Skip to content
2000
image of Riding the Wave of Progress: Examining the Current Landscape and Future Potential of MicroRNAs in Cancer Gene Therapy

Abstract

MicroRNAs, commonly referred to as miRNAs, exert a significant impact on cellular processes by coordinating post-transcriptional gene regulation. These non-coding RNAs, which are only 22 nucleotides long, form a part of the RNA-induced silencing complex (RISC) and play a crucial role in regulating gene expression. Their complex participation in cell proliferation, differentiation, and death highlights their crucial role in maintaining cellular balance. MicroRNAs have become significant contributors in the complex field of cancer biology, operating beyond the usual tasks of cells. Their dysregulation is closely intertwined with cancer initiation and development. miRNAs act as cellular regulators and regulate complex processes of gene expression. Disruption of this regulation can result in tumor development. This review article explores the intricate process of miRNA biosynthesis and its mechanisms, providing insights into its complex interactions with cancer. It also discusses the exciting field of miRNA-based cancer treatment. Exploring the therapeutic possibilities of these small RNA molecules presents opportunities for precision medicine, introducing a new age where miRNAs can be utilized to create targeted therapeutic interventions that mainly address the abnormal genetic characteristics that cause tumor formation. miRNAs provide a harmonious balance between understanding their biology and utilizing their therapeutic potential in cancer treatment. However, they also serve as conductors and possible therapeutic instruments in the symphony of molecular biology for gene therapy.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232353538250318075057
2025-03-24
2025-09-13
Loading full text...

Full text loading...

References

  1. Rawat M. Kadian K. Gupta Y. Kumar A. Chain P.S.G. Kovbasnjuk O. Kumar S. Parasher G. MicroRNA in pancreatic cancer: From biology to therapeutic potential. Genes 2019 10 10 752 10.3390/genes10100752 31557962
    [Google Scholar]
  2. Kozomara A. Birgaoanu M. Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019 47 D1 D155 D162 10.1093/nar/gky1141 30423142
    [Google Scholar]
  3. Mishra S. Yadav T. Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol. 2016 98 12 23 10.1016/j.critrevonc.2015.10.003 26481951
    [Google Scholar]
  4. To K.K.W. Fong W. Tong C.W.S. Wu M. Yan W. Cho W.C.S. Advances in the discovery of microRNA-based anticancer therapeutics: Latest tools and developments. Expert Opin. Drug Discov. 2020 15 1 63 83 10.1080/17460441.2020.1690449 31739699
    [Google Scholar]
  5. Bautista-Sánchez D. Arriaga-Canon C. Pedroza-Torres A. De La Rosa-Velázquez I.A. González-Barrios R. Contreras-Espinosa L. Montiel-Manríquez R. Castro-Hernández C. Fragoso-Ontiveros V. Álvarez-Gómez R.M. Herrera L.A. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol. Ther. Nucleic Acids 2020 20 409 420 10.1016/j.omtn.2020.03.003 32244168
    [Google Scholar]
  6. Iorio M.V. Croce C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2012 4 3 143 159 10.1002/emmm.201100209 22351564
    [Google Scholar]
  7. Iqbal M.A. Arora S. Prakasam G. Calin G.A. Syed M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med. 2019 70 3 20 10.1016/j.mam.2018.07.003 30102929
    [Google Scholar]
  8. Acunzo M. Romano G. Wernicke D. Croce C.M. MicroRNA and cancer: A brief overview. Adv. Biol. Regul. 2015 57 1 9 10.1016/j.jbior.2014.09.013 25294678
    [Google Scholar]
  9. Ruby J.G. Jan C.H. Bartel D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 2007 448 7149 83 86 10.1038/nature05983 17589500
    [Google Scholar]
  10. Xie M. Li M. Vilborg A. Lee N. Shu M.D. Yartseva V. Šestan N. Steitz J.A. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 2013 155 7 1568 1580 10.1016/j.cell.2013.11.027 24360278
    [Google Scholar]
  11. Cheloufi S. Dos Santos C.O. Chong M.M.W. Hannon G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010 465 7298 584 589 10.1038/nature09092 20424607
    [Google Scholar]
  12. Liu J. Carmell M.A. Rivas F.V. Marsden C.G. Thomson J.M. Song J.J. Hammond S.M. Joshua-Tor L. Hannon G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004 305 5689 1437 1441 10.1126/science.1102513 15284456
    [Google Scholar]
  13. Gurbuz N. Ozpolat B. MicroRNA-based targeted therapeutics in pancreatic cancer. Anticancer Res. 2019 39 2 529 532 10.21873/anticanres.13144 30711926
    [Google Scholar]
  14. Hayes J. Peruzzi P.P. Lawler S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014 20 8 460 469 10.1016/j.molmed.2014.06.005 25027972
    [Google Scholar]
  15. Jonas S. Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015 16 7 421 433 10.1038/nrg3965 26077373
    [Google Scholar]
