Current Genomics - Volume 24, Issue 6, 2023
Volume 24, Issue 6, 2023
-
-
Oxford Nanopore Technology and its Application in Liquid Biopsies
More LessAuthors: Mariya Levkova, Trifon Chervenkov, Lyudmila Angelova and Deyan DzenkovAdvanced medical technologies are transforming the future of healthcare, in particular, the screening and detection of molecular-genetic changes in patients suspected of having a neoplasm. They are based on the assumption that neoplasms release small amounts of various neoplasm- specific molecules, such as tumor DNA, called circulating DNA (cirDNA), into the extracellular space and subsequently into the blood. The detection of tumor-specific molecules and specific molecular changes in body fluids in a noninvasive or minimally invasive approach is known as "liquid biopsy." The aim of this review is to summarize the current knowledge of the application of ONT for analyzing circulating DNA in the field of liquid biopsies among cancer patients. Databases were searched using the keywords "nanopore" and "liquid biopsy" and by applying strict inclusion criteria. This technique can be used for the detection of neoplastic disease, including metastases, guiding precision therapy, and monitoring its effects. There are many challenges, however, for the successful implementation of this technology into the clinical practice. The first one is the low amount of tumor-specific molecules in the body fluids. Secondly, a tumor molecular signature should be discriminated from benign conditions like clonal hematopoiesis of unknown significance. Oxford Nanopore Technology (ONT) is a third-generation sequencing technology that seems particularly promising to complete these tasks. It offers rapid sequencing thanks to its ability to detect changes in the density of the electric current passing through nanopores. Even though ONT still needs validation technology, it is a promising approach for early diagnosis, therapy guidance, and monitoring of different neoplasms based on analyzing the cirDNA.
-
-
-
Identification of Two Novel Pathogenic Variants of the ATM Gene in the Iranian-Azeri Turkish Ethnic Group by Applying Whole Exome Sequencing
More LessAuthors: Amir-Reza Dalal Amandi, Neda Jabbarpour, Shadi Shiva and Mortaza BonyadiBackground: The ATM gene encodes a multifunctional kinase involved in important cellular functions, such as checkpoint signaling and apoptosis, in response to DNA damage. Bi-allelic pathogenic variants in this gene cause Ataxia Telangiectasia (AT), while carriers of ATM pathogenic variants are at increased risk of cancer depending on the pathogenicity of the variant they carry. Identifying pathogenic variants can aid in the management of the disease in carriers.Methods: Whole-exome sequencing (WES) was performed on three unrelated patients from the Iranian-Azeri Turkish ethnic group referred to a genetic center for analysis. WES was also conducted on 400 individuals from the same ethnic group to determine the frequencies of all ATM variants. Blood samples were collected from the patients and their family members for DNA extraction, and PCR-Sanger sequencing was performed to confirm the WES results.Results: The first proband with AT disease had two novel compound heterozygote variants (c.2639-2A>T, c.8708delC) in the ATM gene revealed by WES analysis, which was potentially/- likely pathogenic. The second proband with bi-lateral breast cancer had a homozygous pathogenic variant (c.6067G>A) in the ATM gene identified by WES analysis. The third case with a family history of cancer had a heterozygous synonymous pathogenic variant (c.7788G>A) in the ATM gene found by WES analysis. Sanger sequencing confirmed the WES results, and bioinformatics analysis of the mutated ATM RNA and protein structure added evidence for the potential pathogenicity of the novel variants. WES analysis of the cohort revealed 38 different variants, including a variant (rs1800057, ATM:c.3161C>G, p.P1054R) associated with prostate cancer that had a higher frequency in our cohort.Conclusion: Genetic analysis of three unrelated families with ATM-related disorders discovered two novel pathogenic variants. A homozygous missense pathogenic variant was identified in a woman with bi-lateral breast cancer, and a synonymous but pathogenic variant was found in a family with a history of different cancers.
-
-
-
Epigenetic Diversity Underlying Seasonal and Annual Variations in Brown Planthopper (BPH) Populations as Revealed by Methylationsensitive Restriction Assay
More LessAuthors: Ayushi Gupta and Suresh NairBackground: The brown planthopper (BPH) is a monophagous sap-sucking insect pest of rice that is responsible for massive yield loss. BPH populations, even when genetically homogenous, can display a vast range of phenotypes, and the development of effective pest-management strategies requires a good understanding of what generates this phenotypic variation. One potential source could be epigenetic differences.Methods: With this premise, we explored epigenetic diversity, structure and differentiation in field populations of BPH collected across the rice-growing seasons over a period of two consecutive years. Using a modified methylation-sensitive restriction assay (MSRA) and CpG island amplification- representational difference analysis, site-specific cytosine methylation of five stress-responsive genes (CYP6AY1, CYP6ER1, Carboxylesterase, Endoglucanase, Tf2-transposon) was estimated, for identifying methylation-based epiallelic markers and epigenetic variation across BPH populations.Results: Using a cost-effective and rapid protocol, our study, for the first time, revealed the epigenetic component of phenotypic variations in the wild populations of BPH. Besides, results showed that morphologically indistinguishable populations of BPH can be epigenetically distinct.Conclusion: Screening field-collected BPH populations revealed the presence of previously unreported epigenetic polymorphisms and provided a platform for future studies aimed at investigating their significance for BPH. Furthermore, these findings can form the basis for understanding the contribution(s) of DNA methylation in providing phenotypic plasticity to BPH.
-
-
-
Aberrant Expressions of PSMD14 in Tumor Tissue are the Potential Prognostic Biomarkers for Hepatocellular Carcinoma after Curative Resection
More LessAuthors: Yi-Mei Xiong, Fang Zhou, Jia-Wen Zhou, Fei Liu, Si-Qi Zhou, Bo Li, Zhong-Jian Liu and Yang QinIntroduction: Hepatocellular carcinoma (HCC) has a high mortality rate, with curative resection being the primary treatment. However, HCC patients have a large possibility of recurrence within 5 years after curative resection.Method: Thus, identifying biomarkers to predict recurrence is crucial. In our study, we analyzed data from CCLE, GEO, and TCGA, identifying eight oncogenes associated with HCC. Subsequently, the expression of 8 genes was tested in 5 cases of tumor tissues and the adjacent non-tumor tissues. Then ATP6AP1, PSMD14 and HSP90AB1 were selected to verify the expression in 63 cases of tumor tissues and the adjacent non-tumor tissues. The results showed that ATP6AP1, PSMD14, HSP90AB1 were generally highly expressed in tumor tissues. A five-year follow-up of the 63 clinical cases, combined with Kaplan-Meier Plotter's relapse-free survival (RFS) analysis, found a significant correlation between PSMD14 expression and recurrence in HCC patients. Subsequently, we analyzed the PSMD14 mutations and found that the PSMD14 gene mutations can lead to a shorter disease-free survival time for HCC patients.Results: The results of enrichment analysis indicated that the differentially expressed genes related to PSMD14 are mainly enriched in the signal release pathway.Conclusion: In conclusion, our research showed that PSMD14 might be related to recurrence in HCC patients, and the expression of PSMD14 in tumor tissue might be a potential prognostic biomarker after tumor resection in HCC patients.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month