. J. Cancer 2012 131 6 E884 E896 10.1002/ijc.27629 22573479
    [Google Scholar]
  53. Khotskaya Y.B. Dai Y. Ritchie J.P. MacLeod V. Yang Y. Zinn K. Sanderson R.D. Syndecan-1 is required for robust growth, vascularization, and metastasis of myeloma tumors in vivo. J. Biol. Chem. 2009 284 38 26085 26095 10.1074/jbc.M109.018473 19596856
    [Google Scholar]
  54. Brule S. Charnaux N. Sutton A. Ledoux D. Chaigneau T. Saffar L. Gattegno L. The shedding of syndecan-4 and syndecan-1 from hela cells and human primary macrophages is accelerated by sdf-1/cxcl12 and mediated by the matrix metalloproteinase-9. Glycobiology 2006 16 6 488 501 10.1093/glycob/cwj098 16513763
    [Google Scholar]
  55. Li Q. Park P.W. Wilson C.L. Parks W.C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002 111 5 635 646 10.1016/S0092‑8674(02)01079‑6 12464176
    [Google Scholar]
  56. Asuthkar S. Velpula K.K. Nalla A.K. Gogineni V.R. Gondi C.S. Rao J.S. Irradiation-induced angiogenesis is associated with an mmp-9-mir-494-syndecan-1 regulatory loop in medulloblastoma cells. Oncogene 2014 33 15 1922 1933 10.1038/onc.2013.151 23728345
    [Google Scholar]
  57. Sparmann A. van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 2006 6 11 846 856 10.1038/nrc1991 17060944
    [Google Scholar]
  58. Suvà M.L. Riggi N. Janiszewska M. Radovanovic I. Provero P. Stehle J.C. Baumer K. Le Bitoux M.A. Marino D. Cironi L. Marquez V.E. Clément V. Stamenkovic I. Ezh2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009 69 24 9211 9218 10.1158/0008‑5472.CAN‑09‑1622 19934320
    [Google Scholar]
  59. Smits M. Nilsson J. Mir S.E. van der Stoop P.M. Hulleman E. Niers J.M. de Witt Hamer P.C. Marquez V.E. Cloos J. Krichevsky A.M. Noske D.P. Tannous B.A. Würdinger T. mir-101 is down-regulated in glioblastoma resulting in ezh2-induced proliferation, migration, and angiogenesis. Oncotarget 2010 1 8 710 720 10.18632/oncotarget.205 21321380
    [Google Scholar]
  60. Bryant R.J. Cross N.A. Eaton C.L. Hamdy F.C. Cunliffe V.T. Ezh2 promotes proliferation and invasiveness of prostate cancer cells. Prostate 2007 67 5 547 556 10.1002/pros.20550 17252556
    [Google Scholar]
  61. Sun J. Zheng G. Gu Z. Guo Z. Mir-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting ezh2. J. Neurooncol. 2015 122 3 481 489 10.1007/s11060‑015‑1753‑x 25939439
    [Google Scholar]
  62. Qu Z. D’Mello S.R. Proteomic analysis identifies nptx1 and hip1r as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp. Biol. Med. (Maywood) 2018 243 7 627 638 10.1177/1535370218761149 29486577
    [Google Scholar]
  63. Li H. Yan R. Chen W. Ding X. Liu J. Chen G. Zhao Q. Tang Y. Lv S. Liu S. Yu Y. Long non coding RNA slc26a4‐as1 exerts antiangiogenic effects in human glioma by upregulating nptx1 via nfkb1 transcriptional factor. FEBS J. 2021 288 1 212 228 10.1111/febs.15325 32255252
    [Google Scholar]
  64. Weirick T. Militello G. Ponomareva Y. John D. Döring C. Dimmeler S. Uchida S. Logic programming to infer complex RNA expression patterns from RNA-seq data. Bri. Bioinform. 2018 19 2 199 209 10.1093/bib/bbw117 28011754
    [Google Scholar]
  65. Wang Q. Wang L. Li D. Deng J. Zhao Z. He S. Zhang Y. Tu Y. Kinesin family member 14 is a candidate prognostic marker for outcome of glioma patients. Cancer Epidemiol. 2013 37 1 79 84 10.1016/j.canep.2012.08.011 22999822
    [Google Scholar]
  66. Sahin A. Velten M. Pietsch T. Knuefermann P. Okuducu A. Hahne J. Wernert N. Inactivation of ets 1 transcription factor by a specific decoy strategy reduces rat c6 glioma cell proliferation and mmp-9 expression. Int. J. Mol. Med. 2005 15 5 771 776 10.3892/ijmm.15.5.771 15806297
    [Google Scholar]
  67. Palazon A. Tyrakis P.A. Macias D. Veliça P. Rundqvist H. Fitzpatrick S. Vojnovic N. Phan A.T. Loman N. Hedenfalk I. Hatschek T. Lövrot J. Foukakis T. Goldrath A.W. Bergh J. Johnson R.S. An hif-1α/VEGF-a axis in cytotoxic t cells regulates tumor progression. Cancer Cell 2017 32 5 669 683.e5 10.1016/j.ccell.2017.10.003 29136509
    [Google Scholar]
  68. Poole E. Bain M. Teague L. Takei Y. Laskey R. Sinclair J. The cellular protein mcm3ap is required for inhibition of cellular dna synthesis by the ie86 protein of human cytomegalovirus. PLoS One 2012 7 10 e45686 10.1371/journal.pone.0045686 23094019
    [Google Scholar]
  69. Kuwahara K. Yamamoto-Ibusuki M. Zhang Z. Phimsen S. Gondo N. Yamashita H. Takeo T. Nakagata N. Yamashita D. Fukushima Y. Yamamoto Y. Iwata H. Saya H. Kondo E. Matsuo K. Takeya M. Iwase H. Sakaguchi N. GANP protein encoded on human chromosome 21/mouse chromosome 10 is associated with resistance to mammary tumor development. Cancer Sci. 2016 107 4 469 477 10.1111/cas.12883 26749495