  16. Barger J.F. Nana-Sinkam S.P. MicroRNA as tools and therapeutics in lung cancer. Respir. Med. 2015 109 7 803 812 10.1016/j.rmed.2015.02.006 25910758
    [Google Scholar]
  17. Xue J. Yang J. Luo M. Cho W.C. Liu X. MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin. Drug Discov. 2017 12 2 141 157 10.1080/17460441.2017.1263298 27866431
    [Google Scholar]
  18. Mathers C. The global burden of disease: 2004 update. World Health Organization 2008 10.1016/B978‑012373960‑5.00335‑X
    [Google Scholar]
  19. Ferlay J. Shin H.R. Bray F. Forman D. Mathers C. Parkin D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010 127 12 2893 2917 10.1002/ijc.25516 21351269
    [Google Scholar]
  20. Geng Z. Cao Z. Liu R. Liu K. Liu J. Tan W. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat. Commun. 2021 12 1 6584 10.1038/s41467‑021‑26956‑8 34782610
    [Google Scholar]
  21. Moscetti L. Fabbri M.A. Sperduti I. Fabrizio N. Frittelli P. Massari A. Pompei L. D’Auria G. Pofi E. Ruggeri E.M. Adjuvant aromatase inhibitor therapy in early breast cancer: What factors lead patients to discontinue treatment? Tumori 2015 101 5 469 473 10.5301/tj.5000376 26108239
    [Google Scholar]
  22. Oldham R.K. Cancer biotherapy: More than immunotherapy. Cancer Biother. Radiopharm. 2017 32 4 111 114 10.1089/cbr.2017.28999.old 28514209
    [Google Scholar]
  23. Chabner B.A. Longo D.L. Cancer chemotherapy and biotherapy: Principles and practice. Lippincott Williams & Wilkins 2011
    [Google Scholar]
  24. Cross D. Burmester J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res. 2006 4 3 218 227 10.3121/cmr.4.3.218 16988102
    [Google Scholar]
  25. Watts J.K. Corey D.R. Silencing disease genes in the laboratory and the clinic. J. Pathol. 2012 226 2 365 379 10.1002/path.2993 22069063
    [Google Scholar]
  26. Kanduri C. Long noncoding RNAs: Lessons from genomic imprinting. Biochim Biophys Acta. 2016 1859 1 102 111 10.1016/j.bbagrm.2015.05.006
    [Google Scholar]
  27. Lee S. Kopp F. Chang T.C. Sataluri A. Chen B. Sivakumar S. Yu H. Xie Y. Mendell J.T. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 2016 164 1-2 69 80 10.1016/j.cell.2015.12.017 26724866
    [Google Scholar]
  28. Lee R.C. Feinbaum R.L. Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 cell 1993 75 5 843
    [Google Scholar]
  29. Borchert G.M. Lanier W. Davidson B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006 13 12 1097 1101 10.1038/nsmb1167 17099701
    [Google Scholar]
  30. Lee Y. Kim M. Han J. Yeom K.H. Lee S. Baek S.H. Kim V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004 23 20 4051 4060 10.1038/sj.emboj.7600385 15372072
    [Google Scholar]
  31. Macfarlane L-A. Murphy P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics 2010 11 7 537 561 10.2174/138920210793175895 21532838
    [Google Scholar]
  32. Rana T.M. Illuminating the silence: Understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol. 2007 8 1 23 36 10.1038/nrm2085 17183358
    [Google Scholar]
  33. Chan S.P. Slack F.J. microRNA-mediated silencing inside P-bodies. RNA Biol. 2006 3 3 97 100 10.4161/rna.3.3.3499 17179742
    [Google Scholar]
  34. Turner A.M.W. Morris K.V. Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques 2010 48 6 ix xvi 10.2144/000113442 20569216
    [Google Scholar]
  35. Liu X. Fortin K. Mourelatos Z. MicroRNAs: Biogenesis and molecular functions. Brain Pathol. 2008 18 1 113 121 10.1111/j.1750‑3639.2007.00121.x 18226106
    [Google Scholar]
  36. Svoronos A.A. Engelman D.M. Slack F.J. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016 76 13 3666 3670 10.1158/0008‑5472.CAN‑16‑0359 27325641
    [Google Scholar]
  37. Zhu H. Han C. Wu T. MiR-17-92 cluster promotes hepatocarcinogenesis. Carcinogenesis 2015 36 10 1213 1222 10.1093/carcin/bgv112 26233958
    [Google Scholar]
  38. Zhang X. Wang C. Shan S. Liu X. Jiang Z. Ren T. TLR4/ROS/miRNA-21 pathway underlies lipopolysaccharide instructed primary tumor outgrowth in lung cancer patients. Oncotarget 2016 7 27 42172 42182 10.18632/oncotarget.9902 27286259
    [Google Scholar]
  39. Báez-Vega P.M. Vargas I.M.E. Valiyeva F. Encarnación-Rosado J. Roman A. Flores J. Marcos-Martínez M.J. Vivas-Mejía P.E. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget 2016 7 24 36321 36337 10.18632/oncotarget.9216 27166999
    [Google Scholar]
  40. Simonian M. Mosallayi M. Mirzaei H. Circulating miR-21 as novel biomarker in gastric cancer. J. Cancer Res. Ther. 2018 14 2 475 10.4103/0973‑1482.175428 29516946
    [Google Scholar]
  41. Menon A. Abd-Aziz N. Khalid K. Poh C.L. Naidu R. miRNA: A promising therapeutic target in cancer. Int. J. Mol. Sci. 2022 23 19 11502 10.3390/ijms231911502 36232799
    [Google Scholar]
  42. Ozgün A. Karagoz B. Bilgi O. Tuncel T. Baloglu H. Kandemir E.G. MicroRNA-21 as an indicator of aggressive phenotype in breast cancer. Onkologie 2013 36 3 115 118 23485999
    [Google Scholar]
