
Full text loading...
Dysbiosis of Intestinal Flora Lipopolysaccharides (LPS) is implicated in Diabetic Nephropathy (DN), yet the underlying mechanisms remain unclear. This study aims to elucidate the causal relationship between bacterial LPS and DN, with the goal of informing targeted therapeutic strategies.
DN datasets GSE30528 and GSE96804 were analyzed. Bacterial LPS-related genes (LPS-RGs) were retrieved from the Gene Set Enrichment Analysis (GSEA) database. Differential expression analysis identified differentially expressed genes (DEGs), which were cross-referenced with LPS-RGs to derive DE-LPS-RGs. Mendelian randomization (MR) was applied to explore correlations between exposure factors and outcomes using GWAS data. miRNA-mRNA and TF-mRNA regulatory networks were constructed using data from the TarBase and ENCODE databases, and potential therapeutic agents were identified through the DGIdb database.
Seven DE-LPS-RGs were identified, with CD14 and LY86 selected as biomarkers. GSEA and GeneMANIA analyses indicated that these genes participate in signal transduction and charge-like receptor signaling pathways. The regulatory networks demonstrated that LY86 interacts with miRNA hsa-mir-26a-5p, while TF ELK1 regulates both CD14 and LY86. Additionally, CD14 was associated with three potential drugs: VB-201, IC14, and Lovastatin.
CD14 and LY86 represent promising biomarkers for DN, offering new perspectives for its prediction, diagnosis, and therapeutic intervention.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements