Current Genomics - Volume 11, Issue 7, 2010
Volume 11, Issue 7, 2010
-
-
Saturation of the Human Phenome
More LessThe phenome is the complete set of phenotypes resulting from genetic variation in populations of an organism. Saturation of a phenome implies the identification and phenotypic description of mutations in all genes in an organism, potentially constrained to those encoding proteins. The human genome is believed to contain 20-25,000 protein coding genes, but only a small fraction of these have documented mutant phenotypes, thus the human phenome is far from complete. In model organisms, genetic saturation entails the identification of multiple mutant alleles of a gene or locus, allowing a consistent description of mutational phenotypes for that gene. Saturation of several model organisms has been attempted, usually by targeting annotated coding genes with insertional transposons (Drosophila melanogaster, Mus musculus) or by sequence directed deletion (Saccharomyces cerevisiae) or using libraries of antisense oligonucleotide probes injected directly into animals (Caenorhabditis elegans, Danio rerio). This paper reviews the general state of the human phenome, and discusses theoretical and practical considerations toward a saturation analysis in humans. Throughout, emphasis is placed on high penetrance genetic variation, of the kind typically asociated with monogenic versus complex traits.
-
-
-
Plant Plastid Engineering
Authors: Shabir H. Wani, Nadia Haider, Hitesh Kumar and N. B. SinghGenetic material in plants is distributed into nucleus, plastids and mitochondria. Plastid has a central role of carrying out photosynthesis in plant cells. Plastid transformation is becoming more popular and an alternative to nuclear gene transformation because of various advantages like high protein levels, the feasibility of expressing multiple proteins from polycistronic mRNAs, and gene containment through the lack of pollen transmission. Recently, much progress in plastid engineering has been made. In addition to model plant tobacco, many transplastomic crop plants have been generated which possess higher resistance to biotic and abiotic stresses and molecular pharming. In this mini review, we will discuss the features of the plastid DNA and advantages of plastid transformation. We will also present some examples of transplastomic plants developed so far through plastid engineering, and the various applications of plastid transformation.
-
-
-
Lung Cancer: Are we up to the Challenge?
Authors: Luca Esposito, Daniele Conti, Ramyasri Ailavajhala, Nansie Khalil and Antonio GiordanoLung cancer is the leading cause of cancer deaths worldwide among both men and women, with more than 1 million deaths annually. Non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancers. Although recent advances have been made in diagnosis and treatment strategies, the prognosis of NSCLC patients is poor and it is basically due to a lack of early diagnostic tools. However, in the last years genetic and biochemical studies have provided more information about the protein and gene's mutations involved in lung tumors. Additionally, recent proteomic and microRNA's approaches have been introduced to help biomarker discovery. Here we would like to discuss the most recent discoveries in lung cancer pathways, focusing on the genetic and epigenetic factors that play a crucial role in malignant cell proliferation, and how they could be helpful in diagnosis and targeted therapy.
-
-
-
Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review
PAPA syndrome (Pyogenic Arthritis, Pyoderma gangrenosum, and Acne) is an autosomal dominant, hereditary auto-inflammatory disease arising from mutations in the PSTPIP1/CD2BP1 gene on chromosome 15q. These mutations produce a hyper-phosphorylated PSTPIP1 protein and alter its participation in activation of the “inflammasome” involved in interleukin-1 (IL-1β) production. Overproduction of IL-1β is a clear molecular feature of PAPA syndrome. Ongoing research is implicating other biochemical pathways that may be relevant to the distinct pyogenic inflammation of the skin and joints characteristic of this disease. This review summarizes the recent and rapidly accumulating knowledge on these molecular aspects of PAPA syndrome and related disorders.
-
-
-
Clinical Proteomics of Breast Cancer
Authors: Y. Baskin and T. YigitbasiDespite the lifetimes that increased in breast cancers due to the the early screening programs and new therapeutic strategies, many cases still are being lost due to the metastatic relapses. For this reason, new approaches such as the proteomic techniques have currently become the prime objectives of breast cancer researches. Various omic-based techniques have been applied with increasing success to the molecular characterisation of breast tumours, which have resulted in a more detailed classification scheme and have produced clinical diagnostic tests that have been applied to both the prognosis and the prediction of outcome to the treatment. Implementation of the proteomics-based techniques is also seen as crucial if we are to develop a systems biology approach in the discovery of biomarkers of the early diagnosis, prognosis and prediction of the outcome of the breast cancer therapies. In this review, we discuss the studies that have been conducted thus far, for the discovery of diagnostic, prognostic and predictive biomarkers, and evaluate the potential of the discriminating proteins identified in this research for clinical use as breast cancer biomarkers.
-
-
-
MicroRNA: Biogenesis, Function and Role in Cancer
Authors: Leigh-Ann MacFarlane and Paul R. MurphyMicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer -dependent and -independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
