Skip to content
2000
image of Transforming RNA-Based Gene Therapy with Innovative Nanocarriers for siRNA and miRNA Delivery

Abstract

The cells have been given precise instructions proprio to the regulation of gene expression by the main genesis of Ryan-based gene therapy, which has revived cancer treatment and other disorders. The difficulty of delivering small interfering RNA (siRNA) and microRNA (miRNA) to a target cell is an enormous task and is often faced by researchers due to characteristic instabilities of these carriers and their poor uptake by the cell membrane. The new developments from nanocarrier technologies offer opportunities for better effectiveness of RNA therapy for its delivery and the effectiveness of the treatment regimen. The objective of this article is to provide an overview of the existing as well as the newest developments in nanocarrier technology, particularly as related to microRNA and small interfering RNA (siRNA) delivery. Their modes of operation and their uses in gene therapies are also examined as principles of their design. We focus on several nanocarrier technologies, which have shown proof of concept in multiple disciplines such as stability, controlled release profiles, and delivery. Lipid-based nanoparticles, polymeric systems, and hybrid nanocarriers are some of the platforms that fall under this category; however, this list is not exhaustive. We also study the idea that certain nanocarriers could have multiple functionalities, which would make it possible to improve cancer treatment by simultaneously carrying chemotherapy and genes. We aim to shed light on the future of RNA-based gene therapy by providing a thorough overview of recent research in the field. This will help us understand how novel nanocarrier technologies can tackle the delivery issues.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232355294250330002630
2025-04-14
2025-09-03
Loading full text...

Full text loading...

References

  1. Wood M. Yin H. McClorey G. Modulating the expression of disease genes with RNA-based therapy. PLoS Genet. 2007 3 6 e109 10.1371/journal.pgen.0030109 17604456
    [Google Scholar]
  2. Duffy D.J. Problems, challenges and promises: Perspectives on precision medicine. Brief. Bioinform. 2016 17 3 494 504 10.1093/bib/bbv060 26249224
    [Google Scholar]
  3. Miele E. Spinelli G.P. Miele E. Di Fabrizio E. Ferretti E. Tomao S. Gulino A. Nanoparticle-based delivery of small interfering RNA: Challenges for cancer therapy. Int. J. Nanomedicine 2012 7 3637 3657 22915840
    [Google Scholar]
  4. Rupaimoole R. Slack F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017 16 3 203 222 10.1038/nrd.2016.246 28209991
    [Google Scholar]
  5. Winkle M. El-Daly S.M. Fabbri M. Calin G.A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 2021 20 8 629 651 10.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  6. Quemener A.M. Centomo M.L. Sax S.L. Panella R. Small drugs, huge impact: The extraordinary impact of antisense oligonucleotides in research and drug development. Molecules 2022 27 2 536 10.3390/molecules27020536 35056851
    [Google Scholar]
  7. Zhou J. Shum K.T. Burnett J. Rossi J. Nanoparticle-based delivery of RNAi therapeutics: Progress and challenges. Pharmaceuticals (Basel) 2013 6 1 85 107 10.3390/ph6010085 23667320
    [Google Scholar]
  8. Petrocca F. Lieberman J. Promise and challenge of RNA interference-based therapy for cancer. J. Clin. Oncol. 2011 29 6 747 754 10.1200/JCO.2009.27.6287 21079135
    [Google Scholar]
  9. Catalanotto C. Cogoni C. Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci. 2016 17 10 1712 10.3390/ijms17101712 27754357
    [Google Scholar]
  10. Zhang J. Chen B. Gan C. Sun H. Zhang J. Feng L. A comprehensive review of small interfering RNAs (SIRNAS): Mechanism, therapeutic targets, and delivery strategies for cancer therapy. Int. J. Nanomedicine 2023 18 7605 7635 10.2147/IJN.S436038 38106451
