Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The objective of this work is to study MOFs with ligands containing thienothiophene groups as linkers and evaluate their practical application as sorbents for mercury removal from water. This evaluation will be compared with MOFs containing 2,6-naphthalenedicarboxylic acid and terephthalic acid linkers.

The study of Hg2+ sorption from solutions was carried out by shaking the MOFs (10 mg) with the solution at 25°C for 24 hours. Determination of chemical elements in solutions was performed using an Agilent 8800 triple quadrupole ICP-MS spectrometer (ICP-QQQ) equipped with an octopole reaction-collision cell in a standard configuration.

Within 24 hours, 97.8% of Hg2+ ions were removed from the solution, even at an initial Hg2+ concentration as low as 1 mg∙L-1. An important part of the work was studying the possibility Zr-ttdc regeneration for repeated use. Using iodide solution as a desorbing agent proved more productive, ensuring the desorption of Hg2+ through competitive complex formation due to the high stability constants of the corresponding mercury complexes. With a 0.1 M potassium iodide solution at pH 6.5, 99% of the sorbed mercury was desorbed in one desorption cycle.

The efficiency of [ZrO(OH)([3.2-b]ttdc)] in adsorbing mercury from aqueous solutions was thoroughly evaluated and compared to [ZrO(OH)(bdc)] and [ZrO(OH)(2.6-ndc)], which lack sulfur-containing linkers. The findings highlight the potential of functionalized MOFs for water purification as well as application in analytical chemistry for the concentration of mercury. Notably, [ZrO(OH)([3.2-b]ttdc)] demonstrated stability in water in a wide pH range, underscoring its promise for diverse environmental chemistry applications.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461338487241122183132
2025-09-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cgc/12/3/CGC-12-3-09.html?itemId=/content/journals/cgc/10.2174/0122133461338487241122183132&mimeType=html&fmt=ahah

References

  1. McNuttM. Mercury and health.Science201334161531430143010.1126/science.1245924 24072890
    [Google Scholar]
  2. LiW.C. TseH.F. Health risk and significance of mercury in the environment.Environ. Sci. Pollut. Res. Int.201522119220110.1007/s11356‑014‑3544‑x 25220768
    [Google Scholar]
  3. GuoX. QianX. JiaL. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution.J. Am. Chem. Soc.200412682272227310.1021/ja037604y 14982408
    [Google Scholar]
  4. LoS.I. ChenP.C. HuangC.C. ChangH.T. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.Environ. Sci. Technol.20124652724273010.1021/es203678v 22309110
    [Google Scholar]
  5. LiuC. BaiR. San LyQ. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms.Water Res.2008426-71511152210.1016/j.watres.2007.10.031 18035389
    [Google Scholar]
  6. OzayO. EkiciS. BaranY. AktasN. SahinerN. Removal of toxic metal ions with magnetic hydrogels.Water Res.200943174403441110.1016/j.watres.2009.06.058 19625066
    [Google Scholar]
  7. TangX. NiuD. BiC. ShenB. Hg2+ Adsorption from a low-concentration aqueous solution on chitosan beads modified by combining Polyamination with Hg2+-imprinted technologies.Ind. Eng. Chem. Res.20135236131201312710.1021/ie401359d
    [Google Scholar]
  8. World Health OrganizationGuidelines for drinking-water quality.GenevaWorld Health Organization2011
    [Google Scholar]
  9. QuZ. YanL. LiL. XuJ. LiuM. LiZ. YanN. Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange.ACS Appl. Mater. Interfaces2014620180261803210.1021/am504896w 25299972
    [Google Scholar]
  10. CzajaA.U. TrukhanN. MüllerU. Industrial applications of metal–organic frameworks.Chem. Soc. Rev.20093851284129310.1039/b804680h 19384438
    [Google Scholar]
  11. ChaemchuenS. KabirN.A. ZhouK. VerpoortF. Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.Chem. Soc. Rev.201342249304933210.1039/c3cs60244c 24045837
    [Google Scholar]
  12. WalesD.J. GrandJ. TingV.P. BurkeR.D. EdlerK.J. BowenC.R. MintovaS. BurrowsA.D. Gas sensing using porous materials for automotive applications.Chem. Soc. Rev.201544134290432110.1039/C5CS00040H 25982991