    [Google Scholar]
  70. Yang C. Zheng J. Xue Y. Yu H. Liu X. Ma J. Liu L. Wang P. Li Z. Cai H. Liu Y. The effect of mcm3ap-as1/mir-211/klf5/aggf1 axis regulating glioblastoma angiogenesis. Front. Mol. Neurosci. 2018 10 437 10.3389/fnmol.2017.00437 29375300
    [Google Scholar]
  71. Yu H. Zheng J. Liu X. Xue Y. Shen S. Zhao L. Li Z. Liu Y. Transcription factor nfat5 promotes glioblastoma cell-driven angiogenesis via sbf2-as1/mir-338-3p-mediated egfl7 expression change. Front. Mol. Neurosci. 2017 10 301 10.3389/fnmol.2017.00301 28983240
    [Google Scholar]
  72. Parker L.H. Schmidt M. Jin S.W. Gray A.M. Beis D. Pham T. Frantz G. Palmieri S. Hillan K. Stainier D.Y.R. de Sauvage F.J. Ye W. The endothelial-cell-derived secreted factor egfl7 regulates vascular tube formation. Nature 2004 428 6984 754 758 10.1038/nature02416 15085134
    [Google Scholar]
  73. Amara S. Alotaibi D. Tiriveedhi V. Nfat5/stat3 interaction mediates synergism of high salt with il-17 towards induction of VEGF-a expression in breast cancer cells. Oncol. Lett. 2016 12 2 933 943 10.3892/ol.2016.4713 27446373
    [Google Scholar]
  74. Potente M. Urbich C. Sasaki K. Hofmann W.K. Heeschen C. Aicher A. Kollipara R. DePinho R.A. Zeiher A.M. Dimmeler S. Involvement of foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 2005 115 9 2382 2392 10.1172/JCI23126 16100571
    [Google Scholar]
  75. Tian X.L. Kadaba R. You S.A. Liu M. Timur A.A. Yang L. Chen Q. Szafranski P. Rao S. Wu L. Housman D.E. DiCorleto P.E. Driscoll D.J. Borrow J. Wang Q. Identification of an angiogenic factor that when mutated causes susceptibility to klippel–trenaunay syndrome. Nature 2004 427 6975 640 645 10.1038/nature02320 14961121
    [Google Scholar]
  76. Martínez-Terroba E. Ezponda T. Bértolo C. Sainz C. Remírez A. Agorreta J. Garmendia I. Behrens C. Pio R. Wistuba I.I. Montuenga L.M. Pajares M.J. The oncogenic RNA-binding protein srsf1 regulates lig1 in non-small cell lung cancer. Lab. Invest. 2018 98 12 1562 1574 10.1038/s41374‑018‑0128‑2 30181552
    [Google Scholar]
  77. Barbagallo D. Caponnetto A. Brex D. Mirabella F. Barbagallo C. Lauretta G. Morrone A. Certo F. Broggi G. Caltabiano R. Barbagallo G. Spina-Purrello V. Ragusa M. Di Pietro C. Hansen T. Purrello M. Circsmarca5 regulates VEGFa mrna splicing and angiogenesis in glioblastoma multiforme through the binding of srsf1. Cancers (Basel) 2019 11 2 194 10.3390/cancers11020194 30736462
    [Google Scholar]
  78. Beylerli O. Encarnacion Ramirez M.J. Shumadalova A. Ilyasova T. Zemlyanskiy M. Beilerli A. Montemurro N. Cell-free miRNAs as non-invasive biomarkers in brain tumors. Diagnostics (Basel) 2023 13 18 2888 10.3390/diagnostics13182888 37761255
    [Google Scholar]
  79. Williams R.L. Urbé S. The emerging shape of the escrt machinery. Nat. Rev. Mol. Cell Biol. 2007 8 5 355 368 10.1038/nrm2162 17450176
    [Google Scholar]
  80. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  81. Juan T. Fürthauer M. Biogenesis and function of escrt-dependent extracellular vesicles. Semin. Cell Dev. Biol. 2018 74 66 77 10.1016/j.semcdb.2017.08.022 28807885
    [Google Scholar]
  82. Li W. Sun M. Zang C. Ma P. He J. Zhang M. Huang Z. Ding Y. Shu Y. Upregulated long non-coding RNA agap2-as1 represses lats2 and klf2 expression through interacting with ezh2 and lsd1 in non-small-cell lung cancer cells. Cell Death Dis. 2016 7 5 e2225 10.1038/cddis.2016.126 27195672
    [Google Scholar]
  83. Bhattacharya R. SenBanerjee S. Lin Z. Mir S. Hamik A. Wang P. Mukherjee P. Mukhopadhyay D. Jain M.K. Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the kruppel-like factor klf2. J. Biol. Chem. 2005 280 32 28848 28851 10.1074/jbc.C500200200 15980434
    [Google Scholar]
  84. Ma J. Wang P. Liu Y. Zhao L. Li Z. Xue Y. Krüppel-like factor 4 regulates blood-tumor barrier permeability via zo-1, occludin and claudin-5. J. Cell. Physiol. 2014 229 7 916 926 10.1002/jcp.24523 24318462
    [Google Scholar]
  85. Li J. Yuan H. Xu H. Zhao H. Xiong N. Hypoxic cancer-secreted exosomal mir-182-5p promotes glioblastoma angiogenesis by targeting kruppel-like factor 2 and 4. Mol. Cancer Res. 2020 18 8 1218 1231 10.1158/1541‑7786.MCR‑19‑0725 32366676
    [Google Scholar]
  86. Ahn S.E. Jeong W. Kim J.H. Lim W. Kim J. Bazer F.W. Han J.Y. Song G. Erbb receptor feedback inhibitor 1: Identification and regulation by estrogen in chickens. Gen. Comp. Endocrinol. 2012 175 1 194 205 10.1016/j.ygcen.2011.11.013 22137914
    [Google Scholar]