    [Google Scholar]
  11. Gulyaeva L.F. Kushlinskiy N.E. Regulatory mechanisms of microRNA expression. J. Transl. Med. 2016 14 1 143 10.1186/s12967‑016‑0893‑x 27197967
    [Google Scholar]
  12. Yeung M.L. Bennasser Y. Le S.Y. Jeang K.T. SIRNA, MIRNA and HIV: Promises and challenges. Cell Res. 2005 15 11-12 935 946 10.1038/sj.cr.7290371 16354572
    [Google Scholar]
  13. Ha M. Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014 15 8 509 524 10.1038/nrm3838 25027649
    [Google Scholar]
  14. Abdellatif M. Differential expression of microRNAs in different disease states. Circ. Res. 2012 110 4 638 650 10.1161/CIRCRESAHA.111.247437 22343558
    [Google Scholar]
  15. Izquierdo M. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther. 2005 12 3 217 227 10.1038/sj.cgt.7700791 15550938
    [Google Scholar]
  16. Shahcheraghi S.H. Ayatollahi J. Lotfi M. Aljabali A.A. Al-Zoubi M.S. Panda P.K. Mishra V. Satija S. Charbe N.B. Serrano-Aroca Á. Bahar B. Gene therapy for neuropsychiatric disorders: Potential targets and tools. CNS Neurolog. Disord. - Dru. Targ. 2023 22 15 51 65 10.2174/1871527321666220304153719
    [Google Scholar]
  17. Chakraborty C. Potentiality of small interfering RNAs (SIRNA) as recent therapeutic targets for gene-silencing. Curr. Drug Targets 2007 8 3 469 482 10.2174/138945007780058988 17348839
    [Google Scholar]
  18. Liu F. Wang C. Gao Y. Li X. Tian F. Zhang Y. Fu M. Li P. Wang Y. Wang F. Current transport systems and clinical applications for small interfering RNA (SIRNA) drugs. Mol. Diagn. Ther. 2018 22 5 551 569 10.1007/s40291‑018‑0338‑8 29926308
    [Google Scholar]
  19. Johannes L. Lucchino M. Current challenges in delivery and cytosolic translocation of therapeutic RNAs. Nucleic Acid Ther. 2018 28 3 178 193 10.1089/nat.2017.0716 29883296
    [Google Scholar]
  20. Dana H. Chalbatani G.M. Mahmoodzadeh H. Gharagouzlo E. Karimloo R. Rezaiean O. Moradzadeh A. Mazraeh A. Marmari V. Rashno M.M. Mehmandoost N. Moazzen F. Ebrahimi M. Abadi S.J. Molecular mechanisms and biological functions of SIRNA. Int. J. Biomed. Sci. 2017 13 2 48 57 10.59566/IJBS.2017.13048 28824341
    [Google Scholar]
  21. Bogerd H.P. Skalsky R.L. Kennedy E.M. Furuse Y. Whisnant A.W. Flores O. Schultz K.L.W. Putnam N. Barrows N.J. Sherry B. Scholle F. Garcia-Blanco M.A. Griffin D.E. Cullen B.R. Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J. Virol. 2014 88 14 8065 8076 10.1128/JVI.00985‑14 24807715
    [Google Scholar]
  22. Ro-Choi T.S. Reddy R. Henning D. Takano T. Taylor C.W. Busch H. Nucleotide sequence of 4.5 s ribonucleic acid of novikoff hepatoma cell nuclei. J. Biol. Chem. 1972 247 10 3205 3222 10.1016/S0021‑9258(19)45233‑2 4337508
    [Google Scholar]
  23. Usui K. Ichihashi N. Yomo T. A design principle for a single-stranded RNA genome that replicates with less double-strand formation. Nucleic Acids Res. 2015 43 16 8033 8043 10.1093/nar/gkv742 26202975
    [Google Scholar]
  24. Baylin S.B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2005 2 S1 Suppl. 1 S4 S11 10.1038/ncponc0354 16341240
    [Google Scholar]
  25. Afonso-Grunz F. Müller S. Principles of MIRNA–MRNA interactions: Beyond sequence complementarity. Cell. Mol. Life Sci. 2015 72 16 3127 3141 10.1007/s00018‑015‑1922‑2 26037721
    [Google Scholar]
  26. Sand M. Gambichler T. Skrygan M. Sand D. Scola N. Altmeyer P. Bechara F.G. Expression levels of the microRNA processing enzymes drosha and dicer in epithelial skin cancer. Cancer Invest. 2010 28 6 649 653 10.3109/07357901003630918 20210522
    [Google Scholar]
  27. Bofill-De Ros X. Gu S. Guidelines for the optimal design of MIRNA-based shRNAs. Methods 2016 103 157 166 10.1016/j.ymeth.2016.04.003 27083402
    [Google Scholar]
  28. Beilharz T.H. Humphreys D.T. Clancy J.L. Thermann R. Martin D.I.K. Hentze M.W. Preiss T. microrna-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One 2009 4 8 e6783 10.1371/journal.pone.0006783 19710908
