Skip to content
2000
image of Identification of Novel Biomarkers of Bacterial Lipopolysaccharides in Diabetic Nephropathy via Transcriptomics and Mendelian Randomization

Abstract

Background

Dysbiosis of Intestinal Flora Lipopolysaccharides (LPS) is implicated in Diabetic Nephropathy (DN), yet the underlying mechanisms remain unclear. This study aims to elucidate the causal relationship between bacterial LPS and DN, with the goal of informing targeted therapeutic strategies.

Methods

DN datasets GSE30528 and GSE96804 were analyzed. Bacterial LPS-related genes (LPS-RGs) were retrieved from the Gene Set Enrichment Analysis (GSEA) database. Differential expression analysis identified differentially expressed genes (DEGs), which were cross-referenced with LPS-RGs to derive DE-LPS-RGs. Mendelian randomization (MR) was applied to explore correlations between exposure factors and outcomes using GWAS data. miRNA-mRNA and TF-mRNA regulatory networks were constructed using data from the TarBase and ENCODE databases, and potential therapeutic agents were identified through the DGIdb database.

Results

Seven DE-LPS-RGs were identified, with CD14 and LY86 selected as biomarkers. GSEA and GeneMANIA analyses indicated that these genes participate in signal transduction and charge-like receptor signaling pathways. The regulatory networks demonstrated that LY86 interacts with miRNA hsa-mir-26a-5p, while TF ELK1 regulates both CD14 and LY86. Additionally, CD14 was associated with three potential drugs: VB-201, IC14, and Lovastatin.

Conclusion

CD14 and LY86 represent promising biomarkers for DN, offering new perspectives for its prediction, diagnosis, and therapeutic intervention.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232353811250527053550
2025-06-03
2025-09-13
Loading full text...

Full text loading...

References

  1. Alicic R.Z. Rooney M.T. Tuttle K.R. Diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 2017 12 12 2032 2045 10.2215/CJN.11491116 28522654
    [Google Scholar]
  2. Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab. Vasc. Dis. Res. 2021 18 6 14791641211058856 10.1177/14791641211058856 34791910
    [Google Scholar]
  3. Samsu N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int. 2021 2021 1 1497449 10.1155/2021/1497449 34307650
    [Google Scholar]
  4. Ma J. Ma D.W. Advancements in the application of precision nursing model on hemodialysis for diabetic nephropathy: A review. Medicine (Baltimore) 2024 103 51 e40952 10.1097/MD.0000000000040952 39705468
    [Google Scholar]
  5. Wang X. Long D. Peng X. Diphenyl diselenide protects against diabetic kidney disease through modulating gut microbiota dysbiosis in streptozotocin-induced diabetic rats. Front. Pharmacol. 2024 15 1506398 10.3389/fphar.2024.1506398 39697537
    [Google Scholar]
  6. Wang F. Liu Q. Wu H. Tang T. Zhao T. Li Z. Correction to: The dysbiosis gut microbiota induces the alternation of metabolism and imbalance of Th17/Treg in OSA patients. Arch. Microbiol. 2022 204 6 319 10.1007/s00203‑022‑02951‑5 35567725
    [Google Scholar]
  7. Jiang L. Hu Y. Zhang Y. Abnormal metabolism in melanocytes participates in the activation of dendritic cell in halo nevus. Clin. Immunol. 2024 265 110300 10.1016/j.clim.2024.110300 38950722
    [Google Scholar]
  8. Tsui Y Wu X Zhang X Short-chain fatty acids in viral infection: The underlying mechanisms, opportunities, and challenges Trends Microbiol 2024 S0966-842X(24) 00261 70 10.1016/j.tim.2024.10.001 39505671
    [Google Scholar]