  43. Sicard F. Gayral M. Lulka H. Buscail L. Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol. Ther. 2013 21 5 986 994 10.1038/mt.2013.35 23481326
    [Google Scholar]
  44. Si M-L. Zhu S. Wu H. Lu Z. Wu F. Mo Y-Y. miR-21-mediated tumor growth. Oncogene 2007 26 19 2799 2803 10.1038/sj.onc.1210083 17072344
    [Google Scholar]
  45. Tian W. Pang X. Luan F. Diagnosis value of miR‐181, miR‐652, and CA72‐4 for gastric cancer. J. Clin. Lab. Anal. 2022 36 6 e24411 10.1002/jcla.24411 35446997
    [Google Scholar]
  46. Zhai Z. Mu T. Zhao L. Li Y. Zhu D. Pan Y. MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered 2022 13 1 83 95 10.1080/21655979.2021.2006974 34951340
    [Google Scholar]
  47. Strotbek M. Schmid S. Sánchez-González I. Boerries M. Busch H. Olayioye M.A. miR-181 elevates Akt signaling by co-targeting PHLPP2 and INPP4B phosphatases in luminal breast cancer. Int. J. Cancer 2017 140 10 2310 2320 10.1002/ijc.30661 28224609
    [Google Scholar]
  48. Tong S.J. Liu J. Wang X. Qu L.X. microRNA-181 promotes prostate cancer cell proliferation by regulating DAX-1 expression. Exp. Ther. Med. 2014 8 4 1296 1300 10.3892/etm.2014.1846 25187843
    [Google Scholar]
  49. Tao K. Yang J. Guo Z. Hu Y. Sheng H. Gao H. Yu H. Prognostic value of miR-221-3p, miR-342-3p and miR-491-5p expression in colon cancer. Am. J. Transl. Res. 2014 6 4 391 401 25075256
    [Google Scholar]
  50. Abrahamsson A. Dabrosin C. Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo. Oncotarget 2015 6 26 22959 22969 10.18632/oncotarget.4038 26008976
    [Google Scholar]
  51. Uhl E. Krimer P. Schliekelman P. Tompkins S.M. Suter S. Identification of altered MicroRNA expression in canine lymphoid cell lines and cases of B‐ and T‐Cell lymphomas. Genes Chromosomes Cancer 2011 50 11 950 967 10.1002/gcc.20917 21910161
    [Google Scholar]
  52. Fenger J.M. Bear M.D. Volinia S. Lin T.Y. Harrington B.K. London C.A. Kisseberth W.C. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis. BMC Cancer 2014 14 1 84 10.1186/1471‑2407‑14‑84 24517413
    [Google Scholar]
  53. Noguchi S. Mori T. Hoshino Y. Yamada N. Maruo K. Akao Y. MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas. Vet. Comp. Oncol. 2013 11 2 113 123 23638671
    [Google Scholar]
  54. Gioia G. Mortarino M. Gelain M.E. Albonico F. Ciusani E. Forno I. Marconato L. Martini V. Comazzi S. Immunophenotype-related microRNA expression in canine chronic lymphocytic leukemia. Vet. Immunol. Immunopathol. 2011 142 3-4 228 235 10.1016/j.vetimm.2011.05.020 21663977
    [Google Scholar]
  55. Grimes J.A. Prasad N. Levy S. Cattley R. Lindley S. Boothe H.W. Henderson R.A. Smith B.F. A comparison of microRNA expression profiles from splenic hemangiosarcoma, splenic nodular hyperplasia, and normal spleens of dogs. BMC Vet. Res. 2016 12 1 272 10.1186/s12917‑016‑0903‑5 27912752
    [Google Scholar]
  56. Heishima K. Mori T. Sakai H. Sugito N. Murakami M. Yamada N. Akao Y. Maruo K. MicroRNA-214 promotes apoptosis in canine hemangiosarcoma by targeting the COP1-p53 axis. PLoS One 2015 10 9 e0137361 10.1371/journal.pone.0137361 26335793
    [Google Scholar]
  57. Lutful Kabir F.M. DeInnocentes P. Bird R.C. Altered microRNA expression profiles and regulation of INK4A/CDKN2A tumor suppressor genes in canine breast cancer models. J. Cell. Biochem. 2015 116 12 2956 2969 10.1002/jcb.25243 26095675
    [Google Scholar]
  58. Boggs R.M. Wright Z.M. Stickney M.J. Porter W.W. Murphy K.E. MicroRNA expression in canine mammary cancer. Mamm. Genome 2008 19 7-8 561 569 10.1007/s00335‑008‑9128‑7 18665421
    [Google Scholar]
  59. von Deetzen M.C. Schmeck B.T. Gruber A.D. Klopfleisch R. Malignancy associated microRNA expression changes in canine mammary cancer of different malignancies. ISRN Vet. Sci. 2014 2014 1 1 5 10.1155/2014/148597 25002976
    [Google Scholar]
  60. Reddy S.D.N. Gajula R.P. Pakala S.B. Kumar R. MicroRNAs and cancer therapy: The next wave or here to stay? Cancer Biol. Ther. 2010 9 7 479 482 10.4161/cbt.9.7.11402 20190563
    [Google Scholar]
  61. Farazi T.A. Spitzer J.I. Morozov P. Tuschl T. miRNAs in human cancer. J. Pathol. 2011 223 2 102 115 10.1002/path.2806 21125669
    [Google Scholar]
  62. Meltzer P.S. Small RNAs with big impacts. Nature 2005 435 7043 745 746 10.1038/435745a 15944682
    [Google Scholar]
  63. Manne U. Shanmugam C. Bovell L. Katkoori V.R. Bumpers H.L. miRNAs as biomarkers for management of patients with colorectal cancer. Biomarkers Med. 2010 4 5 761 770 10.2217/bmm.10.87 20945991
    [Google Scholar]
  64. Calin G.A. Liu C.G. Sevignani C. Ferracin M. Felli N. Dumitru C.D. Shimizu M. Cimmino A. Zupo S. Dono M. Dell’Aquila M.L. Alder H. Rassenti L. Kipps T.J. Bullrich F. Negrini M. Croce C.M. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA 2004 101 32 11755 11760 10.1073/pnas.0404432101 15284443
    [Google Scholar]