    [Google Scholar]
  29. Ossowski S. Schwab R. Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 2008 53 4 674 690 10.1111/j.1365‑313X.2007.03328.x 18269576
    [Google Scholar]
  30. Murano K. Iwasaki Y.W. Ishizu H. Mashiko A. Shibuya A. Kondo S. Adachi S. Suzuki S. Saito K. Natsume T. Siomi M.C. Siomi H. Nuclear RNA export factor variant initiates pirna-guided co-transcriptional silencing. EMBO J. 2019 38 17 e102870 10.15252/embj.2019102870 31368590
    [Google Scholar]
  31. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007 449 7164 819 826 10.1038/nature06246 17943118
    [Google Scholar]
  32. Sornette D. Endogenous versus exogenous origins of crises. Extreme Events in Nature and Society. The Frontiers Collection Springer Berlin, Heidelberg 2006 5 95 119 10.1007/3‑540‑28611‑X_5
    [Google Scholar]
  33. Missiroli S. Genovese I. Perrone M. Vezzani B. Vitto V.A.M. Giorgi C. The role of mitochondria in inflammation: From cancer to neurodegenerative disorders. J. Clin. Med. 2020 9 3 740 10.3390/jcm9030740 32182899
    [Google Scholar]
  34. Hollenhorst P.C. Shah A.A. Hopkins C. Graves B.J. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ets gene family. Genes Dev. 2007 21 15 1882 1894 10.1101/gad.1561707 17652178
    [Google Scholar]
  35. Naeem M. Majeed S. Hoque M.Z. Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-CAS-mediated genome editing. Cells 2020 9 7 1608 10.3390/cells9071608 32630835
    [Google Scholar]
  36. Karppinen H. Seppänen K. Huiskonen J. Identifying product and process configuration requirements in a decentralised service delivery system. Int. J. Serv. Oper. Manag. 2014 17 3 294 310 10.1504/IJSOM.2014.059561
    [Google Scholar]
  37. Selby L.I. Cortez-Jugo C.M. Such G.K. Johnston A.P.R. Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017 9 5 e1452 10.1002/wnan.1452 28160452
    [Google Scholar]
  38. Yao W. Mei C. Nan X. Hui L. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene 2016 590 1 142 148 10.1016/j.gene.2016.06.033 27317895
    [Google Scholar]
  39. Subhan M.A. Torchilin V.P. SIRNA based drug design, quality, delivery and clinical translation. Nanomedicine 2020 29 102239 10.1016/j.nano.2020.102239 32544449
    [Google Scholar]
  40. Jackson A.L. Linsley P.S. Recognizing and avoiding SIRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 2010 9 1 57 67 10.1038/nrd3010 20043028
    [Google Scholar]
  41. De Chiara G. Marcocci M.E. Sgarbanti R. Civitelli L. Ripoli C. Piacentini R. Garaci E. Grassi C. Palamara A.T. Infectious agents and neurodegeneration. Mol. Neurobiol. 2012 46 3 614 638 10.1007/s12035‑012‑8320‑7 22899188
    [Google Scholar]
  42. Smith E.S. Whitty E. Yoo B. Moore A. Sempere L.F. Medarova Z. Clinical applications of short non-coding RNA-based therapies in the era of precision medicine. Cancers (Basel) 2022 14 6 1588 10.3390/cancers14061588 35326738
    [Google Scholar]
  43. Bilia A.R. Piazzini V. Risaliti L. Vanti G. CASamonti M. Wang M. Bergonzi M.C. Nanocarriers: A successful tool to increase solubility, stability and optimise bioefficacy of natural constituents. Curr. Med. Chem. 2019 26 24 4631 4656 10.2174/0929867325666181101110050 30381065
    [Google Scholar]
  44. Keskin O. Gursoy A. Ma B. Nussinov R. Principles of protein-protein interactions: What are the preferred ways for proteins to interact? Chem. Rev. 2008 108 4 1225 1244 10.1021/cr040409x 18355092
    [Google Scholar]
  45. López-Maury L. Marguerat S. Bähler J. Tuning gene expression to changing environments: From rapid responses to evolutionary adaptation. Nat. Rev. Genet. 2008 9 8 583 593 10.1038/nrg2398 18591982
    [Google Scholar]
  46. Banta A.B. Ward R.D. Tran J.S. Bacon E.E. Peters J.M. Programmable gene knockdown in diverse bacteria using mobile-CRISPRi. Curr. Protoc. Microbiol. 2020 59 1 e130 10.1002/cpmc.130 33332762
    [Google Scholar]