  9. Chi M. Ma K. Wang J. The immunomodulatory effect of the gut microbiota in kidney disease. J. Immunol. Res. 2021 2021 1 16 10.1155/2021/5516035 34095319
    [Google Scholar]
  10. Giuli L. Maestri M. Santopaolo F. Pompili M. Ponziani F.R. Gut microbiota and neuroinflammation in acute liver failure and chronic liver disease. Metabolites 2023 13 6 772 10.3390/metabo13060772 37367929
    [Google Scholar]
  11. Tian X. Wang G. Jin K. Ding Y. Cheng D. Rice hull insoluble dietary fiber alleviated experimental colitis induced by low dose of dextran sulfate sodium in cadmium-exposed mice. Food Funct. 2022 13 13 7215 7225 10.1039/D2FO00891B 35713263
    [Google Scholar]
  12. Tian M. Li D. Ma C. Feng Y. Hu X. Chen F. Barley leaf insoluble dietary fiber alleviated dextran sulfate sodium-induced mice colitis by modulating gut microbiota. Nutrients 2021 13 3 846 10.3390/nu13030846 33807544
    [Google Scholar]
  13. Popescu C. Munteanu C. Anghelescu A. Novelties on neuroinflammation in alzheimer’s disease–focus on gut and oral microbiota involvement. Int. J. Mol. Sci. 2024 25 20 11272 10.3390/ijms252011272 39457054
    [Google Scholar]
  14. Simeonova D. Ivanovska M. Murdjeva M. Carvalho A.F. Maes M. Recognizing the leaky gut as a trans-diagnostic target for neuroimmune disorders using clinical chemistry and molecular immunology assays. Curr. Top. Med. Chem. 2018 18 19 1641 1655 10.2174/1568026618666181115100610 30430944
    [Google Scholar]
  15. Sabatino A. Regolisti G. Cosola C. Gesualdo L. Fiaccadori E. Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr. Diab. Rep. 2017 17 3 16 10.1007/s11892‑017‑0841‑z 28271466
    [Google Scholar]
  16. Manzo R. Gallardo-Becerra L. Díaz de León-Guerrero S. Environmental enrichment prevents gut dysbiosis progression and enhances glucose metabolism in high-fat diet-induced obese mice. Int. J. Mol. Sci. 2024 25 13 6904 10.3390/ijms25136904 39000013
    [Google Scholar]
  17. Roy R. Kumar D. Bhattacharya P. Borah A. Modulating the biosynthesis and TLR4-interaction of lipopolysaccharide as an approach to counter gut dysbiosis and Parkinson’s disease: Role of phyto-compounds. Neurochem. Int. 2024 178 105803 10.1016/j.neuint.2024.105803 38992819
    [Google Scholar]
  18. Ibayashi Y. Hasuzawa N. Nomura S. Mitochondrial fission is required for thermogenesis in brown adipose tissue. PLoS One 2024 19 12 e0312352 10.1371/journal.pone.0312352 39652536
    [Google Scholar]
  19. Niehues T. Hardenberg S. Velleuer E. Rapid identification of primary atopic disorders (PAD) by a clinical landmarkguided, upfront use of genomic sequencing. Allergol. Select 2024 8 1 304 323 10.5414/ALX02520E 39381601
    [Google Scholar]
  20. Liu J. Wang Y. Zeng L. Extracellular NCOA4 is a mediator of septic death by activating the AGER-NFKB pathway. Autophagy 2024 20 12 2616 2631 10.1080/15548627.2024.2372215 38916095
    [Google Scholar]
  21. Veselá K. Kejík Z. Abramenko N. Kaplánek R. Jakubek M. Petrlova J. Investigating antibacterial and anti-inflammatory properties of synthetic curcuminoids. Front. Med. (Lausanne) 2024 11 1478122 10.3389/fmed.2024.1478122 39534226
    [Google Scholar]
  22. Yu H. Li J. Peng S. Tumor microenvironment: Nurturing cancer cells for immunoevasion and druggable vulnerabilities for cancer immunotherapy. Cancer Lett. 2025 611 217385 10.1016/j.canlet.2024.217385 39645024
    [Google Scholar]
  23. Hofstaedter C.E. Chandler C.E. Met C.M. Divergent Pseudomonas aeruginosa LpxO enzymes perform site-specific lipid A 2-hydroxylation. MBio 2024 15 2 e02823 e23 10.1128/mbio.02823‑23 38131669
    [Google Scholar]
