Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Lung cancer is a significant cause of cancer-related death worldwide. It can be broadly categorised into small-cell lung cancer (SCLC) and Non-small cell lung cancer (NSCLC). Surgical intervention, radiation therapy, and the administration of chemotherapeutic medications are among the current treatment modalities. However, the application of chemotherapy may be limited in more advanced stages of metastasis due to the potential for adverse effects and a lack of cell selectivity. Although small-molecule anticancer treatments have demonstrated effectiveness, they still face several challenges. The challenges at hand in this context comprise insufficient solubility in water, limited bioavailability at specific sites, adverse effects, and the requirement for epidermal growth factor receptor inhibitors that are genetically tailored. Bio-macromolecular drugs, including small interfering RNA (siRNA) and messenger RNA (mRNA), are susceptible to degradation when exposed to the bodily fluids of humans, which can reduce stability and concentration. In this context, nanoscale delivery technologies are utilised. These agents offer encouraging prospects for the preservation and regulation of pharmaceutical substances, in addition to improving the solubility and stability of medications. Nanocarrier-based systems possess the notable advantage of facilitating accurate and sustained drug release, as opposed to traditional systemic methodologies. The primary focus of scientific investigation has been to augment the therapeutic efficacy of nanoparticles composed of lipids. Numerous nanoscale drug delivery techniques have been implemented to treat various respiratory ailments, such as lung cancer. These technologies have exhibited the potential to mitigate the limitations associated with conventional therapy. As an illustration, applying nanocarriers may enhance the solubility of small-molecule anticancer drugs and prevent the degradation of bio-macromolecular drugs. Furthermore, these devices can administer medications in a controlled and extended fashion, thereby augmenting the therapeutic intervention's effectiveness and reducing adverse reactions. However, despite these promising results, challenges remain that must be addressed. Multiple factors necessitate consideration when contemplating the application of nanoparticles in medical interventions. To begin with, the advancement of more efficient delivery methods is imperative. In addition, a comprehensive investigation into the potential toxicity of nanoparticles is required. Finally, additional research is needed to comprehend these treatments' enduring ramifications. Despite these challenges, the field of nanomedicine demonstrates considerable promise in enhancing the therapy of lung cancer and other respiratory diseases.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232292768240503050508
2025-04-01
2024-12-11
Loading full text...

Full text loading...

References

  1. YanA. SongX. LiuB. ZhuK. IGF2BP3 worsens lung cancer through modifying long non-coding RNA CERS6-AS1/microRNA-1202 axis.Curr. Med. Chem.202330787889110.2174/092986732966622061409144535702784
    [Google Scholar]
  2. DeS.K. Sotorasib: first approved KRAS mutation inhibitor for the treatment of non-small cell lung cancer.Curr. Med. Chem.20233091000100210.2174/092986732966622090716150536082871
    [Google Scholar]
  3. GholamiL. IvariJ.R. NasabN.K. OskueeR.K. SathyapalanT. SahebkarA. Recent advances in lung cancer therapy based on nanomaterials: A review.Curr. Med. Chem.202330333535510.2174/092986732866621081016090134375182
    [Google Scholar]
  4. JungD.-H. NaharJ. MathiyalaganR. RupaE.J. RamadhaniaZ.M. HanY. YangD.-C. KangS.C. A focused review on molecular signalling mechanisms of ginsenosides anti-Lung cancer and anti-inflammatory activities.Anti-Cancer Agents Med. Chem.202323314
    [Google Scholar]
  5. HuangJ. ChengN. ChenC. LiC. Inferring cell-type-specific genes of lung cancer based on deep learning.Curr. Gene Ther.202222543944810.2174/156652322266622032411091435331109
    [Google Scholar]
  6. MüllerC. HankE. GieraM. BracherF. Dehydrocholesterol reductase 24 (DHCR24): Medicinal chemistry, pharmacology and novel therapeutic options.Curr. Med. Chem.202229234005402510.2174/092986732866621111512183234781860
    [Google Scholar]
  7. DongC. HeW. LiQ. LuY. JuD. GuY. ZhaoK. Cancer treatment evolution from traditional methods to stem cells and gene therapy.Curr. Gene Ther.202222536838510.2174/156652322166621111911075534802404
    [Google Scholar]