  87. Cairns J. Fridley B.L. Jenkins G.D. Zhuang Y. Yu J. Wang L. Differential roles of errfi1 in egfr and akt pathway regulation affect cancer proliferation. EMBO Rep. 2018 19 3 e44767 10.15252/embr.201744767 29335246
    [Google Scholar]
  88. Yan P. Wu X. Liu X. Cai Y. Shao C. Zhu G. A causal relationship in spinal cord injury rat model between microglia activation and egfr/mapk detected by overexpression of microrna-325-3p. J. Mol. Neurosci. 2019 68 2 181 190 10.1007/s12031‑019‑01297‑w 30911940
    [Google Scholar]
  89. Wang M. Zhao Y. Yu Z.Y. Zhang R.D. Li S.A. Zhang P. Shan T.K. Liu X.Y. Wang Z.M. Zhao P.C. Sun H.W. Glioma exosomal microrna-148a-3p promotes tumor angiogenesis through activating the egfr/mapk signaling pathway via inhibiting errfi1. Cancer Cell Int. 2020 20 1 518 10.1186/s12935‑020‑01566‑4 33117083
    [Google Scholar]
  90. Lee Y.R. Chen M. Pandolfi P.P. The functions and regulation of the pten tumour suppressor: New modes and prospects. Nat. Rev. Mol. Cell Biol. 2018 19 9 547 562 10.1038/s41580‑018‑0015‑0 29858604
    [Google Scholar]
  91. Wang Z.F. Liao F. Wu H. Dai J. Glioma stem cells-derived exosomal mir-26a promotes angiogenesis of microvessel endothelial cells in glioma. J. Exp. Clin. Cancer Res. 2019 38 1 201 10.1186/s13046‑019‑1181‑4 31101062
    [Google Scholar]
  92. Zhao K. Wang Q. Wang Y. Huang K. Yang C. Li Y. Yi K. Kang C. Egfr/c-myc axis regulates TGFβ/hippo/notch pathway via epigenetic silencing mir-524 in gliomas. Cancer Lett. 2017 406 12 21 10.1016/j.canlet.2017.07.022 28778566
    [Google Scholar]
  93. Wu Y. Sun B. Shi W. Ni L. Chen J. Cai G. Shi J. Oct4 is up-regulated by dna hypomethylation of promoter in recurrent gliomas. Neoplasma 2016 63 3 378 384 10.4149/306_150919N492 26925786
    [Google Scholar]
  94. Katanasaka Y. Kodera Y. Kitamura Y. Morimoto T. Tamura T. Koizumi F. Epidermal growth factor receptor variant type iii markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol. Cancer 2013 12 1 31 10.1186/1476‑4598‑12‑31 23617883
    [Google Scholar]
  95. Mou Y. Yue Z. Wang X. Li W. Zhang H. Wang Y. Li R. Sun X. Oct4 remodels the phenotype and promotes angiogenesis of huvecs by changing the gene expression profile. Int. J. Med. Sci. 2016 13 5 386 394 10.7150/ijms.15057 27226779
    [Google Scholar]
  96. Sufianov A. Begliarzade S. Ilyasova T. Liang Y. Beylerli O. MicroRNAs as prognostic markers and therapeutic targets in gliomas. Noncoding RNA Res. 2022 7 3 171 177 10.1016/j.ncrna.2022.07.001 35846075
    [Google Scholar]
  97. Chen X. Yang F. Zhang T. Wang W. Xi W. Li Y. Zhang D. Huo Y. Zhang J. Yang A. Wang T. Mir-9 promotes tumorigenesis and angiogenesis and is activated by myc and oct4 in human glioma. J. Exp. Clin. Cancer Res. 2019 38 1 99 10.1186/s13046‑019‑1078‑2 30795814
    [Google Scholar]
  98. Tasharrofi B. Soudyab M. Nikpayam E. Iranpour M. Mirfakhraie R. Sarrafzadeh S. Geranpayeh L. Azargashb E. Sayad A. Ghafouri-Fard S. Comparative expression analysis of hypoxia‐inducible factor‐alpha and its natural occurring antisense in breast cancer tissues and adjacent noncancerous tissues. Cell Biochem. Funct. 2016 34 8 572 578 10.1002/cbf.3230 27862063
    [Google Scholar]
  99. Zhang Q. Matsuura K. Kleiner D.E. Zamboni F. Alter H.J. Farci P. Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology. J. Transl. Med. 2016 14 1 328 10.1186/s12967‑016‑1085‑4 27894309
    [Google Scholar]
  100. Dai X. Liao K. Zhuang Z. Chen B. Zhou Z. Zhou S. Lin G. Zhang F. Lin Y. Miao Y. Li Z. Huang R. Qiu Y. Lin R. Ahif promotes glioblastoma progression and radioresistance via exosomes. Int. J. Oncol. 2018 54 1 261 270 10.3892/ijo.2018.4621 30387845
    [Google Scholar]
  101. Broekman M.L. Maas S.L.N. Abels E.R. Mempel T.R. Krichevsky A.M. Breakefield X.O. Multidimensional communication in the microenvirons of glioblastoma. Nat. Rev. Neurol. 2018 14 8 482 495 10.1038/s41582‑018‑0025‑8 29985475
    [Google Scholar]
  102. Zheng J. Hu L. Cheng J. Xu J. Zhong Z. Yang Y. Yuan Z. lncrna pvt1 promotes the angiogenesis of vascular endothelial cell by targeting mir‑26b to activate cTGF/angpt2. Int. J. Mol. Med. 2018 42 1 489 496 10.3892/ijmm.2018.3595 29620147
    [Google Scholar]
  103. Mercier M.L. Mathieu V. Haibe-Kains B. Bontempi G. Mijatovic T. Decaestecker C. Kiss R. Lefranc F. Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J. Neuropathol. Exp. Neurol. 2008 67 5 456 469 10.1097/NEN.0b013e318170f892 18431251
    [Google Scholar]
  104. Sin W.C. Bechberger J.F. Rushlow W.J. Naus C.C. Dose‐dependent differential upregulation of ccn1/cyr61 and ccn3/nov by the gap junction protein connexin43 in glioma cells. J. Cell. Biochem. 2008 103 6 1772 1782 10.1002/jcb.21571 18004727