  24. Wang M. Li X. Wu Y. Loss of RPN1 promotes antitumor immunity via PD-L1 checkpoint blockade in triple-negative breast cancer——experimental studies. Int. J. Surg. 2024 2 164 10.1097/JS9.0000000000002164 39705151
    [Google Scholar]
  25. Song J. Li J. Zhang A. Combination of lipopolysaccharide and polygalacturonic acid exerts antitumor activity and augments anti-PD-L1 immunotherapy. Int. J. Biol. Macromol. 2024 281 Pt 1 136390 10.1016/j.ijbiomac.2024.136390 39383910
    [Google Scholar]
  26. Blais A. Takakura N. Grauso M. Puel-Artero C. Blachier F. Lan A. Dietary bovine lactoferrin reduces the deleterious effects of lipopolysaccharide injection on mice intestine. Nutrients 2024 16 23 4040 10.3390/nu16234040 39683434
    [Google Scholar]
  27. Gao Y.L. Li M.Y. Wang D.Y. Mollugin derivatives as anti‐inflammatory agents: Design, synthesis, and NF‐κB inhibition. Chem. Biol. Drug Des. 2024 104 6 e70024 10.1111/cbdd.70024 39702874
    [Google Scholar]
  28. Maldonado R.F. Sá-Correia I. Valvano M.A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 2016 40 4 480 493 10.1093/femsre/fuw007 27075488
    [Google Scholar]
  29. Chiariotti L. Coretti L. Pero R. Lembo F. Epigenetic alterations induced by bacterial lipopolysaccharides. Adv. Exp. Med. Biol. 2016 879 91 105 10.1007/978‑3‑319‑24738‑0_5 26659265
    [Google Scholar]
  30. Hou Y. Hou Y. Wang L. Gene expression profiles in the intestine of lipopolysaccharide-challenged piglets. Front. Biosci. 2016 21 3 487 501 10.2741/4404 26709789
    [Google Scholar]
  31. Nguyen M. Putot A. Masson D. Risk factors and prognostic value of endotoxemia in patients with acute myocardial infarction. Front. Cardiovasc. Med. 2024 11 1419001 10.3389/fcvm.2024.1419001 38984349
    [Google Scholar]
  32. Izadparast F. Riahi-Zajani B. Yarmohammadi F. Hayes A.W. Karimi G. Protective effect of berberine against LPS-induced injury in the intestine: A review. Cell Cycle 2022 21 22 2365 2378 10.1080/15384101.2022.2100682 35852392
    [Google Scholar]
  33. Che B. Zhang W. Li W. Bacterial lipopolysaccharide-related genes are involved in the invasion and recurrence of prostate cancer and are related to immune escape based on bioinformatics analysis. Front. Oncol. 2023 13 1141191 10.3389/fonc.2023.1141191 37188204
    [Google Scholar]
  34. Yuan T. Zhang S. He S. Ma Y. Chen J. Gu J. Bacterial lipopolysaccharide related genes signature as potential biomarker for prognosis and immune treatment in gastric cancer. Sci. Rep. 2023 13 1 15916 10.1038/s41598‑023‑43223‑6 37741901
    [Google Scholar]
  35. Fan J. Li C. Han W. Yeast peptides alleviate lipopolysaccharide-induced intestinal barrier damage in rabbits involving Toll-like receptor signaling pathway modulation and gut microbiota regulation. Front. Vet. Sci. 2024 11 1393434 10.3389/fvets.2024.1393434 38988982
    [Google Scholar]
  36. Peng Y. Shi R. Yang S. Zhu J. Cuproptosis‐related gene DLAT is a biomarker of the prognosis and immune microenvironment of gastric cancer and affects the invasion and migration of cells. Cancer Med. 2024 13 14 e70012 10.1002/cam4.70012 39031012
    [Google Scholar]
  37. Bodin J. Bølling A.K. Becher R. Kuper F. Løvik M. Nygaard U.C. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol. Sci. 2014 137 2 311 323 10.1093/toxsci/kft242 24189131
    [Google Scholar]
  38. Li L. Chen Y. Tang Z. You Y. Guo Y. Liao Y. Effect of metformin on gut microbiota imbalance in patients with T2DM, and the value of probiotic supplementation. Allergol. Immunopathol. (Madr.) 2024 52 4 84 90 10.15586/aei.v52i4.1101 38970270
    [Google Scholar]