  8. BalsaL.M. BaranE.J. LeónI.E. Copper complexes as antitumor agents: in vitro and in vivo evidence.Curr. Med. Chem.202330551055710.2174/092986732866621111709455034789122
    [Google Scholar]
  9. XuR. WuJ. LuoY. WangY. TianJ. TengW. ZhangB. FangZ. LiY. Sanguinarine represses the growth and metastasis of non-small cell lung cancer by facilitating ferroptosis.Curr. Pharm. Des.202228976076810.2174/138161282866622021712454235176976
    [Google Scholar]
  10. LundstromK. Gene therapy cargoes based on viral vector delivery.Curr. Gene Ther.202323211113410.2174/156652322266622092111275336154608
    [Google Scholar]
  11. SuL. ZhaoJ. SuH. WangY. HuangW. JiangX. GaoS. CircRNAs in lung Adeno Carcinoma: Diagnosis and therapy.Curr. Gene Ther.2022221152234856899
    [Google Scholar]
  12. Rojas-MartinezA. Cienfuegos-JimenezO. Vazquez-GarzaE. CAR-NK cells for cancer therapy: Molecular redesign of the innate antineoplastic response.Curr. Gene Ther.202222430331810.2174/156652322266621121709172434923939
    [Google Scholar]
  13. HuntC. MontgomeryS. BerkenpasJ.W. SigafoosN. OakleyJ.C. EspinosaJ. JusticeN. KishabaK. HippeK. SiD. HouJ. DingH. CaoR. Recent progress of machine learning in gene therapy.Curr. Gene Ther.202222213214310.2174/156652322166621062216413334161210
    [Google Scholar]
  14. KesavanY. SrinivasanS.S. PathakS. RamalingamS. Role of dietary phytochemicals in targeting human miRNAs for cancer prevention and treatment.Curr. Gene Ther.202323534335510.2174/156652322366623051912451937497747
    [Google Scholar]
  15. HuangL. ZhouY. XuX. QiuY. ChenS. WangS. YangR. LiuB. LiY. DengJ. SuY. LinZ. GuJ. LiS. Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer.Curr. Pharm. Des.202228252052206410.2174/138161282866622060812293436062855
    [Google Scholar]
  16. ShuklaM.K. DubeyA. PandeyS. SinghS.K. GuptaG. PrasherP. ChellappanD.K. OliverB.G. KumarD. DuaK. Managing apoptosis in lung diseases using nano-assisted drug delivery system.Curr. Pharm. Des.202228393202321110.2174/138161282866622041310383135422206
    [Google Scholar]
  17. MarwahH. PantJ. YadavJ. ShahK. DewanganH.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights.Curr. Pharm. Des.202329433442345710.2174/011381612827694823120411153138270161
    [Google Scholar]
  18. ZhangQ. WuY. ChenJ. TanF. MouJ. DuZ. CaiY. WangB. YuanC. The regulatory role of both MBNL1 and MBNL1-AS1 in several common cancers.Curr. Pharm. Des.202228758158510.2174/138161282766621083011073234459372
    [Google Scholar]
  19. DondulkarA. AkojwarN. KattaC. KhatriD.K. MehraN.K. SinghS.B. MadanJ. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer.Curr. Pharm. Des.202228539540910.2174/138161282766621110415560434736378
    [Google Scholar]
  20. LimZ.F. MaP.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy.J. Hematol. Oncol.201912113410.1186/s13045‑019‑0818‑231815659
    [Google Scholar]
  21. LiuW. DuY. WenR. YangM. XuJ. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer.Pharmacol. Ther.202020610743810.1016/j.pharmthera.2019.10743831715289
    [Google Scholar]
  22. ShiB. ZhengM. TaoW. ChungR. JinD. GhaffariD. FarokhzadO.C. Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems.Biomacromolecules20171882231224610.1021/acs.biomac.7b0080328661127
    [Google Scholar]
  23. MatiniA. NaghibS.M. Microwave-assisted natural gums for drug delivery systems: Recent progresses and advances over emerging biopolymers and technologies.Curr. Med. Chem.20243112510.2174/010929867328314423121205560338192130
    [Google Scholar]
  24. YazdanM. NaghibS.M. Smart ultrasound-responsive polymers for drug delivery: An overview on advanced stimuli-sensitive materials and techniques.Curr. Drug Deliv.2024211910.2174/011567201828379224011505330238288800
    [Google Scholar]
  25. MajumderJ. MinkoT. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery.Expert Opin. Drug Deliv.202118220522710.1080/17425247.2021.182833932969740
    [Google Scholar]
  26. SchroederA. LevinsC.G. CortezC. LangerR. AndersonD.G. Lipid-based nanotherapeutics for siRNA delivery.J. Intern. Med.2010267192110.1111/j.1365‑2796.2009.02189.x20059641
    [Google Scholar]
  27. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.01226456916
    [Google Scholar]
  28. PoulsenT. PoulsenH. PappotH. Molecular biology of lung cancer.Cardiothorac. Surg. Rev.200832203410.3109/9781439802014‑4
    [Google Scholar]
  29. OxnardG.R. BinderA. JänneP.A. New targetable oncogenes in non-small-cell lung cancer.J. Clin. Oncol.20133181097110410.1200/JCO.2012.42.982923401445
    [Google Scholar]
  30. Hassan Lemjabbar-AlaouiaO.H. YangaY-W. BuchananaP. Lung cancer: biology and treatment options Hassan.Physiol. Behav.201617613914810.1016/j.bbcan.2015.08.002.Lung