    [Google Scholar]
  105. Goodwin C.R. Lal B. Zhou X. Ho S. Xia S. Taeger A. Murray J. Laterra J. Cyr61 mediates hepatocyte growth factor-dependent tumor cell growth, migration, and akt activation. Cancer Res. 2010 70 7 2932 2941 10.1158/0008‑5472.CAN‑09‑3570 20233866
    [Google Scholar]
  106. Cai H. Liu X. Zheng J. Xue Y. Ma J. Li Z. Xi Z. Li Z. Bao M. Liu Y. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microrna-299 in human glioblastoma. Oncogene 2017 36 3 318 331 10.1038/onc.2016.212 27345398
    [Google Scholar]
  107. Sun S.L. Shu Y.G. Tao M.Y. Lncrna ccat2 promotes angiogenesis in glioma through activation of VEGFa signalling by sponging mir-424. Mol. Cell. Biochem. 2020 468 1-2 69 82 10.1007/s11010‑020‑03712‑y 32236863
    [Google Scholar]
  108. Ye J. Zhu J. Chen H. Qian J. Zhang L. Wan Z. Chen F. Sun S. Li W. Luo C. A novel lncrna‐linc01116 regulates tumorigenesis of glioma by targeting VEGFa. Int. J. Cancer 2020 146 1 248 261 10.1002/ijc.32483 31144303
    [Google Scholar]
  109. Li D. Zhang Z. Xia C. Niu C. Zhou W. Non-coding RNAs in glioma microenvironment and angiogenesis. Front. Mol. Neurosci. 2021 14 763610 10.3389/fnmol.2021.763610 34803608
    [Google Scholar]
  110. Wang Y. Yang L. Chen T. Liu X. Guo Y. Zhu Q. Tong X. Yang W. Xu Q. Huang D. Tu K. A novel lncrna mcm3ap-as1 promotes the growth of hepatocellular carcinoma by targeting mir-194-5p/foxa1 axis. Mol. Cancer 2019 18 1 28 10.1186/s12943‑019‑0957‑7 30782188
    [Google Scholar]
  111. Conti A. Romeo S.G. Cama A. La Torre D. Barresi V. Pezzino G. Tomasello C. Cardali S. Angileri F.F. Polito F. Ferlazzo G. Di Giorgio R. Germanò A. Aguennouz M. Mirna expression profiling in human gliomas: Upregulated mir-363 increases cell survival and proliferation. Tumour Biol. 2016 37 10 14035 14048 10.1007/s13277‑016‑5273‑x 27495233
    [Google Scholar]
  112. Peng Y. Wang X. Guo Y. Peng F. Zheng N. He B. Ge H. Tao L. Wang Q. Pattern of cell‐to‐cell transfer of micro RNA by gap junction and its effect on the proliferation of glioma cells. Cancer Sci. 2019 110 6 1947 1958 10.1111/cas.14029 31012516
    [Google Scholar]
  113. Laird D.W. The gap junction proteome and its relationship to disease. Trends Cell Biol. 2010 20 2 92 101 10.1016/j.tcb.2009.11.001 19944606
    [Google Scholar]
  114. Walker N.D. Patel J. Munoz J.L. Hu M. Guiro K. Sinha G. Rameshwar P. The bone marrow niche in support of breast cancer dormancy. Cancer Lett. 2016 380 1 263 271 10.1016/j.canlet.2015.10.033 26546045
    [Google Scholar]
  115. Crespin S. Bechberger J. Mesnil M. Naus C.C. Sin W.C. The carboxy‐terminal tail of connexin43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells. J. Cell. Biochem. 2010 110 3 589 597 10.1002/jcb.22554 20512920
    [Google Scholar]
  116. Thuringer D. Boucher J. Jego G. Pernet N. Cronier L. Hammann A. Solary E. Garrido C. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions. Oncotarget 2016 7 45 73925 73934 10.18632/oncotarget.12136 27661112
    [Google Scholar]
  117. Beylerli O. Shi H. Begliarzade S. Shumadalova A. Ilyasova T. Sufianov A. MiRNAs as new potential biomarkers and therapeutic targets in brain metastasis. Noncoding RNA Res. 2024 9 3 678 686 10.1016/j.ncrna.2024.02.014 38577014
    [Google Scholar]
  118. Zong L. Zhu Y. Liang R. Zhao H.B. Gap junction mediated mirna intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication. Sci. Rep. 2016 6 1 19884 10.1038/srep19884 26814383
    [Google Scholar]
  119. Motegi H. Kamoshima Y. Terasaka S. Kobayashi H. Houkin K. Type 1 collagen as a potential niche component for CD133 ‐positive glioblastoma cells. Neuropathology 2014 34 4 378 385 10.1111/neup.12117 24673436
    [Google Scholar]
  120. Wang M. Zhou L. Yu F. Zhang Y. Li P. Wang K. The functional roles of exosomal long non-coding RNAs in cancer. Cell. Mol. Life Sci. 2019 76 11 2059 2076 10.1007/s00018‑019‑03018‑3 30683984
    [Google Scholar]
  121. Treps L. Perret R. Edmond S. Ricard D. Gavard J. Glioblastoma stem‐like cells secrete the pro‐angiogenic VEGF‐a factor in extracellular vesicles. J. Extracell. Vesicles 2017 6 1 1359479 10.1080/20013078.2017.1359479 28815003
    [Google Scholar]
  122. Wu J. Al-Zahrani A. Beylerli O. Sufianov R. Talybov R. Meshcheryakova S. Sufianova G. Gareev I. Sufianov A. Circulating miRNAs as diagnostic and prognostic biomarkers in high-grade gliomas. Front. Oncol. 2022 12 898537 10.3389/fonc.2022.898537 35646622
    [Google Scholar]