  65. Sevli S. Uzumcu A. Solak M. Ittmann M. Ozen M. The function of microRNAs, small but potent molecules, in human prostate cancer. Prostate Cancer Prostatic Dis. 2010 13 3 208 217 10.1038/pcan.2010.21 20585343
    [Google Scholar]
  66. Zanette D.L. Nóbrega Aoki M. Prado N.O. Kusma Wosniaki D. Maria Marin A. Mathias C. Soligo Sanchuki H.B. microRNA-based genetic therapy in Leukemia: Properties, delivery, and experimental models. Curr. Gene Ther. 2023 23 4 245 260 10.2174/1566523223666230426153622 37170970
    [Google Scholar]
  67. Wong Q.W.L. Ching A.K.K. Chan A.W.H. Choy K.W. To K.F. Lai P.B.S. Wong N. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin. Cancer Res. 2010 16 3 867 875 10.1158/1078‑0432.CCR‑09‑1840 20103675
    [Google Scholar]
  68. Pallante P. Visone R. Croce C.M. Fusco A. Deregulation of microRNA expression in follicular cell-derived human thyroid carcinomas. Endocr. Relat. Cancer 2010 17 1 F91 F104 10.1677/ERC‑09‑0217 19942715
    [Google Scholar]
  69. Võsa U. Vooder T. Kolde R. Fischer K. Välk K. Tõnisson N. Roosipuu R. Vilo J. Metspalu A. Annilo T. Identification of miR‐374a as a prognostic marker for survival in patients with early‐stage nonsmall cell lung cancer. Genes Chromosomes Cancer 2011 50 10 812 822 10.1002/gcc.20902 21748820
    [Google Scholar]
  70. Romero-Cordoba S. Rodriguez-Cuevas S. Rebollar-Vega R. Quintanar-Jurado V. Maffuz-Aziz A. Jimenez-Sanchez G. Bautista-Piña V. Arellano-Llamas R. Hidalgo-Miranda A. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One 2012 7 3 e31904 10.1371/journal.pone.0031904 22438871
    [Google Scholar]
  71. Link A. Kupcinskas J. Wex T. Malfertheiner P. Macro-role of microRNA in gastric cancer. Dig. Dis. 2012 30 3 255 267 10.1159/000336919 22722550
    [Google Scholar]
  72. Liu N. Chen N.Y. Cui R.X. Li W.F. Li Y. Wei R.R. Zhang M.Y. Sun Y. Huang B.J. Chen M. He Q.M. Jiang N. Chen L. Cho W.C.S. Yun J.P. Zeng J. Liu L.Z. Li L. Guo Y. Wang H.Y. Ma J. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: A microRNA expression analysis. Lancet Oncol. 2012 13 6 633 641 10.1016/S1470‑2045(12)70102‑X 22560814
    [Google Scholar]
  73. Budhu A. Ji J. Wang X.W. The clinical potential of microRNAs. J. Hematol. Oncol. 2010 3 1 37 10.1186/1756‑8722‑3‑37 20925959
    [Google Scholar]
  74. Liu B. Peng X.C. Zheng X.L. Wang J. Qin Y.W. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009 66 2 169 175 10.1016/j.lungcan.2009.01.010 19223090
    [Google Scholar]
  75. Incoronato M. Garofalo M. Urso L. Romano G. Quintavalle C. Zanca C. Iaboni M. Nuovo G. Croce C.M. Condorelli G. miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res. 2010 70 9 3638 3646 10.1158/0008‑5472.CAN‑09‑3341 20388802
    [Google Scholar]
  76. Chen Z. Zeng H. Guo Y. Liu P. Pan H. Deng A. Hu J. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J. Exp. Clin. Cancer Res. 2010 29 1 151 10.1186/1756‑9966‑29‑151 21092188
    [Google Scholar]
  77. Yang J. Lan H. Huang X. MicroRNA-126 inhibits tumor cell growth and its expression level correlates with poor survival in non-small cell lung cancer patients. PLoS One. 2012 7 8 e42978 10.1371/journal.pone.0042978
    [Google Scholar]
  78. Scott G.K. Goga A. Bhaumik D. Berger C.E. Sullivan C.S. Benz C.C. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of Micro-RNA miR-125a or miR-125b. J. Biol. Chem. 2007 282 2 1479 1486 10.1074/jbc.M609383200 17110380
    [Google Scholar]
  79. Tang F. Zhang R. He Y. Zou M. Guo L. Xi T. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One 2012 7 5 e35435 10.1371/journal.pone.0035435 22693547
    [Google Scholar]
  80. Liang Z. Wu H. Reddy S. Zhu A. Wang S. Blevins D. Yoon Y. Zhang Y. Shim H. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem. Biophys. Res. Commun. 2007 363 3 542 546 10.1016/j.bbrc.2007.09.007 17889832
    [Google Scholar]
  81. Liu M. Lang N. Qiu M. Xu F. Li Q. Tang Q. Chen J. Chen X. Zhang S. Liu Z. Zhou J. Zhu Y. Deng Y. Zheng Y. Bi F. miR‐137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int. J. Cancer 2011 128 6 1269 1279 10.1002/ijc.25452 20473940
    [Google Scholar]
  82. Zhang Y. Wang Z. Chen M. Peng L. Wang X. Ma Q. Ma F. Jiang B. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol. Cancer 2012 11 1 23 10.1186/1476‑4598‑11‑23 22533346
    [Google Scholar]
  83. Baraniskin A. Birkenkamp-Demtroder K. Maghnouj A. Zöllner H. Munding J. Klein-Scory S. Reinacher-Schick A. Schwarte-Waldhoff I. Schmiegel W. Hahn S.A. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis 2012 33 4 732 739 10.1093/carcin/bgs020 22287560
    [Google Scholar]
  84. Li Z. Zhan W. Wang Z. Zhu B. He Y. Peng J. Cai S. Ma J. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem. Biophys. Res. Commun. 2006 348 1 229 237 10.1016/j.bbrc.2006.07.043 16875667
    [Google Scholar]
  85. Xia L. Zhang D. Du R. Pan Y. Zhao L. Sun S. Hong L. Liu J. Fan D. miR‐15b and miR‐16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 2008 123 2 372 379 10.1002/ijc.23501 18449891