    [Google Scholar]
  31. XieX. LiX. TangW. XieP. TanX. Primary tumor location in lung cancer: the evaluation and administration.Chin. Med. J.2022135212713610.1097/CM9.000000000000180234784305
    [Google Scholar]
  32. DenisovE.V. SchegolevaA.A. GervasP.A. PonomaryovaA.A. TashirevaL.A. BoyarkoV.V. BukreevaE.B. PankovaO.V. PerelmuterV.M. Premalignant lesions of squamous cell Carcinoma of the lung: The molecular make-up and factors affecting their progression.Lung Cancer2019135212810.1016/j.lungcan.2019.07.00131446997
    [Google Scholar]
  33. Dela CruzC.S. TanoueL.T. MatthayR.A. Lung cancer: epidemiology, etiology, and prevention.Clin. Chest Med.201132460564410.1016/j.ccm.2011.09.00122054876
    [Google Scholar]
  34. MatiniA. NaghibS.M. The necessity of nanotechnology in Mycoplasma pneumoniae detection: A comprehensive examination.Sens. Biosensing Res.20244310063110.1016/j.sbsr.2024.100631
    [Google Scholar]
  35. MolinaJ.R. YangP. CassiviS.D. SchildS.E. AdjeiA.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship.Mayo Clin. Proc.200883558459410.1016/S0025‑6196(11)60735‑018452692
    [Google Scholar]
  36. GarbuzenkoO.B. KuzmovA. TaratulaO. PineS.R. MinkoT. Strategy to enhance lung cancer treatment by five essential elements: Inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy.Theranostics20199268362837610.7150/thno.3981631754402
    [Google Scholar]
  37. ShenT. SciencesM. StatesU. ZhangY. DiscoveryD. StatesU. MedicineP. FirstT. HospitalA. ZhouS. DiscoveryD. StatesU. LinS. MedicineP. FirstT. HospitalA. ZhangX. SciencesM. ZhuG. DiscoveryD. StatesU. Nucleic acid immunotherapeutics for cancer.HHS Public Access202132838284910.1021/acsabm.0c00101.Nucleic
    [Google Scholar]
  38. FuJ. DongH. WuJ. JinY. Emerging progress of RNA-based antitumor therapeutics.Int. J. Biol. Sci.202319103159318310.7150/ijbs.8373237416764
    [Google Scholar]
  39. LuoK. LiN. YeW. GaoH. LuoX. ChengB. Activation of stimulation of interferon genes (STING) signal and cancer immunotherapy.Molecules20222714463810.3390/molecules2714463835889509
    [Google Scholar]
  40. De MeyW. EspritA. ThielemansK. BreckpotK. FranceschiniL. RNA in cancer immunotherapy: Unlocking the potential of the immune system.Clin. Cancer Res.202228183929393910.1158/1078‑0432.CCR‑21‑330435583609
    [Google Scholar]
  41. BishaniA. ChernolovskayaE.L. Activation of innate immunity by therapeutic nucleic acids.Int. J. Mol. Sci.202122241336010.3390/ijms22241336034948156
    [Google Scholar]
  42. YanX. YaoC. FangC. HanM. GongC. HuD. ShenW. WangL. LiS. ZhuS. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer.Int. J. Biol. Sci.202218258559810.7150/ijbs.6501935002511
    [Google Scholar]
  43. HodenB. DeRubeisD. Martinez-MoczygembaM. RamosK.S. ZhangD. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy.Front. Immunol.202213103348310.3389/fimmu.2022.103348336389785
    [Google Scholar]
  44. HuangL. GeX. LiuY. LiH. ZhangZ. The role of toll-like receptor agonists and their nanomedicines for tumor immunotherapy, pharmaceutics.Pharmaceutics2022146122810.3390/pharmaceutics14061228
    [Google Scholar]
  45. QinS. TangX. ChenY. ChenK. FanN. XiaoW. ZhengQ. LiG. TengY. WuM. SongX. mRNA-based therapeutics: powerful and versatile tools to combat diseases.Signal Transduct. Target. Ther.20227116610.1038/s41392‑022‑01007‑w35597779
    [Google Scholar]
  46. RivlinN. BroshR. OrenM. RotterV. Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis.Genes Cancer20112446647410.1177/194760191140888921779514
    [Google Scholar]
  47. MareiH.E. AlthaniA. AfifiN. HasanA. CaceciT. PozzoliG. MorrioneA. GiordanoA. CenciarelliC. p53 signaling in cancer progression and therapy.Cancer Cell Int.202121170310.1186/s12935‑021‑02396‑834952583
    [Google Scholar]
  48. Freire BoullosaL. Van LoenhoutJ. FlieswasserT. De WaeleJ. HermansC. LambrechtsH. CuypersB. LaukensK. BartholomeusE. SiozopoulouV. De VosW.H. PeetersM. SmitsE.L.J. DebenC. DebenC. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer.Redox Biol.20214210194910.1016/j.redox.2021.10194933812801
    [Google Scholar]
  49. YounH. ChungJ. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy.Expert. Opin. Biol. Ther.201515913371348
    [Google Scholar]
  50. SunH. ZhuX. LuP.Y. RosatoR.R. TanW. ZuY. Oligonucleotide aptamers: new tools for targeted cancer therapy.Mol Ther Nucleic Acids201438e18210.1038/mtna.2014.32
    [Google Scholar]
  51. ZhouG. WilsonG. HebbardL. DuanW. LiddleC. GeorgeJ. QiaoL. Aptamers: A promising chemical antibody for cancer therapy.Oncotarget20167121344613463
    [Google Scholar]