  123. Ma C. Nguyen H.P.T. Jones J.J. Stylli S.S. Whitehead C.A. Paradiso L. Luwor R.B. Areeb Z. Hanssen E. Cho E. Putz U. Kaye A.H. Morokoff A.P. Extracellular vesicles secreted by glioma stem cells are involved in radiation resistance and glioma progression. Int. J. Mol. Sci. 2022 23 5 2770 10.3390/ijms23052770 35269915
    [Google Scholar]
  124. Sun X. Ma X. Wang J. Zhao Y. Wang Y. Bihl J.C. Chen Y. Jiang C. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through mir-21/VEGF signal. Oncotarget 2017 8 22 36137 36148 10.18632/oncotarget.16661 28410224
    [Google Scholar]
  125. Abels E.R. Maas S.L.N. Nieland L. Wei Z. Cheah P.S. Tai E. Kolsteeg C.J. Dusoswa S.A. Ting D.T. Hickman S. El Khoury J. Krichevsky A.M. Broekman M.L.D. Breakefield X.O. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular mir-21. Cell Rep. 2019 28 12 3105 3119.e7 10.1016/j.celrep.2019.08.036 31533034
    [Google Scholar]
  126. Yang J. Teng Y. Harnessing cancer stem cell-derived exosomes to improve cancer therapy. J. Exp. Clin. Cancer Res. 2023 42 1 131 10.1186/s13046‑023‑02717‑x 37217932
    [Google Scholar]
  127. Boccaccio C. Comoglio P.M. The met oncogene in glioblastoma stem cells: Implications as a diagnostic marker and a therapeutic target. Cancer Res. 2013 73 11 3193 3199 10.1158/0008‑5472.CAN‑12‑4039 23695554
    [Google Scholar]
  128. Gao H. Yu B. Yan Y. Shen J. Zhao S. Zhu J. Qin W. Gao Y. Correlation of expression levels of anxa2, pgam1, and calr with glioma grade and prognosis. J. Neurosurg. 2013 118 4 846 853 10.3171/2012.9.JNS112134 23082878
    [Google Scholar]
  129. Lang H.L. Hu G.W. Chen Y. Liu Y. Tu W. Lu Y.M. Wu L. Xu G.H. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA pou3f3. Eur. Rev. Med. Pharmacol. Sci. 2017 21 5 959 972 28338200
    [Google Scholar]
  130. Davidson C.L. Vengoji R. Jain M. Batra S.K. Shonka N. Biological, diagnostic and therapeutic implications of exosomes in glioma. Cancer Lett. 2024 582 216592 10.1016/j.canlet.2023.216592 38092145
    [Google Scholar]
  131. Yi D. Xiang W. Zhang Q. Cen Y. Su Q. Zhang F. Lu Y. Zhao H. Fu P. Human glioblastoma-derived mesenchymal stem cell to pericytes transition and angiogenic capacity in glioblastoma microenvironment. Cell. Physiol. Biochem. 2018 46 1 279 290 10.1159/000488429 29590646
    [Google Scholar]
  132. Kong B.H. Shin H.D. Kim S.H. Mok H.S. Shim J.K. Lee J.H. Shin H.J. Huh Y.M. Kim E.H. Park E.K. Chang J.H. Kim D.S. Hong Y.K. Kim S.H. Lee S.J. Kang S.G. Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. Int. J. Oncol. 2013 42 5 1754 1762 10.3892/ijo.2013.1856 23483121
    [Google Scholar]
  133. Liu L. Li X. Shi Y. Chen H. The long noncoding RNA ftx promotes a malignant phenotype in bone marrow mesenchymal stem cells via the mir-186/c-met axis. Biomed. Pharmacother. 2020 131 110666 10.1016/j.biopha.2020.110666 32853911
    [Google Scholar]
  134. Lu E. Gareev I. Yuan C. Liang Y. Sun J. Chen X. Beylerli O. Sufianov A. Zhao S. Yang G. The mechanisms of current platinum anticancer drug resistance in the glioma. Curr. Pharm. Des. 2022 28 23 1863 1869 10.2174/1381612828666220607105746 35674307
    [Google Scholar]
  135. Zhu C. Kros J.M. Cheng C. Mustafa D. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro-oncol. 2017 19 11 1435 1446 10.1093/neuonc/nox081 28575312
    [Google Scholar]
  136. Powell J. Mota F. Steadman D. Soudy C. Miyauchi J.T. Crosby S. Jarvis A. Reisinger T. Winfield N. Evans G. Finniear A. Yelland T. Chou Y.T. Chan A.W.E. O’Leary A. Cheng L. Liu D. Fotinou C. Milagre C. Martin J.F. Jia H. Frankel P. Djordjevic S. Tsirka S.E. Zachary I.C. Selwood D.L. Small molecule neuropilin-1 antagonists combine antiangiogenic and antitumor activity with immune modulation through reduction of transforming growth factor beta (TGFβ) production in regulatory T-cells. J. Med. Chem. 2018 61 9 4135 4154 10.1021/acs.jmedchem.8b00210 29648813
    [Google Scholar]
  137. Long Y. Tao H. Karachi A. Grippin A.J. Jin L. Chang Y.E. Zhang W. Dyson K.A. Hou A.Y. Na M. Deleyrolle L.P. Sayour E.J. Rahman M. Mitchell D.A. Lin Z. Huang J. Dysregulation of glutamate transport enhances TREG function that promotes VEGF blockade resistance in glioblastoma. Cancer Res. 2020 80 3 499 509 10.1158/0008‑5472.CAN‑19‑1577 31723000
    [Google Scholar]
  138. Catalano M. Serpe C. Limatola C. Microglial extracellular vesicles as modulators of brain microenvironment in glioma. Int. J. Mol. Sci. 2022 23 21 13165 10.3390/ijms232113165 36361947
    [Google Scholar]
  139. Carmeliet P. Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 473 7347 298 307 10.1038/nature10144 21593862
    [Google Scholar]