    [Google Scholar]
  13. LuX. HuangfuX. MaJ. Removal of trace mercury(II) from aqueous solution by in situ formed Mn–Fe (hydr)oxides.J. Hazard. Mater.2014280717810.1016/j.jhazmat.2014.07.056 25128896
    [Google Scholar]
  14. YeeK.K. ReimerN. LiuJ. ChengS.Y. YiuS.M. WeberJ. StockN. XuZ. Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase.J. Am. Chem. Soc.2013135217795779810.1021/ja400212k 23646999
    [Google Scholar]
  15. Nanseu-NjikiC.P. TchamangoS.R. NgomP.C. DarchenA. NgameniE. Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes.J. Hazard. Mater.20091682-31430143610.1016/j.jhazmat.2009.03.042 19349114
    [Google Scholar]
  16. Urgun-DemirtasM. BendaP.L. GillenwaterP.S. NegriM.C. XiongH. SnyderS.W. Achieving very low mercury levels in refinery wastewater by membrane filtration.J. Hazard. Mater.2012215-2169810710.1016/j.jhazmat.2012.02.040 22410725
    [Google Scholar]
  17. LopesC.B. LitoP.F. OteroM. LinZ. RochaJ. SilvaC.M. PereiraE. DuarteA.C. Mercury removal with titanosilicate ETS-4: Batch experiments and modelling.Microporous Mesoporous Mater.20081151-29810510.1016/j.micromeso.2007.10.055
    [Google Scholar]
  18. FaulconerE.K. von ReitzensteinN.V.H. MazyckD.W. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery.J. Hazard. Mater.2012199-20091410.1016/j.jhazmat.2011.10.023 22104766
    [Google Scholar]
  19. SreeprasadT.S. MaliyekkalS.M. LishaK.P. PradeepT. Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification.J. Hazard. Mater.2011186192193110.1016/j.jhazmat.2010.11.100 21168962
    [Google Scholar]
  20. GengB. WangH. WuS. RuJ. TongC. ChenY. LiuH. WuS. LiuX. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water.ACS Sustain. Chem.& Eng.2017512117151172610.1021/acssuschemeng.7b03188
    [Google Scholar]
  21. LiangL. ChenQ. JiangF. YuanD. QianJ. LvG. XueH. LiuL. JiangH.L. HongM. In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg(II) from water.J. Mater. Chem. A Mater. Energy Sustain.2016440153701537410.1039/C6TA04927C
    [Google Scholar]
  22. FengM. ZhangP. ZhouH.C. SharmaV.K. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review.Chemosphere201820978380010.1016/j.chemosphere.2018.06.114 29960946
    [Google Scholar]
  23. WangC. LuanJ. WuC. Metal-organic frameworks for aquatic arsenic removal.Water Res.201915837038210.1016/j.watres.2019.04.043 31055017
    [Google Scholar]
  24. ManousiN. ZachariadisG.A. DeliyanniE.A. SamanidouV.F. Applications of metal-organic frameworks in food sample preparation.Molecules20182311289610.3390/molecules23112896 30404197
    [Google Scholar]
  25. RasheedT. HassanA.A. BilalM. HussainT. RizwanK. Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater.Chemosphere202025912736910.1016/j.chemosphere.2020.127369 32593814
    [Google Scholar]
  26. PearsonR.G. Hard and soft acids and bases.J. Am. Chem. Soc.196385223533353910.1021/ja00905a001
    [Google Scholar]
  27. LeeD.B.N. RobertsM. BluchelC.G. OdellR.A. Zirconium: Biomedical and nephrological applications.ASAIO J.2010566550556
    [Google Scholar]
  28. TsuruokaT. FurukawaS. TakashimaY. YoshidaK. IsodaS. KitagawaS. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth.Angew. Chem. Int. Ed.200948264739474310.1002/anie.200901177 19472244
    [Google Scholar]
  29. FengD. JiangH.L. ChenY.P. GuZ.Y. WeiZ. ZhouH.C. Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters.Inorg. Chem.20135221126611266710.1021/ic4018536 24147847
    [Google Scholar]
  30. EddaoudiM. KimJ. VodakD. SudikA. WachterJ. O’KeeffeM. YaghiO.M. Geometric requirements and examples of important structures in the assembly of square building blocks.Proc. Natl. Acad. Sci. USA20029984900490410.1073/pnas.082051899 11959942
    [Google Scholar]
  31. HuangW. WuD. ZhouP. YanW. GuoD. DuanC. MengQ. Luminescent and magnetic properties of Lanthanide-Thiophene-2,5-dicarboxylate hybrid materials.Cryst. Growth Des.2009931361136910.1021/cg800531y
    [Google Scholar]