  52. QinS. YiM. JiaoD. LiA. WuK. Distinct roles of VEGFA and ANGPT2 in Lung Adeno Carcinoma and Squamous Cell Carcinoma.J Cancer202011115316710.7150/jca.34693
    [Google Scholar]
  53. JiangC. LinX. ZhaoZ. Applications of CRISPR/Cas9 technology in the treatment of lung cancer.Trends Mol. Med.201925111039104910.1016/j.molmed.2019.07.00731422862
    [Google Scholar]
  54. RomeroR. SayinV.I. DavidsonS.M. BauerM.R. SinghS.X. LeboeufS.E. KarakousiT.R. EllisD.C. Sanchez-riveraF.J. SubbarajL. MartinezB. BronsonR.T. PriggeJ.R. SchmidtE.E. ThomasC.J. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis.Nat Med2018231113621368
    [Google Scholar]
  55. SridharanK. GogtayN.J. Therapeutic nucleic acids : Current clinical status.Br.J.Clin.Pharmacol.201682365967210.1111/bcp.12987
    [Google Scholar]
  56. ManH.S.J. MoosaV.A. SinghA. WuL. GrantonJ.T. JuvetS.C. HoangC.D. de PerrotM. Unlocking the potential of RNA-based therapeutics in the lung: Current status and future directions.Front. Genet.202314128153810.3389/fgene.2023.128153838075698
    [Google Scholar]
  57. WangF. ZuroskeT. WattsJ.K. RNA therapeutics on the rise.Nat. Rev. Drug Discov.202019744144210.1038/d41573‑020‑00078‑032341501
    [Google Scholar]
  58. ZhuY. ZhuL. WangX. JinH. RNA-based therapeutics: An overview and prospectus.Cell Death Dis.202213764410.1038/s41419‑022‑05075‑235871216
    [Google Scholar]
  59. KaikkonenM.U. LamM.T.Y. GlassC.K. Non-coding RNAs as regulators of gene expression and epigenetics.Cardiovasc. Res.201190343044010.1093/cvr/cvr09721558279
    [Google Scholar]
  60. CheryJ. RNA therapeutics: RNAi and antisense mechanisms and clinical applications.Postdoc J.201643550
    [Google Scholar]
  61. MeisterG. TuschlT. Mechanisms of gene silencing by double-stranded RNA.Nature2004431700634334910.1038/nature0287315372041
    [Google Scholar]
  62. ShobakiN. SatoY. SuzukiY. OkabeN. HarashimaH. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy.J. Control. Release202032523524810.1016/j.jconrel.2020.07.00132649972
    [Google Scholar]
  63. KurakulaH. VaishnaviS. SharifM.Y. EllipilliS. Emergence of small interfering RNA-based gene drugs for various diseases.ACS Omega2023823202342025010.1021/acsomega.3c0170337323391
    [Google Scholar]
  64. ToK.K.W. FongW. TongC.W.S. WuM. YanW. ChoW.C.S. Advances in the discovery of microRNA-based anticancer therapeutics: Latest tools and developments.Expert Opin. Drug Discov.2020151638310.1080/17460441.2020.169044931739699
    [Google Scholar]
  65. WuK.L. TsaiY.M. LienC.T. KuoP.L. HungJ.Y. The roles of microRNA in lung cancer.Int. J. Mol. Sci.2019207161110.3390/ijms2007161130935143
    [Google Scholar]
  66. WuS.G. ChangT.H. LiuY.N. ShihJ.Y. MicroRNA in lung cancer metastasis.Cancers201911226510.3390/cancers1102026530813457
    [Google Scholar]
  67. PozzaD.H. De MelloR.A. AraujoR.L.C. VelchetiV. MicroRNAs in lung cancer oncogenesis and tumor suppression: How it can improve the clinical practice?Curr. Genomics202021537238110.2174/138920292199920063014471233093800
    [Google Scholar]
  68. ChenT. XiaoQ. WangX. WangZ. HuJ. ZhangZ. GongZ. ChenS. miR-16 regulates proliferation and invasion of lung cancer cells via the ERK/MAPK signaling pathway by targeted inhibition of MAPK kinase 1 (MEK1).J. Int. Med. Res.201947105194520410.1177/030006051985650531379227
    [Google Scholar]
  69. XueX. LiuY. WangY. MengM. WangK. ZangX. ZhaoS. SunX. CuiL. PanL. LiuS. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN.Oncotarget.201678450884519Available from: www.impactjournals.com/oncotarget
    [Google Scholar]
  70. LegrasA. NicolasP. ImbeaudS. PallierK. DidelotA. GibaultL. FabreE. Le Pimpec-barthesF. Laurent-puigP. Epithelial to mesenchymal transition and MicroRNAs in lung cancer.Cancers20179810110.3390/cancers9080101
    [Google Scholar]
  71. CondratC.E. ThompsonD.C. BarbuM.G. BugnarO.L. BobocA. CretoiuD. SuciuN. CretoiuS.M. VoineaS.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells902027631979244
    [Google Scholar]
  72. KumarM.S. ErkelandS.J. PesterR.E. ChenC.Y. EbertM.S. SharpP.A. JacksT. Suppression of non-small cell lung tumor development by the let-7 microRNA family.Proc. Natl. Acad. Sci.2008105103903390810.1073/pnas.071232110518308936
    [Google Scholar]
  73. JohnsonC.D. Esquela-kerscherA. StefaniG. ByromM. KelnarK. OvcharenkoD. WilsonM. WangX. SheltonJ. ShingaraJ. ChinL. BrownD. SlackF.J. The let-7 MicroRNA represses cell proliferation pathways in human cells.Cancer Res200767167713772210.1158/0008‑5472.CAN‑07‑1083
    [Google Scholar]
  74. ShanN. ShenL. WangJ. HeD. DuanC. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19.Biochem. Biophys. Res. Commun.2015456138539110.1016/j.bbrc.2014.11.09325475731