  140. Gilbert M.R. Dignam J.J. Armstrong T.S. Wefel J.S. Blumenthal D.T. Vogelbaum M.A. Colman H. Chakravarti A. Pugh S. Won M. Jeraj R. Brown P.D. Jaeckle K.A. Schiff D. Stieber V.W. Brachman D.G. Werner-Wasik M. Tremont-Lukats I.W. Sulman E.P. Aldape K.D. Curran W.J. Jr Mehta M.P. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014 370 8 699 708 10.1056/NEJMoa1308573 24552317
    [Google Scholar]
  141. Gondi C.S. Lakka S.S. Dinh D.H. Olivero W.C. Gujrati M. Rao J.S. Downregulation of upa, upar and mmp-9 using small, interfering, hairpin RNA (sirna) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol. 2004 1 2 165 176 10.1017/S1740925X04000237 16804563
    [Google Scholar]
  142. Niola F. Evangelisti C. Campagnola L. Massalini S. Bué M.C. Mangiola A. Masotti A. Maira G. Farace M.G. Ciafré S.A. A plasmid-encoded VEGF sirna reduces glioblastoma angiogenesis and its combination with interleukin-4 blocks tumor growth in a xenograft mouse model. Cancer Biol. Ther. 2006 5 2 174 179 10.4161/cbt.5.2.2317 16340308
    [Google Scholar]
  143. Kargiotis O. Chetty C. Gondi C.S. Tsung A.J. Dinh D.H. Gujrati M. Lakka S.S. Kyritsis A.P. Rao J.S. Adenovirus-mediated transfer of sirna against mmp-2 mrna results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene 2008 27 35 4830 4840 10.1038/onc.2008.122 18438431
    [Google Scholar]
  144. Würdinger T. Tannous B.A. Saydam O. Skog J. Grau S. Soutschek J. Weissleder R. Breakefield X.O. Krichevsky A.M. mir-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008 14 5 382 393 10.1016/j.ccr.2008.10.005 18977327
    [Google Scholar]
  145. Katsushima K. Natsume A. Ohka F. Shinjo K. Hatanaka A. Ichimura N. Sato S. Takahashi S. Kimura H. Totoki Y. Shibata T. Naito M. Kim H.J. Miyata K. Kataoka K. Kondo Y. Targeting the notch-regulated non-coding RNA tug1 for glioma treatment. Nat. Commun. 2016 7 1 13616 10.1038/ncomms13616 27922002
    [Google Scholar]
  146. Gragoudas E.S. Adamis A.P. Cunningham E.T. Jr Feinsod M. Guyer D.R. Neova V.I.S.O. VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004 351 27 2805 2816 10.1056/NEJMoa042760 15625332
    [Google Scholar]
  147. Stein C.A. Castanotto D. Fda-approved oligonucleotide therapies in 2017. Mol. Ther. 2017 25 5 1069 1075 10.1016/j.ymthe.2017.03.023 28366767
    [Google Scholar]
  148. Ren K. Ni Y. Li X. Wang C. Chang Q. Li Y. Gao Z. Wu S. Shi X. Song J. Yao N. Zhou J. Expression profiling of long noncoding RNAs associated with vasculogenic mimicry in osteosarcoma. J. Cell. Biochem. 2019 120 8 12473 12488 10.1002/jcb.28514 30825232
    [Google Scholar]
  149. Teppan J. Barth D.A. Prinz F. Jonas K. Pichler M. Klec C. Involvement of long non-coding RNAs (lncRNAs) in tumor angiogenesis. Noncoding RNA 2020 6 4 42 10.3390/ncrna6040042 32992718
    [Google Scholar]
  150. Spinelli C. Adnani L. Choi D. Rak J. Extracellular vesicles as conduits of non-coding RNA emission and intercellular transfer in brain tumors. Noncoding RNA 2018 5 1 1 10.3390/ncrna5010001 30585246
    [Google Scholar]
  151. Yekula A. Yekula A. Muralidharan K. Kang K. Carter B.S. Balaj L. Extracellular vesicles in glioblastoma tumor microenvironment. Front. Immunol. 2020 10 3137 10.3389/fimmu.2019.03137 32038644
    [Google Scholar]
  152. Fareh M. Almairac F. Turchi L. Burel-Vandenbos F. Paquis P. Fontaine D. Lacas-Gervais S. Junier M.P. Chneiweiss H. Virolle T. Cell-based therapy using mir-302-367 expressing cells represses glioblastoma growth. Cell Death Dis. 2017 8 3 e2713 10.1038/cddis.2017.117 28358371
    [Google Scholar]
  153. Nair K.G.S. Ramaiyan V. Sukumaran S.K. Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology 2018 26 3 675 684 10.1007/s10787‑018‑0468‑y 29582240
    [Google Scholar]
  154. Ohno S. Takanashi M. Sudo K. Ueda S. Ishikawa A. Matsuyama N. Fujita K. Mizutani T. Ohgi T. Ochiya T. Gotoh N. Kuroda M. Systemically injected exosomes targeted to egfr deliver antitumor microrna to breast cancer cells. Mol. Ther. 2013 21 1 185 191 10.1038/mt.2012.180 23032975
    [Google Scholar]
  155. Mao J. Liu J. Guo G. Mao X. Li C. Glioblastoma vasculogenic mimicry: Signaling pathways progression and potential anti-angiogenesis targets. Biomark. Res. 2015 3 1 8 10.1186/s40364‑015‑0034‑3 26085929
    [Google Scholar]
  156. Choi E.J. Cho B.J. Lee D.J. Hwang Y.H. Chun S.H. Kim H.H. Kim I.A. Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: Targeting pi3k-akt-mtor signaling, hsp90 and histone deacetylases. BMC Cancer 2014 14 1 17 10.1186/1471‑2407‑14‑17 24418474
    [Google Scholar]
  157. Zhu Y. Liu X. Zhao P. Zhao H. Gao W. Wang L. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the pi3k/akt/mtor signaling pathway. Front. Pharmacol. 2020 11 25 10.3389/fphar.2020.00025 32116702