  47. Shin H. Park S.J. Yim Y. Kim J. Choi C. Won C. Min D.H. Recent advances in RNA therapeutics and RNA delivery systems based on nanoparticles. Adv. Ther. (Weinh.) 2018 1 7 1800065 10.1002/adtp.201800065
    [Google Scholar]
  48. Liu Z. Chen J. Xu M. Gracias D.H. Yong K.T. Wei Y. Ho H.P. Programmable lipid nanoparticles for precision drug delivery: A four-domain model perspective. Biomolecules. 2024 2408 05695 10.48550/arXiv.2408.05695
    [Google Scholar]
  49. Seo H. Jeon L. Kwon J. Lee H. High-precision synthesis of RNA-loaded lipid nanoparticles for biomedical applications. Adv. Healthc. Mater. 2023 12 13 2203033 10.1002/adhm.202203033 36737864
    [Google Scholar]
  50. Jeong M. Lee Y. Park J. Jung H. Lee H. Lipid nanoparticles (lnps) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 2023 200 114990 10.1016/j.addr.2023.114990 37423563
    [Google Scholar]
  51. Zhang C. Ma Y. Zhang J. Kuo J.C.T. Zhang Z. Xie H. Zhu J. Liu T. Modification of lipid-based nanoparticles: An efficient delivery system for nucleic acid-based immunotherapy. Molecules 2022 27 6 1943 10.3390/molecules27061943 35335310
    [Google Scholar]
  52. Cavallaro G. Sardo C. Craparo E.F. Porsio B. Giammona G. Polymeric nanoparticles for SIRNA delivery: Production and applications. Int. J. Pharm. 2017 525 2 313 333 10.1016/j.ijpharm.2017.04.008 28416401
    [Google Scholar]
  53. Gagliardi M. Borri C. Polymer nanoparticles as smart carriers for the enhanced release of therapeutic agents to the cns. Curr. Pharm. Des. 2017 23 3 393 410 10.2174/1381612822666161027111542 27799038
    [Google Scholar]
  54. Ledesma F. Ozcan B. Sun X. Medina S.M. Landry M.P. Nanomaterial strategies for delivery of therapeutic cargoes. Adv. Funct. Mater. 2022 32 4 2107174 10.1002/adfm.202107174
    [Google Scholar]
  55. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  56. Cai G. Yan P. Zhang L. Zhou H.C. Jiang H.L. Metal–organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021 121 20 12278 12326 10.1021/acs.chemrev.1c00243 34280313
    [Google Scholar]
  57. Huang S. Chen G. Ouyang G. Confining enzymes in porous organic frameworks: From synthetic strategy and characterization to healthcare applications. Chem. Soc. Rev. 2022 51 15 6824 6863 10.1039/D1CS01011E 35852480
    [Google Scholar]
  58. Wang K. Li Y. Xie L.H. Li X. Li J.R. Construction and application of base-stable mofs: A critical review. Chem. Soc. Rev. 2022 51 15 6417 6441 10.1039/D1CS00891A 35702993
    [Google Scholar]
  59. Soriano-Giles G. Giles-Mazón E.A. Lopez N. Reinheimer E. Varela-Guerrero V. Ballesteros-Rivas M.F. Metal organic frameworks (mofs) as non-viral carriers for DNA and RNA delivery: A review. Rev. Inorg. Chem. 2023 43 2 201 219 10.1515/revic‑2022‑0004
    [Google Scholar]
  60. He C. Lu J. Lin W. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release 2015 219 224 236 10.1016/j.jconrel.2015.09.029 26387745
    [Google Scholar]
  61. Naahidi S. Jafari M. Edalat F. Raymond K. Khademhosseini A. Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013 166 2 182 194 10.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  62. Xue H. Guo P. Wen W.C. Wong H. Lipid-based nanocarriers for RNA delivery. Curr. Pharm. Des. 2015 21 22 3140 3147 10.2174/1381612821666150531164540 26027572
    [Google Scholar]
  63. Elmoselhy S.A.M. Hybrid lean–agile manufacturing system technical facet, in automotive sector. J. Manuf. Syst. 2013 32 4 598 619 10.1016/j.jmsy.2013.05.011
    [Google Scholar]
  64. Liu Y. Yang G. Hui Y. Ranaweera S. Zhao C.X. Microfluidic nanoparticles for drug delivery. Small 2022 18 36 2106580 10.1002/smll.202106580 35396770
    [Google Scholar]
  65. Alzhrani R. Alsaab H.O. Petrovici A. Bhise K. Vanamala K. Sau S. Krinock M.J. Iyer A.K. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov. Today 2020 25 4 718 730 10.1016/j.drudis.2019.11.006 31758914
    [Google Scholar]
