Skip to content
2000
Volume 24, Issue 3
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background: Segmentation of medical images plays a key role in the correct identification and management of different diseases. In this study, we present a new segmentation method that meets the difficulties posed by sophisticated organ shapes in computed tomography (CT) images, particularly targeting lung, breast, and gastric cancers. Methods: Our suggested methods, Resio-Inception U-Net and Deep Cluster Recognition (RIUDCR), use a Residual Inception Architecture, which combines the power of residual connections and inception blocks to achieve cutting-edge segmentation performance while reducing the risk of overfitting. Results: We present mathematical equations and functions that describe the design, including the encoding and decoding steps within the UC-Net system. Furthermore, we provide strong testing results that show the effectiveness of our method. Through thorough testing on varied datasets, our method regularly beats current techniques, achieving amazing precision and stability in organ task segmentation. These results show the promise of our residual inception architecture in better medical picture analysis. Conclusion: In summary, our research not only shows a state-of-the-art segment methodology but also reinforces its usefulness through thorough testing. The inclusion of residual inception architecture in medical picture segmentation offers good possibilities for improving the identification and management of disease planning.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232262165231201113932
2024-06-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/cgt/10.2174/0115665232262165231201113932
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test