Skip to content
2000
image of Therapeutic Effects of Mesenchymal Stem Cells Carrying Echovirus in Mouse Models of Breast Cancer

Abstract

Introduction

Breast Cancer (BC) is treatable in early stages but has high mortality rates in advanced cases, highlighting the need for better treatment methods. Oncolytic Viruses (OVs) have emerged as a promising approach to specifically target and kill BC tumor cells, although their effectiveness is limited by the immune response. To overcome this challenge, researchers are investigating the use of cell carriers. This study aims to evaluate the effects of mesenchymal stem cells carrying (MSCs-ECHO) in a BC mouse model.

Methods

The effectiveness of MSCs-ECHO was evaluated in a mouse model of BC induced by the subcutaneous injection of live 4T1 cells (1×104) in female Balb/c mice. Its effects were assessed using several parameters, including Tumor Size (TS), Survival Probability (SP), and indicators of immune system response, such as the Splenocyte Proliferation Index (SPI), Nitric Oxide (NO), Lactate Dehydrogenase (LDH), and cytokines (IL-4, IL-10, IFN-γ, and TGF-β) in the supernatant of splenocytes.

Results

Our findings revealed that treatment with MSCs-ECHO significantly increased SP, SPI, LDH, NO, and IFN-γ levels, while reducing TS, TGF-β, IL-4, and IL-10 levels in treated mice compared to the control group. Additionally, MSCs-ECHO demonstrated superior therapeutic effects compared to treatment with cell-free virus.

Conclusion

These findings indicate that ECHO treatment may represent a promising therapeutic approach for BC. Based on the results of the present study, the utilization of MSCs as carriers for OV appears to be a viable complementary strategy in the management of BC.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232347036250610065753
2025-06-20
2025-09-13
Loading full text...

Full text loading...