  66. Xia Q. Li H. Xiao K. Factors affecting the pharmacokinetics, biodistribution and toxicity of gold nanoparticles in drug delivery. Curr. Drug Metab. 2016 17 9 849 861 10.2174/1389200217666160629114941 27364829
    [Google Scholar]
  67. Binzel D.W. Li X. Burns N. Khan E. Lee W.J. Chen L.C. Ellipilli S. Miles W. Ho Y.S. Guo P. Thermostability, tunability, and tenacity of RNA as rubbery anionic polymeric materials in nanotechnology and nanomedicine—specific cancer targeting with undetectable toxicity. Chem. Rev. 2021 121 13 7398 7467 10.1021/acs.chemrev.1c00009 34038115
    [Google Scholar]
  68. Sahu B.P. Baishya R. Hatiboruah J.L. Laloo D. Biswas N. A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. J. Pharm. Investig. 2022 52 5 539 585 10.1007/s40005‑022‑00583‑x
    [Google Scholar]
  69. Wang N. Cheng X. Li N. Wang H. Chen H. Nanocarriers and their loading strategies. Adv. Healthc. Mater. 2019 8 6 1801002 10.1002/adhm.201801002 30450761
    [Google Scholar]
  70. Alsaidan O.A. Nanocarriers: Exploring the potential of oligonucleotide delivery. Curr. Drug. Deliv. 2024 34 1 4 10.2174/0115672018306882240618093152
    [Google Scholar]
  71. Shi Y. Zhen X. Zhang Y. Li Y. Koo S. Saiding Q. Kong N. Liu G. Chen W. Tao W. Chemically modified platforms for better RNA therapeutics. Chem. Rev. 2024 124 3 929 1033 10.1021/acs.chemrev.3c00611 38284616
    [Google Scholar]
  72. Li M. Yu B. Wang S. Zhou F. Cui J. Su J. Microenvironment-responsive nanocarriers for targeted bone disease therapy. Nano Today 2023 50 101838 10.1016/j.nantod.2023.101838
    [Google Scholar]
  73. Gadde S. Multi-drug delivery nanocarriers for combination therapy. MedChemComm 2015 6 11 1916 1929 10.1039/C5MD00365B
    [Google Scholar]
  74. Guo K. Xiao N. Liu Y. Wang Z. Tóth J. Gyenis J. Thakur V.K. Oyane A. Shubhra Q.T. Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. Nano Mater. Sci. 2022 4 4 295 321 10.1016/j.nanoms.2021.12.001
    [Google Scholar]
  75. Liao W. Li W. Zhang T. Kirberger M. Liu J. Wang P. Chen W. Wang Y. Powering up the molecular therapy of RNA interference by novel nanoparticles. Biomater. Sci. 2016 4 7 1051 1061 10.1039/C6BM00204H 27221980
    [Google Scholar]
  76. Xin Y. Huang M. Guo W.W. Huang Q. Zhang L. Jiang G. Nano-based delivery of RNAi in cancer therapy. Mol. Cancer 2017 16 1 134 10.1186/s12943‑017‑0683‑y 28754120
    [Google Scholar]
  77. Santos J.F. del Rocío Silva-Calpa L. de Souza F.G. Pal K. Central countries’ and brazil’s contributions to nanotechnology. Curr. Nanomater. 2024 9 2 109 147 10.2174/2405461508666230525124138
    [Google Scholar]
  78. Jasinski D. Haque F. Binzel D.W. Guo P. Advancement of the emerging field of RNA nanotechnology. ACS Nano 2017 11 2 1142 1164 10.1021/acsnano.6b05737 28045501
    [Google Scholar]
  79. Chen G. Qian Y. Zhang H. Ullah A. He X. Zhou Z. Fenniri H. Shen J. Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Appl. Mater. Today 2021 23 101003 10.1016/j.apmt.2021.101003
    [Google Scholar]
  80. Rinoldi C. Zargarian S.S. Nakielski P. Li X. Liguori A. Petronella F. Presutti D. Wang Q. Costantini M. De Sio L. Gualandi C. Ding B. Pierini F. Nanotechnology-assisted RNA delivery: From nucleic acid therapeutics to covid-19 vaccines. Small Methods 2021 5 9 2100402 10.1002/smtd.202100402 34514087
    [Google Scholar]
  81. Kenchegowda M. Rahamathulla M. Hani U. Begum M.Y. Guruswamy S. Osmani R.A.M. Gowrav M.P. Alshehri S. Ghoneim M.M. Alshlowi A. Gowda D.V. Smart nanocarriers as an emerging platform for cancer therapy: A review. Molecules 2021 27 1 146 10.3390/molecules27010146 35011376
    [Google Scholar]
  82. Barba A. Lamberti G. Sardo C. Dapas B. Abrami M. Grassi M. Farra R. Tonon F. Forte G. Musiani F. Licciardi M. Pozzato G. Zanconati F. Scaggiante B. Grassi G. Cavallaro G. Novel lipid and polymeric materials as delivery systems for nucleic acid based drugs. Curr. Drug Metab. 2015 16 6 427 452 10.2174/1389200216666150812142557 26264345
    [Google Scholar]
  83. O Abioye A. Tangyie Chi G. Kola-Mustapha T.A. Ruparelia K. Beresford K. Arroo R. Polymer-drug nanoconjugate–an innovative nanomedicine: Challenges and recent advancements in rational formulation design for effective delivery of poorly soluble drugs. Pharm. Nanotechnol. 2016 4 1 38 79 10.2174/2211738504666160213001714
    [Google Scholar]
  84. Rojas S. Arenas-Vivo A. Horcajada P. Metal-organic frameworks: A novel platform for combined advanced therapies. Coord. Chem. Rev. 2019 388 202 226 10.1016/j.ccr.2019.02.032
    [Google Scholar]
  85. Sharma M. Pandey C. Sharma N. Kamal M.A. Sayeed U. Akhtar S. Cancer nanotechnology-an excursion on drug delivery systems. Anti-Canc. Agen. Med. Chem. 2018 18 15 2078 2092 10.2174/1871520618666180720164015
    [Google Scholar]
  86. Pal Singh P. Vithalapuram V. Metre S. Kodipyaka R. Lipoplex-based therapeutics for effective oligonucleotide delivery: A compendious review. J. Liposome Res. 2020 30 4 313 335 10.1080/08982104.2019.1652645 31422719
    [Google Scholar]
  87. DeLong R. Schaeffer A. Malcolm Y. Schaeffer A. Severs T. Reynolds C. Wanekaya A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol. Sci. Appl. 2010 3 53 63 10.2147/NSA.S8984 24198471
    [Google Scholar]
  88. Murjani B.O. Kadu P.S. Bansod M. Vaidya S.S. Yadav M.D. Carbon nanotubes in biomedical applications: Current status, promises, and challenges. Carb. Lett. 2022 32 1207 1226 10.1007/s42823‑022‑00364‑4
    [Google Scholar]
  89. Kisakova L.A. Apartsin E.K. Nizolenko L.F. Karpenko L.I. Dendrimer-mediated delivery of DNA and RNA vaccines. Pharmaceutics 2023 15 4 1106 10.3390/pharmaceutics15041106 37111593
    [Google Scholar]
  90. Qi G.B. Gao Y.J. Wang L. Wang H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018 30 22 1703444 10.1002/adma.201703444 29460400
    [Google Scholar]
  91. Reddy L.H. Arias J.L. Nicolas J. Couvreur P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012 112 11 5818 5878 10.1021/cr300068p 23043508
    [Google Scholar]
  92. Tang F. Li L. Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012 24 12 1504 1534 10.1002/adma.201104763 22378538
    [Google Scholar]
  93. Khalifehzadeh R. Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv. Colloid Interface Sci. 2020 279 102157 10.1016/j.cis.2020.102157 32330734
    [Google Scholar]
  94. Whitlow J. Pacelli S. Paul A. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. J. Control. Release 2017 261 62 86 10.1016/j.jconrel.2017.05.033 28596105
    [Google Scholar]
  95. Taheri-Kafrani A. Shirzadfar H. Tavassoli-Kafrani E. Chapter 5 - dendrimers and dendrimers-grafted superparamagnetic iron oxide nanoparticles: Synthesis, characterization, functionalization, and biological applications in drug delivery systems Nano- and Microscale Drug Delivery Systems Amsterdam, Netherlands Elsevier 2017 4 75 94 10.1016/B978‑0‑323‑52727‑9.00005‑4
    [Google Scholar]
  96. Li C. Zhang D. Pan Y. Chen B. Human serum albumin based nanodrug delivery systems: Recent advances and future perspective. Polymers (Basel) 2023 15 16 3354 10.3390/polym15163354 37631411
    [Google Scholar]
  97. Guo Y. Awais M.M. Fei S. Xia J. Sun J. Feng M. Applications and potentials of a silk fibroin nanoparticle delivery system in animal husbandry. Animals (Basel) 2024 14 4 655 10.3390/ani14040655 38396623
    [Google Scholar]
  98. Lu Y. Godbout K. Lamothe G. Tremblay J.P. CRISPR-CAS9 delivery strategies with engineered extracellular vesicles. Mol. Ther.: Nucl. Aci. 2023 34 1 13
    [Google Scholar]
  99. Chitkara D. Singh S. Mittal A. Nanocarrier-based co-delivery of small molecules and SIRNA/MIRNA for treatment of cancer. Ther. Deliv. 2016 7 4 245 255 10.4155/tde‑2015‑0003 27010986
    [Google Scholar]
  100. Torchilin V. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 2006 58 14 1532 1555 10.1016/j.addr.2006.09.009 17092599
    [Google Scholar]