    [Google Scholar]
  86. Zhang J. Liu Q.S. Dong W.G. Blockade of proliferation and migration of gastric cancer via targeting CDH17 with an artificial microRNA. Med. Oncol. 2011 28 2 494 501 10.1007/s12032‑010‑9489‑0 20393816
    [Google Scholar]
  87. Xia J. Wu Z. Yu C. He W. Zheng H. He Y. Jian W. Chen L. Zhang L. Li W. miR‐124 inhibits cell proliferation in gastric cancer through down‐regulation of SPHK1. J. Pathol. 2012 227 4 470 480 10.1002/path.4030 22450659
    [Google Scholar]
  88. Xu T. Zhu Y. Xiong Y. Ge Y.Y. Yun J.P. Zhuang S.M. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells #. Hepatology 2009 50 1 113 121 10.1002/hep.22919 19441017
    [Google Scholar]
  89. Wang W. Zhao L.J. Tan Y.X. Ren H. Qi Z.T. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 2012 33 5 1113 1120 10.1093/carcin/bgs113 22362728
    [Google Scholar]
  90. Chen X. Gong J. Zeng H. Chen N. Huang R. Huang Y. Nie L. Xu M. Xia J. Zhao F. Meng W. Zhou Q. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Res. 2010 70 7 2728 2738 10.1158/0008‑5472.CAN‑09‑3718 20332243
    [Google Scholar]
  91. Cao P. Deng Z. Wan M. Huang W. Cramer S.D. Xu J. Lei M. Sui G. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β. Mol. Cancer 2010 9 1 108 10.1186/1476‑4598‑9‑108
    [Google Scholar]
  92. Cimmino A. Calin G.A. Fabbri M. Iorio M.V. Ferracin M. Shimizu M. Wojcik S.E. Aqeilan R.I. Zupo S. Dono M. Rassenti L. Alder H. Volinia S. Liu C. Kipps T.J. Negrini M. Croce C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005 102 39 13944 13949 10.1073/pnas.0506654102 16166262
    [Google Scholar]
  93. Scheibner K.A. Teaboldt B. Hauer M.C. Chen X. Cherukuri S. Guo Y. Kelley S.M. Liu Z. Baer M.R. Heimfeld S. Civin C.I. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3θ. PLoS One 2012 7 12 e50895 10.1371/journal.pone.0050895 23236401
    [Google Scholar]
  94. Jiang X. Huang H. Li Z. Li Y. Wang X. Gurbuxani S. Chen P. He C. You D. Zhang S. Wang J. Arnovitz S. Elkahloun A. Price C. Hong G.M. Ren H. Kunjamma R.B. Neilly M.B. Matthews J.M. Xu M. Larson R.A. Le Beau M.M. Slany R.K. Liu P.P. Lu J. Zhang J. He C. Chen J. Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 2012 22 4 524 535 10.1016/j.ccr.2012.08.028 23079661
    [Google Scholar]
  95. Li Y. Gao L. Luo X. Wang L. Gao X. Wang W. Sun J. Dou L. Li J. Xu C. Wang L. Zhou M. Jiang M. Zhou J. Caligiuri M.A. Nervi C. Bloomfield C.D. Marcucci G. Yu L. Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood 2013 121 3 499 509 10.1182/blood‑2012‑07‑444729 23223432
    [Google Scholar]
  96. Jiang X. Huang H. Li Z. He C. Li Y. Chen P. Gurbuxani S. Arnovitz S. Hong G.M. Price C. Ren H. Kunjamma R.B. Neilly M.B. Salat J. Wunderlich M. Slany R.K. Zhang Y. Larson R.A. Le Beau M.M. Mulloy J.C. Rowley J.D. Chen J. miR-495 is a tumor-suppressor microRNA down-regulated in MLL -rearranged leukemia. Proc. Natl. Acad. Sci. USA 2012 109 47 19397 19402 10.1073/pnas.1217519109 23132946
    [Google Scholar]
  97. Esposito F. Tornincasa M. Pallante P. Federico A. Borbone E. Pierantoni G.M. Fusco A. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J. Clin. Endocrinol. Metab. 2012 97 5 E710 E718 10.1210/jc.2011‑3068 22399519
    [Google Scholar]
  98. Lu J. He M.L. Wang L. Chen Y. Liu X. Dong Q. Chen Y.C. Peng Y. Yao K.T. Kung H.F. Li X.P. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 2011 71 1 225 233 10.1158/0008‑5472.CAN‑10‑1850 21199804
    [Google Scholar]
  99. Chen L. Zheng J. Zhang Y. Yang L. Wang J. Ni J. Cui D. Yu C. Cai Z. Tumor-specific expression of microRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Mol. Ther. 2011 19 8 1521 1528 10.1038/mt.2011.64 21610700
    [Google Scholar]
  100. Chen Y. Zhu X. Zhang X. Liu B. Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 2010 18 9 1650 1656 10.1038/mt.2010.136 20606648
    [Google Scholar]
  101. Ibrahim A.F. Weirauch U. Thomas M. Grünweller A. Hartmann R.K. Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011 71 15 5214 5224 10.1158/0008‑5472.CAN‑10‑4645 21690566
    [Google Scholar]
  102. Pan Y. Zhang Y. Jia T. Zhang K. Li J. Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus‐like particles. FEBS J. 2012 279 7 1198 1208 10.1111/j.1742‑4658.2012.08512.x 22309233
    [Google Scholar]
  103. Conrad T. Ntini E. Lang B. Cozzuto L. Andersen J.B. Marquardt J.U. Ponomarenko J. Tartaglia G.G. Vang Ørom U.A. Determination of primary microRNA processing in clinical samples by targeted pri-miR-sequencing. RNA 2020 26 11 1726 1730 10.1261/rna.076240.120 32669295
    [Google Scholar]
  104. Schmittgen T.D. Lee E.J. Jiang J. Sarkar A. Yang L. Elton T.S. Chen C. Real-time PCR quantification of precursor and mature microRNA. Methods 2008 44 1 31 38 10.1016/j.ymeth.2007.09.006 18158130
    [Google Scholar]