  32. KohK. Wong-FoyA.G. MatzgerA.J. Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: A balancing act between statistics and geometry.J. Am. Chem. Soc.201013242150051510
    [Google Scholar]
  33. BonV. SenkovskaI. BaburinI.A. KaskelS. Zr- and Hf-based metal–organic frameworks: Tracking down the polymorphism.Cryst. Growth Des.20131331231123710.1021/cg301691d
    [Google Scholar]
  34. MihalyJ.J. ZellerM. GennaD.T. Ion-directed synthesis of Indium-Derived 2,5-Thiophenedicarboxylate metal–organic frameworks: Tuning framework dimensionality.Cryst. Growth Des.20161631550155810.1021/acs.cgd.5b01680
    [Google Scholar]
  35. LammertM. GlißmannC. ReinschH. StockN. Synthesis and characterization of new Ce(IV)-MOFs exhibiting various framework topologies.Cryst. Growth Des.20171731125113110.1021/acs.cgd.6b01512
    [Google Scholar]
  36. QinJ.S. DuD.Y. LiM. LianX.Z. DongL.Z. BoschM. SuZ.M. ZhangQ. LiS.L. LanY.Q. YuanS. ZhouH.C. Derivation and decoration of nets with trigonal-prismatic nodes: A unique route to reticular synthesis of metal–organic frameworks.J. Am. Chem. Soc.2016138165299530710.1021/jacs.6b01093 27045822
    [Google Scholar]
  37. KettnerF. WorchC. MoellmerJ. GläserR. StaudtR. KrautscheidH. Synthesis, crystal structure and catalytic behavior of homo- and heteronuclear coordination polymers [M(tdc)(bpy)] (M2+ = Fe2+, Co2+, Zn2+, Cd2+; tdc2- = 2,5-thiophenedicarboxylate).Inorg. Chem.201352158738874210.1021/ic400857s 23865443
    [Google Scholar]
  38. SibilleR. MazetT. ElkaïmE. MalamanB. FrançoisM. Synthesis, ab initio X-ray powder diffraction crystal structure, and magnetic properties of Mn3(OH)2(C6H2O4S)2 metal-organic framework.Inorg. Chem.201352260861610.1021/ic301423c 23273135
    [Google Scholar]
  39. ZhangS. SunN.X. LiL. HanZ.B. ZhengY.Z. Two porous Co(II) bithiophenedicarboxylate metal–organic frameworks: From a self-interpenetrating framework to a two-fold interpenetrating α-Po topological network.RSC Advances20144115740574510.1039/c3ra44559c
    [Google Scholar]
  40. ZhaoJ. WangX.L. ShiX. YangQ.H. LiC. Synthesis, structure, and photoluminescent properties of metal-organic coordination polymers assembled with bithiophenedicarboxylic acid.Inorg. Chem.20115083198320510.1021/ic101112b 21395253
    [Google Scholar]
  41. Wong-FoyA.G. MatzgerA.J. YaghiO.M. Exceptional H2 saturation uptake in microporous metal-organic frameworks.J. Am. Chem. Soc.2006128113494349510.1021/ja058213h 16536503
    [Google Scholar]
  42. NiZ. YassarA. AntounT. YaghiO.M. Porous metal-organic truncated octahedron constructed from paddle-wheel squares and terthiophene links.J. Am. Chem. Soc.200512737127521275310.1021/ja052055c 16159240
    [Google Scholar]
  43. CossaD. SanjuanJ. CloudJ. StockwellP.B. CornsW.T. Automated technique for mercury determination at sub-nanogram per litre levels in natural waters.J. Anal. At. Spectrom.199510328729110.1039/ja9951000287
    [Google Scholar]
  44. DakovaI. KaradjovaI. GeorgievaV. GeorgievG. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury.Talanta200978252352910.1016/j.talanta.2008.12.005 19203618
    [Google Scholar]
  45. ZhaiY. DuanS. HeQ. YangX. HanQ. Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5-diphenylcarbazide Microchim.Acta2010169353360
    [Google Scholar]
  46. LiG. ZhaoZ. LiuJ. JiangG. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica.J. Hazard. Mater.2011192127728310.1016/j.jhazmat.2011.05.015 21616588
    [Google Scholar]
  47. ShinY. FryxellG.E. UmW. ParkerK. MattigodS.V. SkaggsR. Sulfur‐functionalized mesoporous carbon.Adv. Funct. Mater.200717152897290110.1002/adfm.200601230
    [Google Scholar]
  48. LuoF. ChenJ.L. DangL.L. ZhouW.N. LinH.L. LiJ.Q. LiuS.J. LuoM.B. High-performance Hg2+ removal from ultra-low-concentration aqueous solution using both acylamide- and hydroxyl-functionalized metal–organic framework.J. Mater. Chem. A Mater. Energy Sustain.20153189616962010.1039/C5TA01669J
    [Google Scholar]
  49. HuangN. ZhaiL. XuH. JiangD. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions.J. Am. Chem. Soc.201713962428243410.1021/jacs.6b12328 28121142
    [Google Scholar]