  39. Ge X. Liu T. Wang Y. Porous starch microspheres loaded with luteolin exhibit hypoglycemic activities and alter gut microbial communities in type 2 diabetes mellitus mice. Food Funct. 2024 16 1 54 70 10.1039/d4fo02907k 39377562
    [Google Scholar]
  40. Zhou X. Chen R. Cai Y. Chen Q. Fecal microbiota transplantation: A prospective treatment for type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2024 17 647 659 10.2147/DMSO.S447784 38347911
    [Google Scholar]
  41. Anwar C. Lin J.R. Tsai M.L. Ho C.T. Lai C.S. Calebin A attenuated inflammation in RAW264.7 macrophages and adipose tissue to improve hepatic glucose metabolism and hyperglycemia in high-fat diet-fed obese mice. Eur. J. Pharmacol. 2024 978 176789 10.1016/j.ejphar.2024.176789 38945287
    [Google Scholar]
  42. Olivares M. Hernández-Calderón P. Cárdenas-Brito S. Liébana-García R. Sanz Y. Benítez-Páez A. Gut microbiota DPP4-like enzymes are increased in type-2 diabetes and contribute to incretin inactivation. Genome Biol. 2024 25 1 174 10.1186/s13059‑024‑03325‑4 38961511
    [Google Scholar]
  43. Reynolds R.P. Fan R.R. Tinajero A. Alpha-melanocyte-stimulating hormone contributes to an anti-inflammatory response to lipopolysaccharide. Mol. Metab. 2024 87 101986 10.1016/j.molmet.2024.101986 38992428
    [Google Scholar]
  44. Maia C.M.A. Vasconcelos P.G.S. Pasetto S. Anadenanthera colubrina regulated LPS-induced inflammation by suppressing NF-κB and p38-MAPK signaling pathways. Sci. Rep. 2024 14 1 16028 10.1038/s41598‑024‑66590‑0 38992070
    [Google Scholar]
  45. Jiang L. Lunding L.P. Webber W.S. An antibody to IL-1 receptor 7 protects mice from LPS-induced tissue and systemic inflammation. Front. Immunol. 2024 15 1427100 10.3389/fimmu.2024.1427100 38983847
    [Google Scholar]
  46. Crock L.W. Rodgers R. Huck N.A. Chronic pain and complex regional pain syndrome are associated with alterations to the intestinal microbiota in both humans and mice. An observational cross-sectional study. Neurobiol. Pain 2024 16 100173 10.1016/j.ynpai.2024.100173 39670171
    [Google Scholar]
  47. Yücel G. Zhao Z. El-Battrawy I. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci. Rep. 2017 7 1 2935 10.1038/s41598‑017‑03147‑4 28592841
    [Google Scholar]
  48. Hinds T.D. Jr Kipp Z.A. Xu M. Adipose-specific PPARα knockout mice have increased lipogenesis by pask–srebp1 signaling and a polarity shift to inflammatory macrophages in white adipose tissue. Cells 2021 11 1 4 10.3390/cells11010004 35011564
    [Google Scholar]
  49. Liu W. Chen X. Wang Y. Micheliolide ameliorates diabetic kidney disease by inhibiting Mtdh-mediated renal inflammation in type 2 diabetic db/db mice. Pharmacol. Res. 2019 150 104506 10.1016/j.phrs.2019.104506 31669149
    [Google Scholar]
  50. Shu H. Peng Y. Hang W. Nie J. Zhou N. Wang D.W. The role of CD36 in cardiovascular disease. Cardiovasc. Res. 2022 118 1 115 129 10.1093/cvr/cvaa319 33210138
    [Google Scholar]
  51. Niu H. Ren X. Tan E. CD36 deletion ameliorates diabetic kidney disease by restoring fatty acid oxidation and improving mitochondrial function. Ren. Fail. 2023 45 2 2292753 10.1080/0886022X.2023.2292753 38097943
    [Google Scholar]
  52. Cheng J. Liu P. Yang Y. Liu Y. Xia Y. Functional role of TrIL-1β in Takifugu rubripes defense against Cryptocaryon irritans infection. Int. J. Biol. Macromol. 2024 269 Pt 2 132167 10.1016/j.ijbiomac.2024.132167 38729479
    [Google Scholar]
  53. Shen C. Yang S. Wu N. Overexpression of MD1 ameliorates pathological myocardial remodeling in diabetic cardiomyopathy by TLR4/STAT3 signaling pathway. Mol. Cell. Endocrinol. 2024 592 112315 10.1016/j.mce.2024.112315 38878954