    [Google Scholar]
  75. YousefniaS. A comprehensive review on miR-153: Mechanistic and controversial roles of miR-153 in tumorigenicity of cancer cells.Front Oncol.20221298589710.3389/fonc.2022.985897
    [Google Scholar]
  76. QiuC. LiS. SunD. YangS. lncRNA PVT1 accelerates progression of non-small cell lung cancer via targeting miRNA-526b/EZH2 regulatory loop.Oncol Lett.20201921267127210.3892/ol.2019.11237
    [Google Scholar]
  77. WangL. YaoJ. SunH. HeK. TongD. SongT. HuangC. MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A.Oncol Lett201713132933810.3892/ol.2016.5423
    [Google Scholar]
  78. LvP. ZhangP. LiX. ChenY. Micro ribonucleic acid (RNA)-101 inhibits cell proliferation and invasion of lung cancer by regulating cyclooxygenase-2.Thorac Cancer20156677878410.1111/1759‑7714.12283
    [Google Scholar]
  79. LiX. YuZ. LiY. LiuS. The tumor suppressor miR-124 inhibits cell proliferation by targeting STAT3 and functions as a prognostic marker for postoperative NSCLC patientsInt J Oncol201546279880810.3892/ijo.2014.2786
    [Google Scholar]
  80. XieC. HanY. LiuY. HanL. LiuJ. Suppresses cell proliferation in non-small cell.lung cancer2014765346542
    [Google Scholar]
  81. ZhuQ. ZhangY. LiM. ZhangY. ZhangH. ChenJ. LiuZ. YuanP. MiR-124-3p impedes the metastasis of non-small cell lung cancer via extracellular exosome transport and intracellular PI3K/AKT signaling.Biomark Res.202311110.1186/s40364‑022‑00441‑w
    [Google Scholar]
  82. ZhangL. LiaoY. TangL. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer.J Exp Clin Cancer Res201938153
    [Google Scholar]
  83. HashemiZ.S. KhaliliS. Forouzandeh MoghadamM. SadroddinyE. Lung cancer and miRNAs: A possible remedy for anti-metastatic, therapeutic and diagnostic applications.Expert Rev. Respir. Med.201711214715710.1080/17476348.2017.127940328118799
    [Google Scholar]
  84. CortezM.A. IvanC. ValdecanasD. WangX. PeltierH.J. YeY. AraujoL. CarboneD.P. ShiloK. GiriD.K. KelnarK. MartinD. KomakiR. GomezD.R. KrishnanS. CalinG.A. BaderA.G. WelshJ.W. PDL1 Regulation by p53 via miR-34.J Natl Cancer Inst20161081djv30310.1093/jnci/djv303
    [Google Scholar]
  85. ChenQ. ChenS. ZhaoJ. ZhouY.A. XuL.I.N. MicroRNA-126: A new and promising player in lung cancer.Oncol Lett20212113510.3892/ol.2020.12296
    [Google Scholar]
  86. LányiÁ. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5.FEBS Lett201158581191119610.1016/j.febslet.2011.03.039
    [Google Scholar]
  87. ChenM. PengW. HuS. DengJ.I.E. miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer.Oncol Lett20181644754476010.3892/ol.2018.9204
    [Google Scholar]
  88. ShaoC. YangF. QinZ. JingX. ShuY. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer : A systematic review with meta-analysis.BMC Cancer2019191110310.1186/s12885‑019‑6297‑6
    [Google Scholar]
  89. InflammationC. ZanoagaO. BraicuC. ChiroiP. AndreeaN. Al HajjarN. SimonaM. KorbanS.S. Berindan-neagoeI. The Role of miR-155 in Nutrition: Modulating cancer-associated inflammation.Nutrients20211372245
    [Google Scholar]
  90. FujitaY. YagishitaS. HagiwaraK. YoshiokaY. KosakaN. TakeshitaF. FujiwaraT. TsutaK. NokiharaH. TamuraT. AsamuraH. KawaishiM. KuwanoK. OchiyaT. The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer.Mol Ther201523471772710.1038/mt.2015.10
    [Google Scholar]
  91. WangD. ChenX. YuD. YangS. ShenH.Y. Sha ZhongS. ZhaoJ. TangJ. miR-197: A novel biomarker for cancers.Gene2016591231331910.1016/j.gene.2016.06.03527320730
    [Google Scholar]
  92. SuiA. ZhangX. ZhuQ. Diagnostic value of serum miR197 and miR145 in non-small cell lung cancer.Oncol Lett20191733247325210.3892/ol.2019.9958
    [Google Scholar]
  93. SpN. KangD.Y. LeeJ.M. JangK.J. Mechanistic insights of anti-immune evasion by nobiletin through regulating miR-197/STAT3/PD-L1 signaling in non-small cell lung cancer (NSCLC) cells.Int. J. Mol. Sci.20212218984310.3390/ijms2218984334576006
    [Google Scholar]
  94. LiJ. TanQ. YanM. LiuL. LinH. ZhaoF. BaoG. KongH. miRNA-200c inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25.Mol Cancer201413166
    [Google Scholar]
  95. XueB. ChuangC. ProsserH.M. FuziwaraC.S. ChanC. SahasrabudheN. KühnM. WuY. ChenJ. BitonA. ChenC. WilkinsonJ.E. McmanusM.T. BradleyA. WinslowM.M. SuB. HeL. miR-200 deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts.biorxiv20213515-161109112210.1101/2020.09.02.276550
    [Google Scholar]
  96. ManuscriptA. Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells.Cancer Lett20112962216224
    [Google Scholar]
  97. HuangX. ZhangH. GuoX. ZhuZ. CaiH. KongX. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer.J Hematol Oncol.201811188