References

  1. Łukasiewicz S. Czeczelewski M. Forma A. Baj J. Sitarz R. Stanisławek A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies: An updated review. Cancers 2021 13 17 4287 10.3390/cancers13174287 34503097
    [Google Scholar]
  2. Feng Y. Spezia M. Huang S. Yuan C. Zeng Z. Zhang L. Ji X. Liu W. Huang B. Luo W. Liu B. Lei Y. Du S. Vuppalapati A. Luu H.H. Haydon R.C. He T.C. Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018 5 2 77 106 10.1016/j.gendis.2018.05.001 30258937
    [Google Scholar]
  3. Moo T.A. Sanford R. Dang C. Morrow M. Overview of breast cancer therapy. PET Clin. 2018 13 3 339 354 10.1016/j.cpet.2018.02.006 30100074
    [Google Scholar]
  4. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041 29071215
    [Google Scholar]
  5. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 2 2 141 160 10.20517/cdr.2019.10 34322663
    [Google Scholar]
  6. Pucci C. Martinelli C. Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019 13 961 10.3332/ecancer.2019.961
    [Google Scholar]
  7. Zhong L. Li Y. Xiong L. Wang W. Wu M. Yuan T. Yang W. Tian C. Miao Z. Wang T. Yang S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021 6 1 201 10.1038/s41392‑021‑00572‑w 34054126
    [Google Scholar]
  8. Ventola C.L. Cancer immunotherapy, part 2: Efficacy, safety, and other clinical considerations. P&T 2017 42 7 452 463 28674473
    [Google Scholar]
  9. Keshavarz M. Mohammad Miri S. Behboudi E. Arjeini Y. Dianat-Moghadam H. Ghaemi A. Oncolytic virus delivery modulated immune responses toward cancer therapy: Challenges and perspectives. Int. Immunopharmacol. 2022 108 108882 10.1016/j.intimp.2022.108882 35623296
    [Google Scholar]
  10. Garmaroudi G.A. Karimi F. Naeini L.G. Therapeutic efficacy of oncolytic viruses in fighting cancer: Recent advances and perspective. Oxid Med Cell Longev. 2022 2022 3142306 10.1155/2022/3142306.
    [Google Scholar]
  11. Marelli G. Howells A. Lemoine N.R. Wang Y. Oncolytic viral therapy and the immune system: A double-edged sword against cancer. Front. Immunol. 2018 9 866 10.3389/fimmu.2018.00866 29755464
    [Google Scholar]
  12. Pandha H. Harrington K. Ralph C. Melcher A. Grose M. Shafren D. Phase I/II storm study: Intravenous delivery of a novel oncolytic immunotherapy agent, Coxsackievirus A21, in advanced cancer patients. J. Immunother. Cancer 2015 3 2 Suppl. 2 P341 10.1186/2051‑1426‑3‑S2‑P341
    [Google Scholar]
  13. Hietanen E. Koivu M.K.A. Susi P. Cytolytic properties and genome analysis of Rigvir® oncolytic virotherapy virus and other Echovirus 7 isolates. Viruses 2022 14 3 525 10.3390/v14030525 35336934
    [Google Scholar]
  14. Alberts P. Tilgase A. Rasa A. Bandere K. Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur. J. Pharmacol. 2018 837 117 126 10.1016/j.ejphar.2018.08.042 30179611
    [Google Scholar]
  15. Israelsson S. Jonsson N. Gullberg M. Lindberg A.M. Cytolytic replication of echoviruses in colon cancer cell lines. Virol. J. 2011 8 1 473 10.1186/1743‑422X‑8‑473 21999585
    [Google Scholar]
  16. Roy D.G. Bell J.C. Cell carriers for oncolytic viruses: Current challenges and future directions. Oncolytic Virother. 2013 2 47 56 27512657
    [Google Scholar]
  17. Keshavarz M. Ebrahimzadeh M.S Miri S.M. Oncolytic newcastle disease virus delivered by mesenchymal stem cellsengineered system enhances the therapeutic effects altering tumor microenvironment. Virol. J. 2020 17 1 1 13 31906972
    [Google Scholar]
  18. Yoon A.R. Rivera-Cruz C. Gimble J.M. Yun C.O. Figueiredo M.L. Immunotherapy by mesenchymal stromal cell delivery of oncolytic viruses for treating metastatic tumors. Mol. Ther. Oncolytics 2022 25 78 97 10.1016/j.omto.2022.03.008 35434272
    [Google Scholar]
  19. Li Y. Duan H. Yang K. Ye J. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed. Pharmacother. 2023 168 115627 10.1016/j.biopha.2023.115627 37812894
    [Google Scholar]
  20. Soland M.A. Bego M. Colletti E. Zanjani E.D. St Jeor S. Porada C.D. Almeida-Porada G. Mesenchymal stem cells engineered to inhibit complement-mediated damage. PLoS One 2013 8 3 e60461 10.1371/journal.pone.0060461 23555976
    [Google Scholar]
  21. Clarkson N.A. Kaufman R. Lublin D.M. Ward T. Pipkin P.A. Minor P.D. Evans D.J. Almond J.W. Characterization of the echovirus 7 receptor: Domains of CD55 critical for virus binding. J. Virol. 1995 69 9 5497 5501 10.1128/jvi.69.9.5497‑5501.1995 7543583