  105. Koscianska E. Starega-Roslan J. Sznajder L.J. Olejniczak M. Galka-Marciniak P. Krzyzosiak W.J. Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC Mol. Biol. 2011 12 1 14 10.1186/1471‑2199‑12‑14 21481235
    [Google Scholar]
  106. Várallyay É. Burgyán J. Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat. Protoc. 2008 3 2 190 196 10.1038/nprot.2007.528 18274520
    [Google Scholar]
  107. Kramer M.F. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol. 2011 95 1 15 0 10.1002/0471142727.mb1510s95
    [Google Scholar]
  108. Luo X. Zhang J. Wang H. Du Y. Yang L. Zheng F. Ma D. PolyA RT-PCR-based quantification of microRNA by using universal TaqMan probe. Biotechnol. Lett. 2012 34 4 627 633 10.1007/s10529‑011‑0813‑3 22160364
    [Google Scholar]
  109. Borzi C. Borzi C. Borzi C. Detection of microRNAs using chip-based QuantStudio 3D digital PCR. Methods Mol Biol. 2017 1580 239 247 10.1007/978‑1‑4939‑6866‑4_16
    [Google Scholar]
  110. Cirillo P.D.R. Margiotti K. Mesoraca A. Giorlandino C. Quantification of circulating microRNAs by droplet digital PCR for cancer detection. BMC Res. Notes 2020 13 1 351 10.1186/s13104‑020‑05190‑3 32703272
    [Google Scholar]
  111. Li W. Ruan K. MicroRNA detection by microarray. Anal. Bioanal. Chem. 2009 394 4 1117 1124 10.1007/s00216‑008‑2570‑2 19132354
    [Google Scholar]
  112. Ye J. Xu M. Tian X. Cai S. Zeng S. Research advances in the detection of miRNA. J. Pharm. Anal. 2019 9 4 217 226 10.1016/j.jpha.2019.05.004 31452959
    [Google Scholar]
  113. Liu J. Jennings S.F. Tong W. Hong H. Next generation sequencing for profiling expression of miRNAs: Technical progress and applications in drug development. J. Biomed. Sci. Eng. 2011 4 10 666 676 10.4236/jbise.2011.410083 22457835
    [Google Scholar]
  114. Wang Z. The guideline of the design and validation of MiRNA mimics. Methods Mol Biol. 2011 676 211 10.1007/978‑1‑60761‑863‑8_15
    [Google Scholar]
  115. Eberle F. Gießler K. Deck C. Heeg K. Peter M. Richert C. Dalpke A.H. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J. Immunol. 2008 180 5 3229 3237 10.4049/jimmunol.180.5.3229 18292547
    [Google Scholar]
  116. Yildirim I. Kierzek E. Kierzek R. Schatz G.C. Interplay of LNA and 2′-O-methyl RNA in the structure and thermodynamics of RNA hybrid systems: A molecular dynamics study using the revised AMBER force field and comparison with experimental results. J. Phys. Chem. B 2014 118 49 14177 14187 10.1021/jp506703g 25268896
    [Google Scholar]
  117. Baumann V. Winkler J. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem. 2014 6 17 1967 1984 10.4155/fmc.14.116 25495987
    [Google Scholar]
  118. Bansal P. Christopher A.F. Kaur R. Kaur G. Kaur A. Gupta V. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect. Clin. Res. 2016 7 2 68 74 10.4103/2229‑3485.179431 27141472
    [Google Scholar]
  119. Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. MicroRNA and cancer. Methods Protoc. 2011 676 43 49
    [Google Scholar]
  120. Rasmussen S. Roberts P. Functional studies of microRNA based on knockdown using locked nucleic acid probes. Nat Methods 4 2007 3 4 10.1038/nmeth1034
    [Google Scholar]
  121. Ebert M.S. Sharp P.A. MicroRNA sponges: Progress and possibilities. RNA 2010 16 11 2043 2050 10.1261/rna.2414110 20855538
    [Google Scholar]
  122. Dominska M. Dykxhoorn D.M. Breaking down the barriers: SiRNA delivery and endosome escape. J. Cell Sci. 2010 123 8 1183 1189 10.1242/jcs.066399 20356929
    [Google Scholar]
  123. Zámecník J. Vargová L. Homola A. Kodet R. Syková E. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol. Appl. Neurobiol. 2004 30 4 338 350 10.1046/j.0305‑1846.2003.00541.x 15305979
    [Google Scholar]
  124. Jeong J.H. Mok H. Oh Y.K. Park T.G. siRNA conjugate delivery systems. Bioconjug. Chem. 2009 20 1 5 14 10.1021/bc800278e 19053311
    [Google Scholar]
  125. Nayerossadat N. Maedeh T. Ali P. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res. 2012 1 1 27 10.4103/2277‑9175.98152 23210086
    [Google Scholar]
  126. Naidu S. Magee P. Garofalo M. MiRNA-based therapeutic intervention of cancer. J. Hematol. Oncol. 2015 8 1 68 10.1186/s13045‑015‑0162‑0 26062952
    [Google Scholar]
  127. Hong D.S. Kang Y.K. Borad M. Sachdev J. Ejadi S. Lim H.Y. Brenner A.J. Park K. Lee J.L. Kim T.Y. Shin S. Becerra C.R. Falchook G. Stoudemire J. Martin D. Kelnar K. Peltier H. Bonato V. Bader A.G. Smith S. Kim S. O’Neill V. Beg M.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020 122 11 1630 1637 10.1038/s41416‑020‑0802‑1 32238921
    [Google Scholar]
  128. Misso G. Di Martino M.T. De Rosa G. Farooqi A.A. Lombardi A. Campani V. Zarone M.R. Gullà A. Tagliaferri P. Tassone P. Caraglia M. Mir-34: A new weapon against cancer? Mol. Ther. Nucleic Acids 2014 3 9 e194 25247240
    [Google Scholar]
  129. Reid G. Kao S.C. Pavlakis N. Brahmbhatt H. MacDiarmid J. Clarke S. Boyer M. van Zandwijk N. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 2016 8 8 1079 1085 10.2217/epi‑2016‑0035 27185582