  101. Paskeh M.D.A. Saebfar H. Mahabady M.K. Orouei S. Hushmandi K. Entezari M. Hashemi M. Aref A.R. Hamblin M.R. Ang H.L. Kumar A.P. Zarrabi A. Samarghandian S. Overcoming doxorubicin resistance in cancer: SIRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci. 2022 298 120463 10.1016/j.lfs.2022.120463 35259354
    [Google Scholar]
  102. Vucenik I. Shamsuddin A.M. Protection against cancer by dietary ip6 and inositol. Nutr. Cancer 2006 55 2 109 125 10.1207/s15327914nc5502_1 17044765
    [Google Scholar]
  103. Bodur C. Basaga H. Bcl-2 inhibitors: Emerging drugs in cancer therapy. Curr. Med. Chem. 2012 19 12 1804 1820 10.2174/092986712800099839 22414090
    [Google Scholar]
  104. Chen H. Zhao Y. Wang H. Nie G. Nan K. Co-delivery strategies based on multifunctional nanocarriers for cancer therapy. Curr. Drug Metab. 2012 13 8 1087 1096 10.2174/138920012802849995 22380013
    [Google Scholar]
  105. Rizwanullah M. Alam M. Harshita Mir S.R. Rizvi M.M.A. Amin S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des. 2020 26 11 1206 1215 10.2174/1381612826666200116150426 31951163
    [Google Scholar]
  106. Cao J. Li X. Tian H. Metal-organic framework (mof)-based drug delivery. Curr. Med. Chem. 2020 27 35 5949 5969 10.2174/0929867326666190618152518 31215374
    [Google Scholar]
  107. del Pozo-Rodríguez A. Delgado D. Solinís M.A. Gascón A.R. Lipid nanoparticles as vehicles for macromolecules: Nucleic acids and peptides. Recent Pat. Drug Deliv. Formul. 2011 5 3 214 226 10.2174/187221111797200515 21834776
    [Google Scholar]
  108. Howell M. Wang C. Mahmoud A. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: Perspectives and challenges for use in lung diseases. Drug Deliv. Transl. Res. 2013 3 352 363 10.1007/s13346‑013‑0132‑4
    [Google Scholar]
  109. Meng Q.Y. Cong H.L. Hu H. Xu F.J. Rational design and latest advances of codelivery systems for cancer therapy. Mater. Today Bio 2020 7 100056 10.1016/j.mtbio.2020.100056 32510051
    [Google Scholar]
  110. Fojo T. Bates S. Strategies for reversing drug resistance. Oncogene 2003 22 47 7512 7523 10.1038/sj.onc.1206951 14576855
    [Google Scholar]
  111. Wang Z. Zhao Y. Zhang S. Chen X. Sun G. Zhang B. Jiang B. Yang Y. Yan X. Fan K. Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy. Theranostics 2022 12 4 1800 1815 10.7150/thno.68459 35198074
    [Google Scholar]
  112. Majumder J. Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin. Drug Deliv. 2021 18 2 205 227 10.1080/17425247.2021.1828339 32969740
    [Google Scholar]
  113. Sanvicens N. Marco M.P. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol. 2008 26 8 425 433 10.1016/j.tibtech.2008.04.005 18514941
    [Google Scholar]
  114. Kummar S. Chen H.X. Wright J. Holbeck S. Millin M.D. Tomaszewski J. Zweibel J. Collins J. Doroshow J.H. Utilizing targeted cancer therapeutic agents in combination: Novel approaches and urgent requirements. Nat. Rev. Drug Discov. 2010 9 11 843 856 10.1038/nrd3216 21031001
    [Google Scholar]
  115. Naghizadeh S. Mansoori B. Mohammadi A. Sakhinia E. Baradaran B. Gene silencing strategies in cancer therapy: An update for drug resistance. Curr. Med. Chem. 2019 26 34 6282 6303 10.2174/0929867325666180403141554 29611475
    [Google Scholar]
  116. Yang Y. Zhang Z. Li S. Ye X. Li X. He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014 92 133 147 10.1016/j.fitote.2013.10.010 24177191
    [Google Scholar]
  117. Boussios S. Pentheroudakis G. Katsanos K. Pavlidis N. Systemic treatment-induced gastrointestinal toxicity: Incidence, clinical presentation and management. Ann. Gastroenterol. 2012 25 2 106 118 24713845
    [Google Scholar]
  118. Paunovska K. Loughrey D. Dahlman J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022 23 5 265 280 10.1038/s41576‑021‑00439‑4 34983972
    [Google Scholar]
  119. Al Bostami R.D. Abuwatfa W.H. Husseini G.A. Recent advances in nanoparticle-based co-delivery systems for cancer therapy. Nanomaterials (Basel) 2022 12 15 2672 10.3390/nano12152672 35957103