  50. Merí-BofíL. RoyuelaS. ZamoraF. Ruiz-GonzálezM.L. SeguraJ.L. Muñoz-OlivasR. MancheñoM.J. Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(II).J. Mater. Chem. A Mater. Energy Sustain.2017534179731798110.1039/C7TA05588A
    [Google Scholar]
  51. LiB. ZhangY. MaD. ShiZ. MaS. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution.Nat. Commun.201451553710.1038/ncomms6537 25410491
    [Google Scholar]
  52. SunQ. AguilaB. PermanJ. EarlL.D. AbneyC.W. ChengY. WeiH. NguyenN. WojtasL. MaS. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal.J. Am. Chem. Soc.201713972786279310.1021/jacs.6b12885 28222608
    [Google Scholar]
  53. BashirA. MalikL.A. AhadS. ManzoorT. BhatM.A. DarG.N. PandithA.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods.Environ. Chem. Lett.201917272975410.1007/s10311‑018‑00828‑y
    [Google Scholar]
  54. WuC.Y. MouriH. ChenS.S. ZhangD.Z. KogaM. KobayashiJ. Removal of trace-amount mercury from wastewater by forward osmosis.J. Water Process Eng.20161410811610.1016/j.jwpe.2016.10.010
    [Google Scholar]
  55. ZunitaM. Graphene oxide-based nanofiltration for hg removalfrom wastewater: A mini-review.Membranes (Basel)202111426910.3390/membranes11040269 33917741
    [Google Scholar]
  56. ZhangQ. LiuN. CaoY. ZhangW. WeiY. FengL. JiangL. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater.Appl. Surf. Sci.2018434576210.1016/j.apsusc.2017.09.230
    [Google Scholar]
  57. RichardJ.H. BischoffC. AhrensC.G.M. BiesterH. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.Sci. Total Environ.2016539364410.1016/j.scitotenv.2015.08.116 26352645
    [Google Scholar]
  58. YuJ.G. YueB.Y. WuX.W. LiuQ. JiaoF.P. JiangX.Y. ChenX.Q. Removal of mercury by adsorption: A review.Environ. Sci. Pollut. Res. Int.20162365056507610.1007/s11356‑015‑5880‑x 26620868
    [Google Scholar]
  59. SunN. WenX. YanC. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse.Int. J. Biol. Macromol.20181081199120610.1016/j.ijbiomac.2017.11.027 29126940
    [Google Scholar]
  60. FullerL.S. IddonB. SmithK.A. Thienothiophenes. Part 2.1 Synthesis, metallation and bromine→lithium exchange reactions of thieno[3,2-b]thiophene and its polybromo derivatives.J. Chem. Soc., Perkin Trans. 11997223465347010.1039/a701877k
    [Google Scholar]
  61. CrysAlisPro 1.171.38.46.The Woodlands, TX, USARigaku Oxford Diffraction2015
    [Google Scholar]
  62. SheldrickG.M. SHELXT – Integrated space-group and crystal-structure determination.Acta Crystallogr. A Found. Adv.20157113810.1107/S2053273314026370
    [Google Scholar]
  63. SheldrickG.M. Crystal structure refinement with SHELXL.Acta Crystallogr. C Struct. Chem.20157113810.1107/S2053229614024218 25567568
    [Google Scholar]
  64. SpekA.L. Platon Squeeze: A tool for the calculation of the disordered solvent contribution to the calculated structure factors.Acta Crystallogr. C Struct. Chem.201571191810.1107/S2053229614024929 25567569
    [Google Scholar]
  65. Access StructuresAvailable from: http://www.ccdc.cam.ac.uk/data_request/cif
  66. SaleemH. RafiqueU. DaviesR.P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution.Microporous Mesoporous Mater.201622123824410.1016/j.micromeso.2015.09.043
    [Google Scholar]
  67. HalderS. MondalJ. Ortega-CastroJ. FronteraA. RoyP. A Ni-based MOF for selective detection and removal of Hg2+ in aqueous medium: A facile strategy.Dalton Trans.2017461943195010.1039/C6DT04722J
    [Google Scholar]
  68. RuddN.D. WangH. Fuentes-FernandezE.M.A. TeaS.J. ChenF. HallG. ChabalY.J. LiJ. Highly efficient luminescent metal-organic framework for the simultaneous detection and removal of heavy metals from water.ACS Appl. Mater. Interfaces2016448302943030310.1021/acsami.6b10890
    [Google Scholar]
  69. HuangL. HeM. ChenB. HuB. A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg2+ from water.J. Mater. Chem. A 20153115871159510.1039/C5TA01484K
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461338487241122183132
Loading
/content/journals/cgc/10.2174/0122133461338487241122183132
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test