    [Google Scholar]
  98. FaversaniA. AmatoriS. AugelloC. ColomboF. FanelliM. FerreroS. PalleschiA. GiuseppeP. BelloniE. ErcoliG. DegrassiA. BaccarinM. DarioC. VairaV. BosariS. miR-494-3p is a novel tumor driver of lung carcinogenesis.Oncotarget20178572317247
    [Google Scholar]
  99. YuF. LiangM. HuangY. WuW. ZhengB. ChenC. Hypoxic tumor-derived exosomal miR-31-5p promotes lung adenocarcinoma metastasis by negatively regulating SATB2-reversed EMT and activating MEK / ERK signaling.J Exp Clin Cancer Res2021401179
    [Google Scholar]
  100. LiuX. SempereL.F. OuyangH. MemoliV.A. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors.J Clin Invest201012041298309
    [Google Scholar]
  101. GuzM.B. Rivero-müllerA. MicroRNAs-role in lung cancer.Dis Markers20142014218169
    [Google Scholar]
  102. MogilyanskyE. RigoutsosI. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease.Cell Death Differ.201320121603161410.1038/cdd.2013.12524212931
    [Google Scholar]
  103. WadhwaA. AljabbariA. LokrasA. FogedC. ThakurA. Opportunities and challenges in the delivery of mrna-based vaccines.Pharmaceutics202012210210.3390/pharmaceutics1202010232013049
    [Google Scholar]
  104. SabnisS. KumarasingheE.S. SalernoT. MihaiC. KetovaT. SennJ.J. LynnA. BulychevA. McFadyenI. ChanJ. AlmarssonÖ. StantonM.G. BenenatoK.E. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates.Mol. Ther.20182661509151910.1016/j.ymthe.2018.03.01029653760
    [Google Scholar]
  105. HaldC. KulkarniJ.A. WitzigmannD. LindM. PeterssonK. SimonsenJ.B. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Available from: https://cdn.who.int/media/docs/default-source/whhd-2021/scientific-publications/2.jhi_5may2021.pdf?sfvrsn=6526a2a5_5
  106. SunD. LuZ.R. Structure and function of cationic and ionizable lipids for nucleic acid delivery.Pharm. Res.2023401274610.1007/s11095‑022‑03460‑236600047
    [Google Scholar]
  107. ShimG. ChoiH. LeeS. ChoiJ. YuY.H. ParkD.E. ChoiY. KimC.W. OhY.K. Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes.Mol. Ther.201321481682410.1038/mt.2013.1023380818
    [Google Scholar]
  108. TanT. FengY. WangW. WangR. YinL. ZengY. ZengZ. XieT. Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer.Cancer Nanotechnol.20231417010.1186/s12645‑023‑00194‑7
    [Google Scholar]
  109. FengX. XuW. LiZ. SongW. DingJ. ChenX. Immunomodulatory nanosystems.Adv. Sci.2019617190010110.1002/advs.20190010131508270
    [Google Scholar]
  110. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  111. LiW. SzokaF.C.Jr Lipid-based nanoparticles for nucleic acid delivery.Pharm. Res.200724343844910.1007/s11095‑006‑9180‑517252188
    [Google Scholar]
  112. ZhangZ. YaoS. HuY. ZhaoX. LeeR.J. Application of lipid-based nanoparticles in cancer immunotherapy.Front. Immunol.20221396750510.3389/fimmu.2022.96750536003395
    [Google Scholar]
  113. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  114. LeungA.K.K. TamY.Y.C. CullisP.R. Lipid nanoparticles for short interfering RNA delivery.Adv Genet2014887111010.1016/B978‑0‑12‑800148‑6.00004‑3
    [Google Scholar]
  115. KulkarniJ.A. WitzigmannD. ChenS. CullisP.R. van der MeelR. Lipid nanoparticle technology for clinical translation of siRNA therapeutics.Acc. Chem. Res.20195292435244410.1021/acs.accounts.9b0036831397996
    [Google Scholar]
  116. MoroM. Di PaoloD. MilioneM. CentonzeG. BornaghiV. BorziC. GandelliniP. PerriP. PastorinoU. PonzoniM. SozziG. FortunatoO. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models.J. Control. Release2019308445610.1016/j.jconrel.2019.07.00631299263
    [Google Scholar]
  117. YungB.C. LiJ. ZhangM. ChengX. LiH. YungE.M. KangC. CosbyL.E. LiuY. TengL. LeeR.J. Lipid nanoparticles composed of quaternary amine–tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of AntimiR-21 for lung cancer.Mol. Pharm.201613265366210.1021/acs.molpharmaceut.5b0087826741162
    [Google Scholar]
  118. ZhangC. ZhaoY. ZhangE. JiangM. ZhiD. ChenH. CuiS. ZhenY. CuiJ. ZhangS. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy.Drug Deliv.20202711397141110.1080/10717544.2020.182708533096948
    [Google Scholar]
  119. NakamuraT. SatoT. EndoR. SasakiS. TakahashiN. SatoY. HyodoM. HayakawaY. HarashimaH. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation.J. Immunother. Cancer202197e00285210.1136/jitc‑2021‑00285234215690
    [Google Scholar]
  120. DaneE.L. Belessiotis-RichardsA. BacklundC. WangJ. HidakaK. MillingL.E. BhagchandaniS. MeloM.B. WuS. LiN. DonahueN. NiK. MaL. OkaniwaM. StevensM.M. Alexander-KatzA. IrvineD.J. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity.Nat. Mater.202221671072010.1038/s41563‑022‑01251‑z35606429
