Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Introduction

Liposomes are versatile delivery systems for encapsulating small interfering RNAs (siRNAs) because they enhance cellular uptake and gene silencing. This study compares the new liposome formula to commercial lipofectamine in delivering siRNAs targeting hepatic carcinoma genes, focusing on HNF4-α and PFKFB4.

Methods

Flow cytometry and confocal microscopy revealed efficient internalization of PE-Rhod-B labeled lipoplexes in HepG2 cells, while cytotoxicity assays demonstrated significant reductions in cell viability, particularly with siHNF4-α and siPFKFB4.

Results

The newly formulated liposomes showed superior efficacy, achieving nearly 93% cytotoxicity at 100 nM, compared to just 50% with lipofectamine at the same concentration. Furthermore, real-time PCR confirmed that the liposome-encapsulated siHNF4-α reduced HNF4-α mRNA expression by tenfold at 100 nM, compared to a twofold reduction with lipofectamine at 200 nM. Similarly, siPFKFB4 delivered liposomes showed a dose-dependent 35-fold reduction in PFKFB4 mRNA expression at 100 nM, outperforming the maximum reduction achieved by lipofectamine. The IC values for all siRNA treatment groups were significantly lower when using the liposome formula, reflecting improved delivery efficiency.

Conclusion

These results demonstrate the potential of liposome formulations for therapeutic siRNA delivery. The encapsulation enhances cellular uptake and gene silencing efficiency, making the liposome formula a promising candidate for targeted gene therapy in hepatic carcinoma. Further research should explore it’s biodistribution and potential combination therapies.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232337735250101121115
2025-01-17
2025-10-04
Loading full text...

Full text loading...