    [Google Scholar]
  120. Mitragotri S. Burke P.A. Langer R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014 13 9 655 672 10.1038/nrd4363 25103255
    [Google Scholar]
  121. Gao H. Yang Z. Zhang S. Pang Z. Liu Q. Jiang X. Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomater. 2014 10 2 858 867 10.1016/j.actbio.2013.11.003 24239900
    [Google Scholar]
  122. Wang Y. Delivery systems for RNA interference therapy: Current technologies and limitations. Curr. Gene Ther. 2020 20 5 356 372 10.2174/1566523220666201005110726 33019930
    [Google Scholar]
  123. Yan Y. Liu X.Y. Lu A. Wang X.Y. Jiang L.X. Wang J.C. Non-viral vectors for RNA delivery. J. Control. Release 2022 342 241 279 10.1016/j.jconrel.2022.01.008 35016918
    [Google Scholar]
  124. Bajan S. Hutvagner G. RNA-based therapeutics: From antisense oligonucleotides to MIRNAS. Cells 2020 9 1 137 10.3390/cells9010137 31936122
    [Google Scholar]
  125. Mills J.A. Liu F. Jarrett T.R. Fletcher N.L. Thurecht K.J. Nanoparticle based medicines: Approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater. Sci. 2022 10 12 3029 3053 10.1039/D2BM00181K 35419582
    [Google Scholar]
  126. Fam S.Y. Chee C.F. Yong C.Y. Ho K.L. Mariatulqabtiah A.R. Tan W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials (Basel) 2020 10 4 787 10.3390/nano10040787 32325941
    [Google Scholar]
  127. Ke W. Crist R.M. Clogston J.D. Stern S.T. Dobrovolskaia M.A. Grodzinski P. Jensen M.A. Trends and patterns in cancer nanotechnology research: A survey of nci’s cananolab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 2022 191 114591 10.1016/j.addr.2022.114591 36332724
    [Google Scholar]
  128. Mishra D.K. Shandilya R. Mishra P.K. Lipid based nanocarriers: A translational perspective. Nanomedicine 2018 14 7 2023 2050 10.1016/j.nano.2018.05.021 29944981
    [Google Scholar]
  129. Noor F. Noor A. Ishaq A.R. Farzeen I. Saleem M.H. Ghaffar K. Aslam M.F. Aslam S. Chen J.T. Recent advances in diagnostic and therapeutic approaches for breast cancer: A comprehensive review. Curr. Pharm. Des. 2021 27 20 2344 2365 10.2174/18734286MTE06NzEAx 33655849
    [Google Scholar]
  130. Yu C. Li L. Hu P. Yang Y. Wei W. Deng X. Wang L. Tay F.R. Ma J. Recent advances in stimulus-responsive nanocarriers for gene therapy. Adv. Sci. (Weinh.) 2021 8 14 2100540 10.1002/advs.202100540 34306980
    [Google Scholar]
  131. Kargozar S. Mozafari M. Nanotechnology and nanomedicine: Start small, think big. Mater. Today Proc. 2018 5 7 15492 15500 10.1016/j.matpr.2018.04.155
    [Google Scholar]
  132. Zhou L.Y. Qin Z. Zhu Y.H. He Z.Y. Xu T. Current RNA-based therapeutics in clinical trials. Curr. Gene Ther. 2019 19 3 172 196 10.2174/1566523219666190719100526 31566126
    [Google Scholar]
  133. Farah F.H. Farah F.H. Nanocarriers as delivery systems for therapeutics agents. Int. J. Pharm. Sci. Res. 2019 10 8 3487 3507 10.13040/IJPSR.0975‑8232.10(8).3487‑07
    [Google Scholar]
  134. Kim D. Le Q.V. Wu Y. Park J. Oh Y.K. Nanovesicle-mediated delivery systems for CRISPR/CAS genome editing. Pharmaceutics 2020 12 12 1233 10.3390/pharmaceutics12121233 33353099
    [Google Scholar]
  135. Ickenstein L.M. Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv. 2019 16 11 1205 1226 10.1080/17425247.2019.1669558 31530041
    [Google Scholar]
  136. Sun Q. Radosz M. Shen Y. Challenges in design of translational nanocarriers. J. Control. Release 2012 164 2 156 169 10.1016/j.jconrel.2012.05.042 22664472
    [Google Scholar]
  137. Hasanzadeh A. Hamblin M.R. Kiani J. Noori H. Hardie J.M. Karimi M. Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? Nano Today 2022 47 101665 10.1016/j.nantod.2022.101665 37034382
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232355294250330002630
Loading
/content/journals/cgt/10.2174/0115665232355294250330002630
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test