    [Google Scholar]
  130. Telford B.J. Yahyanejad S. de Gunst T. den Boer H.C. Vos R.M. Stegink M. van den Bosch M.T.J. Alemdehy M.F. van Pinxteren L.A.H. Schaapveld R.Q.J. Janicot M. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget 2021 12 5 422 439 10.18632/oncotarget.27894 33747358
    [Google Scholar]
  131. Anastasiadou E. Seto A.G. Beatty X. Hermreck M. Gilles M.E. Stroopinsky D. Pinter-Brown L.C. Pestano L. Marchese C. Avigan D. Trivedi P. Escolar D.M. Jackson A.L. Slack F.J. Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo. Clin. Cancer Res. 2021 27 4 1139 1149 10.1158/1078‑0432.CCR‑20‑3139 33208342
    [Google Scholar]
  132. Seto A.G. Beatty X. Lynch J.M. Hermreck M. Tetzlaff M. Duvic M. Jackson A.L. Cobomarsen, an oligonucleotide inhibitor of miR‐155, co‐ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T‐cell lymphoma. Br. J. Haematol. 2018 183 3 428 444 10.1111/bjh.15547 30125933
    [Google Scholar]
  133. Yoo B. Ross A. Pantazopoulos P. Medarova Z. MiRNA10b-directed nanotherapy effectively targets brain metastases from breast cancer. Sci. Rep. 2021 11 1 2844 10.1038/s41598‑021‑82528‑2 33531596
    [Google Scholar]
  134. Dasgupta I. Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 2021 4 1 10 10.3390/mps4010010 33498244
    [Google Scholar]
  135. Holjencin C. Jakymiw A. MicroRNAs and their big therapeutic impacts: Delivery strategies for cancer intervention. Cells 2022 11 15 2332 10.3390/cells11152332 35954176
    [Google Scholar]
  136. Huang H. Huang F. Liang X. Fu Y. Cheng Z. Huang Y. Chen Z. Duan Y. Chen Y. Afatinib reverses EMT via inhibiting CD44-Stat3 axis to promote radiosensitivity in nasopharyngeal carcinoma. Pharmaceuticals 2022 16 1 37 10.3390/ph16010037 36678534
    [Google Scholar]
  137. Qian F.C. Zhou L.W. Li Y.Y. Yu Z.M. Li L.D. Wang Y.Z. Xu M.C. Wang Q.Y. Li C.Q. SEanalysis 2.0: A comprehensive super-enhancer regulatory network analysis tool for human and mouse. Nucleic Acids Res. 2023 51 W1 W520 W527 10.1093/nar/gkad408 37194711
    [Google Scholar]
  138. Yu G. Ding J. Yang N. Ge L. Chen N. Zhang X. Wang Q. Liu X. Zhang X. Jiang X. Geng Y. Zhang C. Pan J. Wang X. Gao W. Li Z. Zhang H. Ni W. Xiao J. Zhou K. Yang L. Evaluating the pro-survival potential of apoptotic bodies derived from 2D- and 3D- cultured adipose stem cells in ischaemic flaps. J. Nanobiotechnology 2024 22 1 333 10.1186/s12951‑024‑02533‑1 38877492
    [Google Scholar]
  139. Gao Y. Duan J. Dang X. Yuan Y. Wang Y. He X. Bai R. Ye X.Y. Xie T. Design, synthesis and biological evaluation of novel histone deacetylase (HDAC) inhibitors derived from β -elemene scaffold. J. Enzyme Inhib. Med. Chem. 2023 38 1 2195991 10.1080/14756366.2023.2195991 37013860
    [Google Scholar]
  140. Chen L. He Y. Zhu J. Zhao S. Qi S. Chen X. Zhang H. Ni Z. Zhou Y. Chen G. Liu S. Xie T. The roles and mechanism of m6 :A RNA methylation regulators in cancer immunity. Biomed. Pharmacother. 2023 163 114839 10.1016/j.biopha.2023.114839 37156113
    [Google Scholar]
  141. Pu X. Sheng S. Fu Y. Yang Y. Xu G. Construction of circRNA–miRNA–mRNA ceRNA regulatory network and screening of diagnostic targets for tuberculosis. Ann. Med. 2024 56 1 2416604 10.1080/07853890.2024.2416604 39435612
    [Google Scholar]
  142. Yin M. Feng C. Yu Z. Zhang Y. Li Y. Wang X. Song C. Guo M. Li C. sc2GWAS: A comprehensive platform linking single cell and GWAS traits of human. Nucleic Acids Res. 2025 53 D1 D1151 D1161 10.1093/nar/gkae1008 39565208
    [Google Scholar]
  143. Li Y.Y. Zhou L.W. Qian F.C. Fang Q.L. Yu Z.M. Cui T. Dong F.J. Cai F.H. Yu T.T. Li L.D. Wang Q.Y. Zhu Y.B. Tang H.F. Hu B.Y. Li C.Q. scImmOmics: A manually curated resource of single-cell multi-omics immune data. Nucleic Acids Res. 2025 53 D1 D1162 D1172 10.1093/nar/gkae985 39494524
    [Google Scholar]
  144. Lin Y. Li H. Zheng S. Han R. Wu K. Tang S. Zhong X. Chen J. Elucidating tobacco smoke-induced craniofacial deformities: Biomarker and MAPK signaling dysregulation unraveled by cross-species multi-omics analysis. Ecotoxicol. Environ. Saf. 2024 288 117343 10.1016/j.ecoenv.2024.117343 39549573
    [Google Scholar]
  145. Shen Y. Cheng L. Xu M. Wang W. Wan Z. Xiong H. Guo W. Cai M. Xu F. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism 2023 146 155657 10.1016/j.metabol.2023.155657 37422021
    [Google Scholar]
  146. Yin D. Zhong Y. Ling S. Lu S. Wang X. Jiang Z. Wang J. Dai Y. Tian X. Huang Q. Wang X. Chen J. Li Z. Li Y. Xu Z. Jiang H. Wu Y. Shi Y. Wang Q. Xu J. Hong W. Xue H. Yang H. Zhang Y. Da L. Han Z. Tao S. Dong R. Ying T. Hong J. Cai Y. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat. Biomed. Eng. 2024 2024 1 16 10.1038/s41551‑024‑01208‑4 38714892
    [Google Scholar]