    [Google Scholar]
  54. Li J. Cai X. Yang Y. Macrophage MST1 protects against schistosomiasis-induced liver fibrosis by promoting the PPARγ-CD36 pathway and suppressing NF-κB signaling. PLoS Pathog. 2024 20 12 e1012790 10.1371/journal.ppat.1012790 39700261
    [Google Scholar]
  55. Wochal P. Rathinam V.A.K. Dunne A. TRIL is involved in cytokine production in the brain following Escherichia coli infection. J. Immunol. 2014 193 4 1911 1919 10.4049/jimmunol.1302392 25015823
    [Google Scholar]
  56. Zhou D. Zhang C. Sun J. Yuan M. Neutrophils in oncolytic virus immunotherapy. Front. Immunol. 2024 15 1490414 10.3389/fimmu.2024.1490414 39697335
    [Google Scholar]
  57. Jiang G. Li J. Niu S. Dong R. Chen Y. Bi W. LY86 facilitates ox-LDL-induced lipid accumulation in macrophages by upregulating SREBP2/HMGCR expression. BMC Cardiovasc. Disord. 2024 24 1 289 10.1186/s12872‑024‑03957‑1 38822281
    [Google Scholar]
  58. Cai Y. Zuo X. Zuo Y. Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis. Front. Immunol. 2023 14 1101854 10.3389/fimmu.2023.1101854 37063877
    [Google Scholar]
  59. Saleh A.A. Kasem H.E. Zahran E.S. El-Hefnawy S.M. Cell-free long non-coding RNAs (LY86-AS1 & HCG27_201and GAS5) as biomarkers for pre-diabetes and type 2 DM in Egypt. Biochem. Biophys. Rep. 2020 23 100770 10.1016/j.bbrep.2020.100770 32514472
    [Google Scholar]
  60. Cao H. Rao X. Jia J. Yan T. Li D. Exploring the pathogenesis of diabetic kidney disease by microarray data analysis. Front. Pharmacol. 2022 13 932205 10.3389/fphar.2022.932205 36059966
    [Google Scholar]
  61. Wang L. Gui J. Ding R. Identification and verification of key molecules in the epileptogenic process of focal cortical dysplasia. Metab. Brain Dis. 2024 40 1 47 10.1007/s11011‑024‑01426‑4 39612062
    [Google Scholar]
  62. Nicholas D.A. Mbongue J.C. Garcia-Pérez D. Exploring the interplay between fatty acids, inflammation, and type 2 diabetes. Immuno 2024 4 1 91 107 10.3390/immuno4010006 39606781
    [Google Scholar]
  63. Selby N.M. Taal M.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 2020 22 Suppl. 1 3 15 10.1111/dom.14007
    [Google Scholar]
  64. Lv H. Wang J. Wan Y. Zhou Y. Exploration of the key pathways and genes involved in osteoarthritis genesis: Evidence from multiple platforms and real-world validation. J. Inflamm. Res. 2024 17 10223 10237 10.2147/JIR.S488935 39649419
    [Google Scholar]
  65. Wang X. Zheng Q. Zha L. Thymic stromal lymphopoietin modulates T cell response and improves cardiac repair post-myocardial infarction. Front. Immunol. 2024 15 1467095 10.3389/fimmu.2024.1467095 39703503
    [Google Scholar]
  66. Wang Z. Fang L. Han M. Liu K. Zheng Y. Zhan Y. Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024 103 51 e40932 10.1097/MD.0000000000040932 39705422
    [Google Scholar]
  67. Li Y. Liu H. Fang R. Designing novel Au(III) complexes based on the structure of diazepam: Achieving a multiaction mechanism against glioma. Eur. J. Med. Chem. 2025 283 117171 10.1016/j.ejmech.2024.117171 39705733
    [Google Scholar]
  68. Takeichi T. Morimoto Y. Yamada A. Tanaka T. A technique avoiding cardioplegia delivery complications: A case using systemic hyperkalemia cardiopulmonary bypass combined with circulatory arrest. J. Extra Corpor. Technol. 2024 56 4 207 210 10.1051/ject/2024027 39705585
    [Google Scholar]
  69. Wu Z. Zhang Z. Lei Z. Lei P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019 48 24 31 10.1016/j.cytogfr.2019.06.003 31296363
    [Google Scholar]
  70. Carmona A. Agüera M.L. Luna-Ruiz C. Markers of endothelial damage in patients with chronic kidney disease on hemodialysis. Am. J. Physiol. Renal Physiol. 2017 312 4 F673 F681 10.1152/ajprenal.00013.2016 28077371
    [Google Scholar]
  71. Longtine M.S. Cvitic S. Colvin B.N. Chen B. Desoye G. Nelson D.M. Calcitriol regulates immune genes CD14 and CD180 to modulate LPS responses in human trophoblasts. Reproduction 2017 154 6 735 744 10.1530/REP‑17‑0183 29089453
    [Google Scholar]
  72. Zhang H. Zhao Y. Li D. Anti-inflammatory effects of membrane vesicles from eubacterium rectale via the NLRP3 signal pathway. Probio Antimicrob Prot 2024 24 10432 10.1007/s12602‑024‑10432‑y 39702738
    [Google Scholar]
  73. Han X. Song Y. Piao Y. Mechanism of miR-130b-3p in relieving airway inflammation in asthma through HMGB1-TLR4-DRP1 axis. Cell. Mol. Life Sci. 2024 82 1 9 10.1007/s00018‑024‑05529‑0 39704848
    [Google Scholar]
  74. Chang M.Y. Kang I. Gale M. Jr Versican is produced by Trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017 313 6 L1069 L1086 10.1152/ajplung.00353.2017 28912382
    [Google Scholar]
  75. Ciesielska A. Matyjek M. Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2021 78 4 1233 1261 10.1007/s00018‑020‑03656‑y 33057840
    [Google Scholar]
  76. Wu E. Cheng M. Zhang X. Exploration of potential shared gene signatures between periodontitis and multiple sclerosis. BMC Oral Health 2024 24 1 75 10.1186/s12903‑023‑03846‑7 38218802
    [Google Scholar]
  77. Hassan M. Raslan H.M. Eldin H.G. Mahmoud E. Abd Elwajed H.A. CD33+ HLA-DR– myeloid-derived suppressor cells are increased in frequency in the peripheral blood of type1 diabetes patients with predominance of CD14+ subset. Open Access Maced. J. Med. Sci. 2018 6 2 303 309 10.3889/oamjms.2018.080 29531593
    [Google Scholar]
  78. Khandia R. Gurjar P. Priyanka, Romashchenko V, Al-Hussain SA, Zaki MEA. Recent advances in stem cell therapy: Efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders – a review. Int. J. Surg. 2024 110 10 6367 6381 10.1097/JS9.0000000000001609 39705668
    [Google Scholar]
  79. Gomes A.B.A.G.R. Kim S.H. Pretzsch R. Neurofilament light chain as a discriminator of disease activity status in MOG antibody-associated disease. Neurol. Neuroimmunol. Neuroinflamm. 2025 12 1 e200347 10.1212/NXI.0000000000200347 39705633
    [Google Scholar]
  80. Nasa P. van Meenen D.M.P. Paulus F. Associations of intraoperative end–tidal CO2 levels with postoperative outcome–secondary analysis of a worldwide observational study. J. Clin. Anesth. 2025 101 111728 10.1016/j.jclinane.2024.111728 39705739
    [Google Scholar]
  81. Persaud A.T. Khela J. Fernandes C. Virion-incorporated CD14 enables HIV-1 to bind LPS and initiate TLR4 signaling in immune cells. J. Virol. 2024 98 5 e00363 e24 10.1128/jvi.00363‑24 38661384
    [Google Scholar]
  82. Yaman Gram D. Abay M. Liman N. Tekin M. Kowalewski M.P. Gram A. The effects of the activation of TLR2/TLR1 on in vitro angiogenesis in an immortalized ovine luteal endothelial cell line. Reproduction 2024 168 4 e230368 10.1530/REP‑23‑0368 39074053
    [Google Scholar]
  83. Wei M.J. Huang K.L. Kang H.F. Herbal tea modulates macrophage polarization and inflammatory signaling in LPS-induced inflammation. Int. J. Med. Sci. 2024 21 15 3046 3057 10.7150/ijms.100720 39628684
    [Google Scholar]
  84. Jiang X. Kong B. Shuai W. Loss of MD1 exacerbates myocardial ischemia/reperfusion injury and susceptibility to ventricular arrhythmia. Eur. J. Pharmacol. 2019 844 79 86 10.1016/j.ejphar.2018.11.025 30458167
    [Google Scholar]
  85. Wu J-T. Yang G-W. Qi C-H. Anti-inflammatory activity of platycodin D on alcohol-induced fatty liver rats via TLR4-MYD88-Nf-κB signal path. Afr. J. Tradit. Compl. Altern. Med. 2016 13 4 176 183 10.21010/ajtcam.v13i4.23 28852734
    [Google Scholar]
  86. Yacov N. Feldman B. Volkov A. Ishai E. Breitbart E. Mendel I. Treatment with lecinoxoids attenuates focal and segmental glomerulosclerosis development in nephrectomized rats. Basic Clin. Pharmacol. Toxicol. 2019 124 2 131 143 10.1111/bcpt.13114 30125459
    [Google Scholar]
  87. Gong Y. Yang H. Chen T. USP38 exacerbates myocardial injury and malignant ventricular arrhythmias after ischemia/reperfusion by promoting ferroptosis through the P53/SLC7A11 pathway. Int. Immunopharmacol. 2025 145 113727 10.1016/j.intimp.2024.113727 39642563
    [Google Scholar]
  88. Liu L. Zhou L. Wang L. MUC1 attenuates neutrophilic airway inflammation in asthma by reducing NLRP3 inflammasome-mediated pyroptosis through the inhibition of the TLR4/ MyD88/NF-κB pathway. Respir. Res. 2023 24 1 255 10.1186/s12931‑023‑02550‑y 37880668
    [Google Scholar]
  89. Henderson R.D. Agosti J.M. McCombe P.A. Phase 1b dose-escalation, safety, and pharmacokinetic study of IC14, a monoclonal antibody against CD14, for the treatment of amyotrophic lateral sclerosis. Medicine (Baltimore) 2021 100 42 e27421 10.1097/MD.0000000000027421 34678870
    [Google Scholar]
  90. Janes J. Young M.E. Chen E. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc. Natl. Acad. Sci. USA 2018 115 42 10750 10755 10.1073/pnas.1810137115 30282735
    [Google Scholar]
  91. Xia Y. Zhang G. Kou L. Reactive microglia enhance the transmission of exosomal α-synuclein via toll-like receptor 2. Brain 2021 144 7 2024 2037 10.1093/brain/awab122 33792662
    [Google Scholar]
  92. Chiari L.P.A. da Silva A.P. Honório K.M. da Silva A.B.F. A PLS study on the psychotropic activity for a series of cannabinoid compounds. J. Mol. Model. 2023 29 2 46 10.1007/s00894‑023‑05443‑5 36656418
    [Google Scholar]
  93. Shakiba S. Haddadi N-S. Afshari K. Lubov J.E. Raef H.S. Li R. Spatial characterization of interface dermatitis in cutaneous lupus reveals novel chemokine ligand-receptor pairs that drive disease. bioRxiv 2024 574422 10.1101/2024.01.05.574422 38260617
    [Google Scholar]
  94. Gelevski D. Addy G. Rohrer M. Safety and activity of anti‐CD14 antibody IC14 (atibuclimab) in ALS: Experience with expanded access protocol. Muscle Nerve 2023 67 5 354 362 10.1002/mus.27775 36533976
    [Google Scholar]
  95. Olszyna D.P. Verbon A. Pribble J.P. Effect of IC14, an anti-CD14 antibody, on plasma and cell-associated chemokines during human endotoxemia. Eur. Cytokine Netw. 2003 14 3 158 162 [PMID: 14656690
    [Google Scholar]
  96. Štulc T. Svobodová H. Krupičková Z. Doležalová R. Marinov I. Češka R. Rosiglitazone influences the expression of leukocyte adhesion molecules and CD14 receptor in type 2 diabetes mellitus patients. Physiol. Res. 2014 63 Suppl. 2 S293 S298 10.33549/physiolres.932791 24908235
    [Google Scholar]
  97. Gobejishvili L. Vatsalya V. Avila D.V. Association of circulating markers of microbial translocation and hepatic inflammation with liver injury in patients with type 2 diabetes. Biomedicines 2024 12 6 1227 10.3390/biomedicines12061227 38927434
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232353811250527053550
Loading
/content/journals/cgt/10.2174/0115665232353811250527053550
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test