Current Genomics - Volume 15, Issue 3, 2014
Volume 15, Issue 3, 2014
-
-
Molecular Pathways Associated with Aggressiveness of Papillary Thyroid Cancer
Authors: Salvatore Benvenga and Christian A. KochThe most common thyroid malignancy is papillary thyroid cancer (PTC). Mortality rates from PTC mainly depend on its aggressiveness. Geno- and phenotyping of aggressive PTC has advanced our understanding of treatment failures and of potential future therapies. Unraveling molecular signaling pathways of PTC including its aggressive forms will hopefully pave the road to reduce mortality but also morbidity from this cancer. The mitogen-activated protein kinase and the phosphatidylinositol 3-kinase signaling pathway as well as the family of RAS oncogenes and BRAF as a member of the RAF protein family and the aberrant expression of microRNAs miR-221, miR-222, and miR-146b all play major roles in tumor initiation and progression of aggressive PTC. Small molecule tyrosine kinase inhibitors targeting BRAFmediated events, vascular endothelial growth factor receptors, RET/PTC rearrangements, and other molecular targets, show promising results to improve treatment of radioiodine resistant, recurrent, and aggressive PTC.
-
-
-
Molecular Diagnostics of Fine Needle Aspiration for the Presurgical Screening of Thyroid Nodules
Authors: Poupak Fallahi, Riccardo Giannini, Paolo Miccoli, Alessandro Antonelli and Fulvio Basolo“The incidence of thyroid cancer, the most common endocrine malignancy, is rising. The two most common types of thyroid cancer are papillary and follicular” thyroid carcinomas. “Fine-needle aspiration (FNA) of thyroid nodules” can permit to detect many genetic mutations and other molecular alterations, including RAS and BRAF point mutations, PAX8/peroxisome proliferator-activated receptor (PPAR)γ and “RET/PTC rearrangements, occurring in thyroid papillary and follicular carcinomas” (more than 70% of cases), which can be used successfully to improve the diagnosis “and the management of patients with thyroid nodules”. The most extensive experience has been accumulated with “the diagnostic use of BRAF mutation”, which is highly specific for malignancy. “Testing FNA samples for a panel of mutations” that typically includes RAS, BRAF, PAX8/PPARγ and RET/PTC could permit to achieve the biggest diagnostic impact. “The accuracy of cancer diagnosis in thyroid nodules could be improved significantly using these and other emerging molecular markers”.
-
-
-
Proteomics, and Metabolomics: Magnetic Resonance Spectroscopy for the Presurgical Screening of Thyroid Nodules
Authors: Michele N. Minuto, Laetitia Shintu and Stefano CaldarelliWe review the progress and state-of-the-art applications of studies in Magnetic Resonance Spectroscopy (MRS) and Imaging as an aid for diagnosis of thyroid lesions of different nature, especially focusing our attention to those lesions that are cytologically undetermined. It appears that the high-resolution of High-Resolution Magic-Angle-Spinning (HRMAS) MRS improves the overall accuracy of the analysis of thyroid lesions to a point that a significant improvement in the diagnosis of cytologically undetermined lesions can be expected. This analysis, in the meantime, allows a more precise comprehension of the alterations in the metabolic pathways induced by the development of the different tumors. Although these results are promising, at the moment, a clinical application of the method to the common workup of thyroid nodules cannot be used, due to both the limitation in the availability of this technology and the wide range of techniques, that are not uniformly used. The coming future will certainly see a wider application of these methods to the clinical practice in patients affected with thyroid nodules and various other neoplastic diseases.
-
-
-
Application of Molecular Diagnostics to the Evaluation of the Surgical Approach to Thyroid Cancer
More LessRecent important studies that include long-term follow-up have shown that BRAF and RAS mutations can have negative implications for disease recurrence and survival. BRAF positivity has been shown to be associated with decreased survival and is an independent predictor of poor prognosis. Reliable pre-operative identification of high-risk papillary thyroid cancer (PTC) patients may productively guide initial surgical management since reoperative neck surgery is associated with increased morbidity. However, it is probably too early to conclude that at present it is possible to tailor surgical therapy patient by patient only on the basis of their mutational status. Other important parameters, not including molecular testing, represented by some specific morphological aspects, still play an important role, probably still more significant than molecular diagnostics, such as neck ultrasonography. Pre-operative knowledge of BRAF-positive PTC could alter the initial surgical treatment for at least 20% of patients and can potentially prevent the increased morbidity associated with reoperative neck exploration. However, additional multi-institutional and randomized studies will be needed to further define the role of the pre-operative identification of BRAF positivity to guide not only the initial extent of total thyroidectomy (TT) but also the need for and extent of lymphadenectomy.