  147. Li S. Ling S. Wang D. Wang X. Hao F. Yin L. Yuan Z. Liu L. Zhang L. Li Y. Chen Y. Luo L. Dai Y. Zhang L. Chen L. Deng D. Tang W. Zhang S. Wang S. Cai Y. Modified lentiviral globin gene therapy for pediatric β0/β0 transfusion-dependent β-thalassemia: A single-center, single-arm pilot trial. Cell Stem Cell 2024 31 7 961 973.e8 10.1016/j.stem.2024.04.021 38759653
    [Google Scholar]
  148. Jiang Z. Li Y. Wei Z. Yuan B. Wang Y. Akakuru O.U. Li Y. Li J. Wu A. Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy in vivo. Bioact. Mater. 2021 6 3 740 748 10.1016/j.bioactmat.2020.08.036 33024895
    [Google Scholar]
  149. Zhang D. Song J. Jing Z. Qin H. Wu Y. Zhou J. Zang X. Stimulus responsive nanocarrier for enhanced antitumor responses against hepatocellular carcinoma. Int. J. Nanomedicine 2024 19 13339 13355 10.2147/IJN.S486465 39679249
    [Google Scholar]
  150. Zhu Q. Sun J. An C. Li X. Xu S. He Y. Zhang X. Liu L. Hu K. Liang M. Mechanism of LncRNA Gm2044 in germ cell development. Front. Cell Dev. Biol. 2024 12 1410914 10.3389/fcell.2024.1410914 39027044
    [Google Scholar]
  151. Zhang Z. Wang L. Guo Z. Sun Y. Yan J. A pH-sensitive imidazole grafted polymeric micelles nanoplatform based on ROS amplification for ferroptosis-enhanced chemodynamic therapy. Colloids Surf. B Biointerfaces 2024 237 113871 10.1016/j.colsurfb.2024.113871 38547796
    [Google Scholar]
  152. Tang Y.P. Shimizu E. Dube G.R. Rampon C. Kerchner G.A. Zhuo M. Liu G. Tsien J.Z. Genetic enhancement of learning and memory in mice. Nature 1999 401 6748 63 69 10.1038/43432 10485705
    [Google Scholar]
  153. Dong Q. Jiang Z. Platinum–iron nanoparticles for oxygen-enhanced sonodynamic tumor cell suppression. Inorganics 2024 12 12 331 10.3390/inorganics12120331
    [Google Scholar]
  154. Zhao C. Song W. Wang J. Tang X. Jiang Z. Immunoadjuvant-functionalized metal–organic frameworks: Synthesis and applications in tumor immune modulation. Chem. Commun. (Camb.) 2025 61 10 1962 1977 10.1039/D4CC06510G 39774558
    [Google Scholar]
  155. Zeng Q. Jiang T. Wang J. Role of LMO7 in cancer (Review). Oncol. Rep. 2024 52 3 117 10.3892/or.2024.8776 38994754
    [Google Scholar]
  156. Lyu Z. Xin M. Oyston D.R. Xue T. Kang H. Wang X. Wang Z. Li Q. Cause and consequence of heterogeneity in human mesenchymal stem cells: Challenges in clinical application. Pathol. Res. Pract. 2024 260 155354 10.1016/j.prp.2024.155354 38870711
    [Google Scholar]
  157. Jiang C.H. Sun T.L. Xiang D.X. Wei S.S. Li W.Q. Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 2018 9 530 10.3389/fphar.2018.00530 29872398
    [Google Scholar]
  158. Nie Y. Li D. Peng Y. Wang S. Hu S. Liu M. Ding J. Zhou W. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int. J. Pharm. 2020 585 119513 10.1016/j.ijpharm.2020.119513 32526334
    [Google Scholar]
  159. Li W.Q. Tan S.L. Li X.H. Sun T.L. Li D. Du J. Wei S.S. Li Y.J. Zhang B.K. Calcitonin gene-related peptide inhibits the cardiac fibroblasts senescence in cardiac fibrosis via up-regulating klotho expression. Eur. J. Pharmacol. 2019 843 96 103 10.1016/j.ejphar.2018.10.023 30352200
    [Google Scholar]
  160. Lin X. Yu T. Zhang L. Chen S. Chen X. Liao Y. Long D. Shen F. Silencing Op18/stathmin by RNA interference promotes the sensitivity of nasopharyngeal carcinoma cells to taxol and high‐grade differentiation of xenografted tumours in nude mice. Basic Clin. Pharmacol. Toxicol. 2016 119 6 611 620 10.1111/bcpt.12633 27289016
    [Google Scholar]
  161. Sun D. Li X. Nie S. Liu J. Wang S. Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed. Pharmacother. 2023 157 113993 10.1016/j.biopha.2022.113993 36379120
    [Google Scholar]
  162. Wang Y. Yu Z. Cheng M. Hu E. Yan Q. Zheng F. Guo X. Zhang W. Li H. Li Z. Zhu W. Wu Y. Tang T. Li T. Buyang huanwu decoction promotes remyelination via miR-760-3p/GPR17 axis after intracerebral hemorrhage. J. Ethnopharmacol. 2024 328 118126 10.1016/j.jep.2024.118126 38556140
    [Google Scholar]
  163. Chen S. Long S. Liu Y. Wang S. Hu Q. Fu L. Luo D. Evaluation of a three-gene methylation model for correlating lymph node metastasis in postoperative early gastric cancer adjacent samples. Front. Oncol. 2024 14 1432869 10.3389/fonc.2024.1432869 39484038
    [Google Scholar]
  164. Cao Z. Zhu J. Wang Z. Peng Y. Zeng L. Comprehensive pan-cancer analysis reveals ENC1 as a promising prognostic biomarker for tumor microenvironment and therapeutic responses. Sci. Rep. 2024 14 1 25331 10.1038/s41598‑024‑76798‑9 39455818
    [Google Scholar]
  165. Ajit S.K. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors 2012 12 3 3359 3369 10.3390/s120303359 22737013
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232353538250318075057
Loading
/content/journals/cgt/10.2174/0115665232353538250318075057
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer ; gene therapy ; microRNA ; gene regulation ; cancer biology ; therapeutic potential
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test