    [Google Scholar]
  22. Galeh H.E.G. Froushani S.M.A. Ahangaran N.A. Hadai S.N. Effects of educated monocytes with xenogeneic mesenchymal stem cell– derived conditioned medium in a mouse model of chronic asthma. Immunol. Invest. 2018 47 5 504 520 10.1080/08820139.2018.1458108 29671652
    [Google Scholar]
  23. Tavakoli P. Froushani S.M.A Aliyari A. Combination of propranolol and heated 4T1 cells elicits beneficial response against mouse model of breast cancer. Zahedan J. Res. Med. Sci. 2021 23 1 10.5812/zjrms.94570
    [Google Scholar]
  24. Jafari S. Froushani S.M.A. Tokmachi A. Combined extract of heated 4T1 and a heat-killed preparation of Lactobacillus casei in a mouse model of breast cancer. Iran. J. Med. Sci. 2017 42 5 457 464 29234178
    [Google Scholar]
  25. Tilgase A. Patetko L. Blāķe I. Ramata-Stunda A. Borodušķis M. Alberts P. Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro. J. Cancer 2018 9 6 1033 1049 10.7150/jca.23242 29581783
    [Google Scholar]
  26. Oberste M.S. Gerber S.I. Enteroviruses and parechoviruses: Echoviruses, coxsackieviruses, and others. Viral infections of humans: Epidemiology and control. Springer 2014 225 252 10.1007/978‑1‑4899‑7448‑8_11
    [Google Scholar]
  27. Bahri O. Rezig D. Nejma-Oueslati B.B. Yahia A.B. Sassi J.B. Hogga N. Sadraoui A. Triki H. Enteroviruses in Tunisia: Virological surveillance over 12 years (1992–2003). J. Med. Microbiol. 2005 54 1 63 69 10.1099/jmm.0.45695‑0 15591257
    [Google Scholar]
  28. Shafren D.R. Au G.G. Nguyen T. Newcombe N.G. Haley E.S. Beagley L. Johansson E.S. Hersey P. Barry R.D. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin. Cancer Res. 2004 10 1 53 60 10.1158/1078‑0432.CCR‑0690‑3 14734451
    [Google Scholar]
  29. De Palma A.M. Vliegen I. De Clercq E. Neyts J. Selective inhibitors of picornavirus replication. Med. Res. Rev. 2008 28 6 823 884 10.1002/med.20125 18381747
    [Google Scholar]
  30. Khetsuriani N. Lamonte-Fowlkes A. Oberst S. Pallansch M.A. Enterovirus surveillance--United States, 1970-2005. MMWR Surveill. Summ. 2006 55 8 1 20 16971890
    [Google Scholar]
  31. Racaniello V. Picornaviridae: the viruses and their replication. Fields virology 2001 685 722
    [Google Scholar]
  32. Wodarz D. Viruses as antitumor weapons: Defining conditions for tumor remission. Cancer Res. 2001 61 8 3501 3507 11309314
    [Google Scholar]
  33. Glinkina L.S. Bruvere R.Zh. The reaction of the T-immunity system in patients with malignant skin melanoma and stomach cancer to active nonspecific immunotherapy. Vopr. Onkol. 1992 38 6 659 666 1300766
    [Google Scholar]
  34. Ward T. Pipkin P.A. Clarkson N.A. Stone D.M. Minor P.D. Almond J.W. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 1994 13 21 5070 5074 10.1002/j.1460‑2075.1994.tb06836.x 7525274
    [Google Scholar]
  35. Bergelson J.M. Chan M. Solomon K.R. St John N.F. Lin H. Finberg R.W. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. USA 1994 91 13 6245 6248 10.1073/pnas.91.13.6245 7517044
    [Google Scholar]
  36. Kim C. Bergelson J.M. Echovirus 7 entry into polarized intestinal epithelial cells requires clathrin and Rab7. MBio 2012 3 2 e00304 10.1128/mBio.00304‑11
    [Google Scholar]
  37. Kolev M. Towner L. Donev R. Complement in cancer and cancer immunotherapy. Arch. Immunol. Ther. Exp. (Warsz.) 2011 59 6 407 419 10.1007/s00005‑011‑0146‑x 21960413
    [Google Scholar]
  38. Goodfellow I.G. Powell R.M. Ward T. Spiller O.B. Almond J.W. Evans D.J. Echovirus infection of rhabdomyosarcoma cells is inhibited by antiserum to the complement control protein CD59. J. Gen. Virol. 2000 81 Pt 5 1393 1401 10769083
    [Google Scholar]
  39. Fishelson Z. Donin N. Zell S. Schultz S. Kirschfink M. Obstacles to cancer immunotherapy: Expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol. Immunol. 2003 40 2-4 109 123 10.1016/S0161‑5890(03)00112‑3 12914817
    [Google Scholar]
  40. Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med. 2022 10 20503121211069012 10.1177/20503121211069012 35096390
    [Google Scholar]
  41. Jorgovanovic D. Song M. Wang L. Zhang Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020 8 1 49 10.1186/s40364‑020‑00228‑x 33005420
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232347036250610065753
Loading
/content/journals/cgt/10.2174/0115665232347036250610065753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test