References

  1. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.00133579421
    [Google Scholar]
  2. SayinerM. GolabiP. YounossiZ.M. Sciences, disease burden of hepatocellular carcinoma: A global perspective.Dig. Dis. Sci.201964491091710.1007/s10620‑019‑05537‑230835028
    [Google Scholar]
  3. D’souzaS. LauK.C.K. CoffinC.S. PatelT.R. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma.World J. Gastroenterol.202026385759578310.3748/wjg.v26.i38.575933132633
    [Google Scholar]
  4. BousaliM. PapatheodoridisG. ParaskevisD. KaramitrosT. Hepatitis b virus DNA integration, chronic infections and hepatocellular carcinoma.Microorganisms202198178710.3390/microorganisms908178734442866
    [Google Scholar]
  5. LinY.L. LiY. Study on the hepatocellular carcinoma model with metastasis.Genes Dis.20207333635010.1016/j.gendis.2019.12.00832884988
    [Google Scholar]
  6. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  7. HolczbauerÁ. WangensteenK.J. ShinS. Cellular origins of regenerating liver and hepatocellular carcinoma.JHEP Rep. Innov. Hepatol.20224410041610.1016/j.jhepr.2021.10041635243280
    [Google Scholar]
  8. LauH.H. NgN.H.J. LooL.S.W. JasmenJ.B. TeoA.K.K. The molecular functions of hepatocyte nuclear factors – in and beyond the liver.J. Hepatol.20186851033104810.1016/j.jhep.2017.11.02629175243
    [Google Scholar]
  9. GuoS. LuH. Novel mechanisms of regulation of the expression and transcriptional activity of hepatocyte nuclear factor 4α.J. Cell. Biochem.2019120151953210.1002/jcb.2740730191603
    [Google Scholar]
  10. QuM. QuH. JiaZ. KayS.A. HNF4a defines tissue-specific circadian rhythms by beaconing BMAL1: Clock chromatin binding and shaping the rhythmic chromatin landscape.Nat. Commun.2021121635010.1038/s41467‑021‑26567‑334732735
    [Google Scholar]
  11. LeeC. CheungS.T. Stat3: An emerging therapeutic target for hepatocellular carcinoma.Cancers20191111164610.3390/cancers1111164631731457
    [Google Scholar]
  12. LvD.D. ZhouL.Y. TangH. Hepatocyte nuclear factor 4α and cancer-related cell signaling pathways: A promising insight into cancer treatment.Exp. Mol. Med.202153181810.1038/s12276‑020‑00551‑133462379
    [Google Scholar]
  13. SchiliroC. FiresteinB.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.Cells2021105105610.3390/cells1005105633946927
    [Google Scholar]
  14. YiM. BanY. TanY. XiongW. LiG. XiangB. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer.Mol. Metab.20192011310.1016/j.molmet.2018.11.01330553771
    [Google Scholar]
  15. EdiriweeraM.K. JayasenaS. The role of reprogrammed glucose metabolism in cancer.Metabolites202313334510.3390/metabo1303034536984785
    [Google Scholar]
  16. RosS. SantosC.R. MocoS. BaenkeF. KellyG. HowellM. ZamboniN. SchulzeA. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival.Cancer Discov.20122432834310.1158/2159‑8290.CD‑11‑023422576210
    [Google Scholar]
  17. ChristieK.N. Blocking translation of oncogenic mRNA.J. Cancer Ther.202314623325610.4236/jct.2023.146021
    [Google Scholar]
  18. SubhanM.A. TorchilinV.P. Sirna based drug design, quality, delivery and clinical translation.Nanomedicine20202910223910.1016/j.nano.2020.10223932544449
    [Google Scholar]
  19. HuB. ZhongL. WengY. PengL. HuangY. ZhaoY. LiangX.J. Therapeutic siRNA: State of the art.Signal Transduct. Target. Ther.20205110110.1038/s41392‑020‑0207‑x32561705
    [Google Scholar]
  20. WangS. ChenY. GuoJ. HuangQ. Liposomes for tumor targeted therapy: A review.Int. J. Mol. Sci.2023243264310.3390/ijms2403264336768966
    [Google Scholar]
  21. OlusanyaT. Haj AhmadR. IbegbuD. SmithJ. ElkordyA. Liposomal drug delivery systems and anticancer drugs.Molecules201823490710.3390/molecules2304090729662019
    [Google Scholar]
  22. Sriwidodo UmarA.K. WathoniN. ZothantluangaJ.H. DasS. LuckanagulJ.A. Liposome-polymer complex for drug delivery system and vaccine stabilization.Heliyon202282e0893410.1016/j.heliyon.2022.e0893435243059
    [Google Scholar]
  23. ChenJ. HuS. SunM. ShiJ. ZhangH. YuH. YangZ. Recent advances and clinical translation of liposomal delivery systems in cancer therapy.Eur. J. Pharm. Sci.202419310668810.1016/j.ejps.2023.10668838171420
    [Google Scholar]
  24. GiordaniS. MarassiV. ZattoniA. RodaB. ReschiglianP. AnalysisB. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols.J. Pharm. Biomed. Anal.202323611575110.1016/j.jpba.2023.11575137778202
    [Google Scholar]