    [Google Scholar]
  121. GeallA.J. VermaA. OttenG.R. ShawC.A. HekeleA. BanerjeeK. CuY. ValianteN.M. DormitzerP.R. BarnettS.W. RappuoliR. UlmerJ.B. MandlC.W. Nonviral delivery of self-amplifying RNA vaccines.Proc Natl Acad Sci.201210936146041460910.1073/pnas.1209367109
    [Google Scholar]
  122. LuizM.T. DutraJ.A.P. ViegasJ.S.R. de AraújoJ.T.C. Tavares JuniorA.G. ChorilliM. Hybrid magnetic lipid-based nanoparticles for cancer therapy.Pharmaceutics202315375110.3390/pharmaceutics1503075136986612
    [Google Scholar]
  123. Abdel-barH.M. WaltersA.A. WangJ.T. Combinatory Delivery of Etoposide and siCD47 in a lipid polymer hybrid delays lung tumor growth in an experimental melanoma lung metastatic model.Adv Healthc Mater2021107e200185310.1002/adhm.202001853
    [Google Scholar]
  124. ConteG. CostabileG. BaldassiD. RondelliV. BassiR. ColomboD. LinardosG. FiscarelliE. V MiroA. QuagliaF. BroccaP. AngeloI. MerkelO.M. UngaroF. Hybrid lipid/polymer nanoparticles to tackle the cystic fibrosis mucus barrier in sirna delivery to the lungs: Does pegylation make the difference?ACS Appl Mater Interfaces20221467565757810.1021/acsami.1c14975
    [Google Scholar]
  125. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  126. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms2407619937047172
    [Google Scholar]
  127. KotmakçıM. ÇetintaşV.B. KantarcıA.G. Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells.Int. J. Pharm.2017525110111110.1016/j.ijpharm.2017.04.03428428090
    [Google Scholar]
  128. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  129. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  130. FanY. MarioliM. ZhangK. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery.J. Pharm. Biomed. Anal.202119211364210.1016/j.jpba.2020.11364233011580
    [Google Scholar]
  131. ChengX. LeeR.J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.Adv. Drug Deliv. Rev.201699Pt A12913710.1016/j.addr.2016.01.02226900977
    [Google Scholar]
  132. AkbarzadehA. Rezaei-sadabadyR. DavaranS. JooS.W. ZarghamiN. Liposome : Classification, prepNew aspects of liposomesaration, and applications.Nanoscale Res. Lett.201381910.1186/1556‑276X‑8‑102
    [Google Scholar]
  133. DongZ. YinY. LuoJ. LiB. LouF. WangQ. ZhouQ. YeB. WangY. An FGFR1-binding peptide modified liposome for siRNA delivery in lung cancer.Int. J. Mol. Sci.20222315838010.3390/ijms2315838035955516
    [Google Scholar]
  134. JarallahS.J. AldossaryA.M. TawfikE.A. AltamimiR.M. AlsharifW.K. AlzahraniN.M. As SobeaiH.M. QamarW. AlfahadA.J. AlshabibiM.A. AlqahtaniS.H. AlshehriA.A. AlmughemF.A. GL67 lipid-based liposomal formulation for efficient siRNA delivery into human lung cancer cells.Saudi Pharm. J.20233171139114810.1016/j.jsps.2023.05.01737273265
    [Google Scholar]
  135. QuanY.H. LimJ.Y. ChoiB.H. ChoiY. ChoiY.H. ParkJ.H. KimH.K. Self-targeted knockdown of CD44 improves cisplatin sensitivity of chemoresistant non-small cell lung cancer cells.Cancer Chemother. Pharmacol.201983339941010.1007/s00280‑018‑3737‑y30515553
    [Google Scholar]
  136. JiangM. ZhangE. LiangZ. ZhaoY. ZhangS. XuH. WangH. ShuX. KangX. SunL. ZhenY. Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer.J. Drug Deliv. Sci. Technol.20195410131610.1016/j.jddst.2019.101316
    [Google Scholar]
  137. KoshyS.T. CheungA.S. GuL. GravelineA.R. MooneyD.J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy.Adv. Biosyst.201711-2160001310.1002/adbi.20160001330258983
    [Google Scholar]
  138. GarbuzenkoO.B. SaadM. BetigeriS. ZhangM. VetcherA.A. SoldatenkovV.A. ReimerD.C. PozharovV.P. MinkoT. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug.Pharm. Res.200926238239410.1007/s11095‑008‑9755‑418958402
    [Google Scholar]
  139. ChowdhuryN. VhoraI. PatelK. DoddapaneniR. MondalA. SinghM. Liposomes co-loaded with 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) shRNA plasmid and docetaxel for the treatment of non-small cell lung cancer.Pharm. Res.201734112371238410.1007/s11095‑017‑2244‑x28875330
    [Google Scholar]
  140. ZhouY. ZhouG. TianC. JiangW. JinL. ZhangC. ChenX. Exosome-mediated small RNA delivery for gene therapy.Wiley Interdiscip. Rev. RNA20167675877110.1002/wrna.136327196002
    [Google Scholar]
  141. KalluriR. LeBleuV.S. The biology , function , and biomedical applications of exosomes.Science20203676478eaau6977
    [Google Scholar]
  142. BaiJ. DuanJ. LiuR. DuY. LuoQ. CuiY. SuZ. XuJ. XieY. LuW. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells.Asian J. Pharmac. Sci.202015446147110.1016/j.ajps.2019.04.00232952669
    [Google Scholar]