    [Google Scholar]
  158. Pastorino O. Gentile M.T. Mancini A. Del Gaudio N. Di Costanzo A. Bajetto A. Franco P. Altucci L. Florio T. Stoppelli M.P. Colucci-D’Amato L. Histone deacetylase inhibitors impair vasculogenic mimicry from glioblastoma cells. Cancers (Basel) 2019 11 6 747 10.3390/cancers11060747 31146471
    [Google Scholar]
  159. Pagano C. Navarra G. Pastorino O. Avilia G. Coppola L. Della Monica R. Chiariotti L. Florio T. Corsaro A. Torelli G. Caiazzo P. Gazzerro P. Bifulco M. Laezza C. N6-isopentenyladenosine hinders the vasculogenic mimicry in human glioblastoma cells through src-120 catenin pathway modulation and rhoa activity inhibition. Int. J. Mol. Sci. 2021 22 19 10530 10.3390/ijms221910530 34638872
    [Google Scholar]
  160. Angara K Borin TF Rashid MH Lebedyeva I Ara R Lin PC Iskander A Bollag RJ Achyut BR Arbab AS Corrigendum to "cxcr2-expressing tumor cells drive vascular mimicry in antiangiogenic therapy-resistant glioblastoma" neoplasia, october 2018, volume 20, issue 10, pages 1070-1082. Neoplasia. 2019 21 1 156 157 10.1016/j.neo.2018.11.001 30595360
    [Google Scholar]
  161. Huang D. Zhang S. Zhong T. Ren W. Yao X. Guo Y. Duan X.C. Yin Y.F. Zhang S.S. Zhang X. Multi-targeting ngr-modified liposomes recognizing glioma tumor cells and vasculogenic mimicry for improving anti-glioma therapy. Oncotarget 2016 7 28 43616 43628 10.18632/oncotarget.9889 27283987
    [Google Scholar]
  162. Lu W-L. Ju R-J. Zeng F. Liu L. Mu L-M. Xie H-J. Zhao Y. Yan Y. Wu J-S. Hu Y-J. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma. Int. J. Nanomedicine 2016 11 1131 1146 10.2147/IJN.S94467 27042063
    [Google Scholar]
  163. Sharma R.K. Calderon C. Vivas-Mejia P.E. Targeting non-coding RNA for glioblastoma therapy: The challenge of overcomes the blood-brain barrier. Frontiers in Medical Technology 2021 3 678593 10.3389/fmedt.2021.678593 35047931
    [Google Scholar]
  164. Song Y. Mu L. Han X. Li Q. Dong B. Li H. Liu X. Microrna-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing stathmin expression. J. Neurooncol. 2013 115 3 381 390 10.1007/s11060‑013‑1245‑9 24043603
    [Google Scholar]
  165. Xu S. Zhang J. Xue H. Guo X. Han X. Li T. Guo X. Gao X. Liu Q. Li G. Microrna-584-3p reduces the vasculogenic mimicry of human glioma cells by regulating hypoxia-induced rock1 dependent stress fiber formation. Neoplasma 2017 64 1 13 21 10.4149/neo_2017_102 27881000
    [Google Scholar]
  166. Zhang Z. Guo X. Guo X. Yu R. Qian M. Wang S. Gao X. Qiu W. Guo Q. Xu J. Chen Z. Wang H. Qi Y. Zhao R. Xue H. Li G. Microrna-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma. Aging (Albany NY) 2021 13 4 5055 5068 10.18632/aging.202424 33535172
    [Google Scholar]
  167. Dominissini D. Moshitch-Moshkovitz S. Schwartz S. Salmon-Divon M. Ungar L. Osenberg S. Cesarkas K. Jacob-Hirsch J. Amariglio N. Kupiec M. Sorek R. Rechavi G. Topology of the human and mouse m6a RNA methylomes revealed by m6a-seq. Nature 2012 485 7397 201 206 10.1038/nature11112 22575960
    [Google Scholar]
  168. Meyer K.D. Saletore Y. Zumbo P. Elemento O. Mason C.E. Jaffrey S.R. Comprehensive analysis of mrna methylation reveals enrichment in 3′ utrs and near stop codons. Cell 2012 149 7 1635 1646 10.1016/j.cell.2012.05.003 22608085
    [Google Scholar]
  169. Liu N. Parisien M. Dai Q. Zheng G. He C. Pan T. Probing n 6 -methyladenosine RNA modification status at single nucleotide resolution in mrna and long noncoding RNA. RNA 2013 19 12 1848 1856 10.1261/rna.041178.113 24141618
    [Google Scholar]
  170. Liu N. Dai Q. Zheng G. He C. Parisien M. Pan T. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 2015 518 7540 560 564 10.1038/nature14234 25719671
    [Google Scholar]
  171. Alarcón C.R. Goodarzi H. Lee H. Liu X. Tavazoie S. Tavazoie S.F. Hnrnpa2b1 is a mediator of m(6)a-dependent nuclear RNA processing events. Cell 2015 a 162 6 1299 1308 10.1016/j.cell.2015.08.011 26321680
    [Google Scholar]
  172. Alarcón C.R. Lee H. Goodarzi H. Halberg N. Tavazoie S.F. N6-methyladenosine marks primary microRNAs for processing. Nature 2015 b 519 7544 482 485 10.1038/nature14281 25799998
    [Google Scholar]
  173. Zhou C. Molinie B. Daneshvar K. Pondick J.V. Wang J. Van Wittenberghe N. Xing Y. Giallourakis C.C. Mullen A.C. Genome-wide maps of m6a circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 2017 20 9 2262 2276 10.1016/j.celrep.2017.08.027 28854373
    [Google Scholar]
  174. Chen Y.G. Chen R. Ahmad S. Verma R. Kasturi S.P. Amaya L. Broughton J.P. Kim J. Cadena C. Pulendran B. Hur S. Chang H.Y. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 2019 76 1 96 109.e9 10.1016/j.molcel.2019.07.016 31474572