-
-
-
Personalization of Targeted Therapy in Advanced Thyroid Cancer
Although generally the prognosis of differentiated thyroid carcinoma (DTC) is good, approximately 5% of people are likely to develop metastases which fail to respond to radioactive iodine, and other traditional therapies, exhibiting a more aggressive behavior. Nowadays, therapy is chosen and implemented on a watch-and-wait basis for most DTC patients. Which regimen is likely to work best is decided on the basis of an individual’s clinical information, but only data referring to outcomes of groups of patients are employed. To predict the best course of therapy, an individual patient’s biologic data is rarely employed in a systematic way. Anyway, the use of not expensive individual genomic analysis could lead us to a new era of patient-specific and personalized care. Recently, key targets that are now being evaluated in the clinical setting have been evidenced in the pathogenesis of these diseases. Some of the known genetic alterations playing a crucial role in the development of thyroid cancer include B-Raf gene mutations, rearranged during transfection/ papillary thyroid carcinoma gene rearrangements, and vascular endothelial growth factor receptor-2 angiogenesis pathways. The development of targeted novel compounds able to induce clinical responses and stabilization of disease has overcome the lack of effective therapies for DTC, which are resistant to radioiodine and thyroid stimulating hormone-suppressive therapy. Interestingly, the best responses have been demonstrated in patients treated with anti-angiogenic inhibitors such as vandetanib and XL184 in medullary thyroid cancer, and sorafenib in papillary and follicular DTC.
-
-
-
Increasing the Coding Potential of Genomes Through Alternative Splicing: The Case of PARK2 Gene
The completion of the Human Genome Project aroused renewed interest in alternative splicing, an efficient and widespread mechanism that generates multiple protein isoforms from individual genes. Although our knowledge about alternative splicing is growing exponentially, its real impact on cellular life is still to be clarified. Connecting all splicing features (genes, splice transcripts, isoforms, and relative functions) may be useful to resolve this tangle. Herein, we will start from the case of a single gene, Parkinson protein 2, E3 ubiquitin protein ligase (PARK2), one of the largest in our genome. This gene is implicated in the pathogenesis of autosomal recessive juvenile Parkinsonism and it has been recently linked to cancer, leprosy, autism, type 2 diabetes mellitus and Alzheimer’s disease. PARK2 primary transcript undergoes an extensive alternative splicing, which enhances transcriptomic diversification and protein diversity in tissues and cells. This review will provide an update of all human PARK2 alternative splice transcripts and isoforms presently known, and correlate them to those in rat and mouse, two common animal models for studying human disease genes. Alternative splicing relies upon a complex process that could be easily altered by both cis and trans-acting mutations. Although the contribution of PARK2 splicing in human disease remains to be fully explored, some evidences show disruption of this versatile form of genetic regulation may have pathological consequences.
-
-
-
Life-history Constraints on the Mechanisms that Control the Rate of ROS Production
More LessThe quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects.
-
-
-
Why Adult Stem Cell Functionality Declines with Age? Studies from the Fruit Fly Drosophila Melanogaster Model Organism
Authors: Oren Gonen and Hila ToledanoHighly regenerative adult tissues are supported by rare populations of stem cells that continuously divide to self-renew and generate differentiated progeny. This process is tightly regulated by signals emanating from surrounding cells to fulfill the dynamic demands of the tissue. One of the hallmarks of aging is slow and aberrant tissue regeneration due to deteriorated function of stem and supporting cells. Several Drosophila regenerative tissues are unique in that they provide exact identification of stem and neighboring cells in whole-tissue anatomy. This allows for precise tracking of age-related changes as well as their targeted manipulation within the tissue. In this review we present the stem cell niche of Drosophila testis, ovary and intestine and describe the major changes and phenotypes that occur in the course of aging. Specifically we discuss changes in both intrinsic properties of stem cells and their microenvironment that contribute to the decline in tissue functionality. Understanding these mechanisms in adult Drosophila tissues will likely provide new paradigms in the field of aging.
-
-
-
A Computational Algorithm for Functional Clustering of Proteome Dynamics During Development
Authors: Yaqun Wang, Ningtao Wang, Han Hao, Yunqian Guo, Yan Zhen, Jisen Shi and Rongling WuPhenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