  143. LinX. LinL. WuJ. JiangW. WuJ. YangJ. ChenC. A targeted siRNA -loaded PDL1 -exosome and functional evaluation against lung cancer.Thorac. Cancer202213111691170210.1111/1759‑7714.1444535545838
    [Google Scholar]
  144. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  145. PriyaS. DesaiV.M. SinghviG. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery.ACS Omega202381748610.1021/acsomega.2c0597636643539
    [Google Scholar]
  146. CardosoM.M. PeçaI.N. RoqueA.C.A. Antibody-conjugated nanoparticles for therapeutic applications.Curr. Med. Chem.201219193103312710.2174/09298671280078466722612698
    [Google Scholar]
  147. ParhizH. ShuvaevV.V. PardiN. KhoshnejadM. KiselevaR.Y. BrennerJ.S. UhlerT. TuyishimeS. MuiB.L. TamY.K. MaddenT.D. HopeM.J. WeissmanD. MuzykantovV.R. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake.J. Control. Release201829110611510.1016/j.jconrel.2018.10.01530336167
    [Google Scholar]
  148. LeeY.K. LeeT.S. SongI.H. JeongH.Y. KangS.J. KimM.W. RyuS.H. JungI.H. KimJ.S. ParkY.S. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs.Cancer Gene Ther.201522733534310.1038/cgt.2015.1825857361
    [Google Scholar]
  149. LiQ. ChanC. PetersonN. HannaR.N. AlfaroA. AllenK.L. WuH. Dall’AcquaW.F. BorrokM.J. SantosJ.L. Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs.ACS Chem. Biol.202015483083610.1021/acschembio.0c0000332155049
    [Google Scholar]
  150. YangS. WangM. WangT. SunM. HuangH. ShiX. DuanS. WuY. ZhuJ. LiuF. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications.Mater. Today Bio20232010064410.1016/j.mtbio.2023.10064437214549
    [Google Scholar]
  151. OdehF. NsairatH. AlshaerW. IsmailM.A. EsawiE. QaqishB. BawabA.A. IsmailS.I. Aptamers chemistry: Chemical modifications and conjugation strategies.Molecules2019251310.3390/molecules2501000331861277
    [Google Scholar]
  152. LiangC. LiF. WangL. ZhangZ.K. WangC. HeB. LiJ. ChenZ. ShaikhA.B. LiuJ. WuX. PengS. DangL. GuoB. HeX. AuD.W.T. LuC. ZhuH. ZhangB.T. LuA. ZhangG. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma.Biomaterials2017147688510.1016/j.biomaterials.2017.09.01528938163
    [Google Scholar]
  153. MaJ. ZhuangH. ZhuangZ. LuY. XiaR. GanL. WuY. Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting.Artif. Cells Nanomed. Biotechnol.20174681810.1080/21691401.2017.139487429082764
    [Google Scholar]
  154. AbdelazizH.M. FreagM.S. ElzoghbyA.O. Solid lipid nanoparticle-based drug delivery for lung cancer.Nanotechnol.Based. Targ. Drug. Deliv. Sys. Lung. Canc.Elsevier Inc.20199512110.1016/B978‑0‑12‑815720‑6.00005‑8
    [Google Scholar]
  155. PangJ. XingH. SunY. FengS. WangS. Non-small cell lung cancer combination therapy: Hyaluronic acid modified, epidermal growth factor receptor targeted, pH sensitive lipid-polymer hybrid nanoparticles for the delivery of erlotinib plus bevacizumab.Biomed. Pharmacother.202012510986110.1016/j.biopha.2020.10986132070872
    [Google Scholar]
  156. PirkalkhoranS. GrabowskaW.R. KashkoliH.H. MirhassaniR. GuilianoD. DolphinC. KhaliliH. Bioengineering of antibody fragments: Challenges and opportunities.Bioengineering2023102122
    [Google Scholar]
  157. QinL. FangC. Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro.Drug Des Devel Ther201489931001
    [Google Scholar]
  158. WangT. ShigdarS. ShamailehH.A. GantierM.P. YinW. XiangD. WangL. ZhouS.F. HouY. WangP. ZhangW. PuC. DuanW. Challenges and opportunities for siRNA-based cancer treatment.Cancer Lett.2017387778310.1016/j.canlet.2016.03.04527045474
    [Google Scholar]
  159. ShinH. ParkS.J. YimY. KimJ. ChoiC. WonC. MinD.H. Recent advances in RNA therapeutics and RNA delivery systems based on nanoparticles.Adv. Ther.201817180006510.1002/adtp.201800065
    [Google Scholar]
  160. BostJ.P. BarrigaH. HolmeM.N. GalludA. MaugeriM. GuptaD. LehtoT. ValadiH. EsbjörnerE.K. StevensM.M. El-AndaloussiS. Delivery of oligonucleotide therapeutics: Chemical modifications, lipid nanoparticles, and extracellular vesicles.ACS Nano2021159139931402110.1021/acsnano.1c0509934505766
    [Google Scholar]
  161. KimS.J. PuranikN. YadavD. JinJ.O. LeeP.C.W. Lipid nanocarrier-based drug delivery systems: Therapeutic advances in the treatment of lung cancer.Int. J. Nanomedicine2023182659267610.2147/IJN.S40641537223276
    [Google Scholar]
  162. ColacoV. RoyA.A. NaikG.A.R.R. MondalA. MutalikS. DhasN. Advancement in lipid-based nanocomposites for theranostic applications in lung Carcinoma treatment.OpenNano20241510019910.1016/j.onano.2023.100199
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232292768240503050508
Loading
/content/journals/cgt/10.2174/0115665232292768240503050508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test