  25. LeeB. YoonS. LeeJ.W. KimY. ChangJ. YunJ. RoJ.C. LeeJ.S. LeeJ.H. Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy image analysis.ACS Nano20201412171251713310.1021/acsnano.0c0680933231065
    [Google Scholar]
  26. HallanS.S. SguizzatoM. EspositoE. CortesiR. Challenges in the physical characterization of lipid nanoparticles.Pharmaceutics202113454910.3390/pharmaceutics1304054933919859
    [Google Scholar]
  27. AliabadiH.M. Bahadur K CR. BousoikE. HallR. BarbarinoA. ThapaB. CoyleM. MahdipoorP. UludağH. A systematic comparison of lipopolymers for sirna delivery to multiple breast cancer cell lines: In vitro studies.Acta Biomater.202010235136610.1016/j.actbio.2019.11.03631760224
    [Google Scholar]
  28. Krohn-GrimbergheM. MitchellM.J. SchlossM.J. KhanO.F. CourtiesG. GuimaraesP.P.G. RohdeD. CremerS. KowalskiP.S. SunY. TanM. WebsterJ. WangK. IwamotoY. SchmidtS.P. WojtkiewiczG.R. NayarR. FrodermannV. HulsmansM. ChungA. HoyerF.F. SwirskiF.K. LangerR. AndersonD.G. NahrendorfM. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche.Nat. Biomed. Eng.20204111076108910.1038/s41551‑020‑00623‑733020600
    [Google Scholar]
  29. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  30. Pal SinghP. VithalapuramV. MetreS. KodipyakaR. Lipoplex-based therapeutics for effective oligonucleotide delivery: A compendious review.J. Liposome Res.202030431333510.1080/08982104.2019.165264531422719
    [Google Scholar]
  31. RajeevA. SibyA. KoottungalM.J. GeorgeJ. JohnF. Knocking down barriers: Advances in siRNA delivery.ChemistrySelect2021646133501336210.1002/slct.202103288
    [Google Scholar]
  32. DangY. FengY. ChenX. HeC. WeiS. LiuD. QiJ. ZhangH. YangS. NiuZ. XiangB. Development of a multi-level ph-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment.Chin. Chem. Lett.2024351210966010.1016/j.cclet.2024.109660
    [Google Scholar]
  33. WaltherJ. PorentaD. WilbieD. SeinenC. BenneN. YangQ. de JongO.G. LeiZ. MastrobattistaE. Comparative analysis of lipid nanoparticle-mediated delivery of crispr-cas9 rnp versus mRNA/sgRNA for gene editing in vitro and in vivo.Eur. J. Pharm. Biopharm.202419611420710.1016/j.ejpb.2024.11420738325664
    [Google Scholar]
  34. MengJ. ChenX. HanZ. PFKFB4 promotes lung adenocarcinoma progression via phosphorylating and activating transcriptional coactivator SRC-2.BMC Pulm. Med.20212116010.1186/s12890‑021‑01420‑x33593309
    [Google Scholar]
  35. KotulkarM. Paine-CabreraD. ApteU. Role of hepatocyte nuclear factor 4 alpha in liver cancer.Semin. Liver Dis202444338339310.1055/a‑2349‑723638901435
    [Google Scholar]
  36. QuN. LuanT. LiuN. KongC. XuL. YuH. KangY. HanY. Hepatocyte nuclear factor 4 a (HNF4Α): A perspective in cancer.Biomed. Pharmacother.202316911592310.1016/j.biopha.2023.11592338000355
    [Google Scholar]
  37. ChellappaK. JankovaL. SchnablJ.M. PanS. BrelivetY. FungC.L.S. ChanC. DentO.F. ClarkeS.J. RobertsonG.R. SladekF.M. SRC tyrosine kinase phosphorylation of nuclear receptor HNF4Α correlates with isoform-specific loss of HNF4Α in human colon cancer.Proc. Natl. Acad. Sci. USA201210972302230710.1073/pnas.110679910922308320
    [Google Scholar]
  38. LazarevichN.L. Al’pernD.V. Hepatocyte nuclear factor 4 (HNF4) in epithelial development and carcinogenesis.Mol. Biol.200842578679718988528
    [Google Scholar]
  39. ChesneyJ. ClarkJ. KlarerA.C. Imbert-FernandezY. LaneA.N. TelangS. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth.Oncotarget20145166670668610.18632/oncotarget.221325115398
    [Google Scholar]
  40. KotowskiK. RosikJ. MachajF. SupplittS. WiczewD. JabłońskaK. WiechecE. GhavamiS. DzięgielP. Role of pfkfb3 and PFKFB4 in cancer: Genetic basis, impact on disease development/progression, and potential as therapeutic targets.Cancers202113490910.3390/cancers1304090933671514
    [Google Scholar]
  41. SangL. WangX. BaiW. ShenJ. ZengY. SunJ. The role of hepatocyte nuclear factor 4α (HNF4Α) in tumorigenesis.Front. Oncol.202212101123010.3389/fonc.2022.101123036249028
    [Google Scholar]
  42. OlaizolaP. BanalesJ.M. GastroenterologyM. Hepatology, PFKFB4 is a metabolic driver of HCC progression and chemoresistance through ros mitigation.Cell. Mol. Gastroenterol. Hepatol.20231561527152910.1016/j.jcmgh.2023.02.01536963434
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232337735250101121115
Loading
/content/journals/cgt/10.2174/0115665232337735250101121115
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): HCC; HepG2; HNF4α; lipopolyplex; PFKFB4; siRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test