    [Google Scholar]
  175. Yang Y. Fan X. Mao M. Song X. Wu P. Zhang Y. Jin Y. Yang Y. Chen L.L. Wang Y. Wong C.C.L. Xiao X. Wang Z. Extensive translation of circular RNAs driven by n6-methyladenosine. Cell Res. 2017 27 5 626 641 10.1038/cr.2017.31 28281539
    [Google Scholar]
  176. Steponaitis G. Stakaitis R. Valiulyte I. Krusnauskas R. Dragunaite R. Urbanavičiūtė R. Tamasauskas A. Skiriute D. Transcriptome-wide analysis of glioma stem cell specific m6a modifications in long-non-coding RNAs. Sci. Rep. 2022 12 1 5431 10.1038/s41598‑022‑08616‑z 35361860
    [Google Scholar]
  177. Visvanathan A. Patil V. Arora A. Hegde A.S. Arivazhagan A. Santosh V. Somasundaram K. Essential role of mettl3-mediated m6a modification in glioma stem-like cells maintenance and radioresistance. Oncogene 2018 37 4 522 533 10.1038/onc.2017.351 28991227
    [Google Scholar]
  178. Xia Z. Zheng X. Zheng H. Liu X. Yang Z. Wang X. Cold‐inducible RNA‐binding protein (CIRP) regulates target mrna stabilization in the mouse testis. FEBS Lett. 2012 586 19 3299 3308 10.1016/j.febslet.2012.07.004 22819822
    [Google Scholar]
  179. Xu Y. Wu W. Han Q. Wang Y. Li C. Zhang P. Xu H. New insights into the interplay between non-coding RNAs and RNA-binding protein hnrnpk in regulating cellular functions. Cells 2019 8 1 62 10.3390/cells8010062 30658384
    [Google Scholar]
  180. Hashemikhabir S. Neelamraju Y. Janga S.C. Database of RNA binding protein expression and disease dynamics (read db). Database (Oxford) 2015 2015 bav072 10.1093/database/bav072 26210853
    [Google Scholar]
  181. Agostini F. Zanzoni A. Klus P. Marchese D. Cirillo D. Tartaglia G.G. cat rapid omics : A web server for large-scale prediction of protein–rna interactions. Bioinformatics 2013 29 22 2928 2930 10.1093/bioinformatics/btt495 23975767
    [Google Scholar]
  182. Li J.H. Liu S. Zhou H. Qu L.H. Yang J.H. starbase v2.0: Decoding mirna-cerna, mirna-ncrna and protein–rna interaction networks from large-scale clip-seq data. Nucleic Acids Res. 2014 42 D1 D92 D97 10.1093/nar/gkt1248 24297251
    [Google Scholar]
  183. Gerstberger S. Hafner M. Tuschl T. A census of human RNA-binding proteins. Nat. Rev. Genet. 2014 15 12 829 845 10.1038/nrg3813 25365966
    [Google Scholar]
  184. Janakiraman H. House R.P. Gangaraju V.K. Diehl J.A. Howe P.H. Palanisamy V. The long (lncRNA) and short (miRNA) of it: TGF beta-mediated control of RNA-binding proteins and noncoding RNAs. Mol. Cancer Res. 2018 16 4 567 579 10.1158/1541‑7786.MCR‑17‑0547 29555893
    [Google Scholar]
  185. Kim C. Kang D. Lee E.K. Lee J.S. Long noncoding RNAs and RNA-binding proteins in oxidative stress, cellular senescence and age-related diseases. Oxid. Med. Cell. Longev. 2017 2017 1 2062384 10.1155/2017/2062384 28811863
    [Google Scholar]
  186. van Kouwenhove M. Kedde M. Agami R. Microrna regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer 2011 11 9 644 656 10.1038/nrc3107 21822212
    [Google Scholar]
  187. Ho J.J.D. Marsden P.A. Competition and collaboration between RNA ‐binding proteins and microRNAs. Wiley Interdiscip. Rev. RNA 2014 5 1 69 86 10.1002/wrna.1197 24124109
    [Google Scholar]
  188. Hämmerle M. Gutschner T. Uckelmann H. Ozgur S. Fiskin E. Gross M. Skawran B. Geffers R. Longerich T. Breuhahn K. Schirmacher P. Stoecklin G. Diederichs S. Posttranscriptional destabilization of the liver-specific long noncoding RNA hulc by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology 2013 58 5 1703 1712 10.1002/hep.26537 23728852
    [Google Scholar]
  189. Conn S.J. Pillman K.A. Toubia J. Conn V.M. Salmanidis M. Phillips C.A. Roslan S. Schreiber A.W. Gregory P.A. Goodall G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015 160 6 1125 1134 10.1016/j.cell.2015.02.014 25768908
    [Google Scholar]
  190. Lyu D. Huang S. The emerging role and clinical implication of human exonic circular RNA. RNA Biol. 2017 14 8 1000 1006 10.1080/15476286.2016.1227904 27588461
    [Google Scholar]
  191. Dudekula D.B. Panda A.C. Grammatikakis I. De S. Abdelmohsen K. Gorospe M. Circinteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016 13 1 34 42 10.1080/15476286.2015.1128065 26669964
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232356703250325075309
Loading
/content/journals/cgt/10.2174/0115665232356703250325075309
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: non-coding RNAs ; molecular aspects ; therapeutic targets ; Glioblastoma ; angiogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test