Current Genomics - Volume 10, Issue 7, 2009
Volume 10, Issue 7, 2009
-
-
Classification and Error Estimation for Discrete Data
More LessDiscrete classification is common in Genomic Signal Processing applications, in particular in classification of discretized gene expression data, and in discrete gene expression prediction and the inference of boolean genomic regulatory networks. Once a discrete classifier is obtained from sample data, its performance must be evaluated through its classification error. In practice, error estimation methods must then be employed to obtain reliable estimates of the classification error based on the available data. Both classifier design and error estimation are complicated, in the case of Genomics, by the prevalence of small-sample data sets in such applications. This paper presents a broad review of the methodology of classification and error estimation for discrete data, in the context of Genomics, focusing on the study of performance in small sample scenarios, as well as asymptotic behavior.
-
-
-
Recent Advances in Intervention in Markovian Regulatory Networks
Markovian regulatory networks constitute a class of discrete state-space models used to study gene regulatory dynamics and discover methods that beneficially alter those dynamics. Thereby, this class of models provides a framework to discover effective drug targets and design potent therapeutic strategies. The salient translational goal is to design therapeutic strategies that desirably modify network dynamics via external signals that vary the expressions of a control gene. The objective of an intervention strategy is to reduce the likelihood of the pathological cellular function related to a disease. The task of finding an effective intervention strategy can be formulated as a sequential decision making problem for a pre-defined cost of intervention and a cost-per-stage function that discriminates the gene-activity profiles. An effective intervention strategy prescribes the actions associated with an external signal that result in the minimum expected cost. This strategy in turn can be used as a treatment that reduces the long-run likelihood of gene expressions favorable to the disease. In this tutorial, we briefly summarize the first method proposed to design such therapeutic interventions, and then move on to some of the recent refinements that have been proposed. Each of these recent intervention methods is motivated by practical or analytical considerations. The presentation of the key ideas is facilitated with the help of two case studies.
-
-
-
Survey of Computational Algorithms for MicroRNA Target Prediction
Authors: Dong Yue, Hui Liu and Yufei HuangMicroRNAs (miRNAs) are 19 to 25 nucleotides non-coding RNAs known to possess important posttranscriptional regulatory functions. Identifying targeting genes that miRNAs regulate are important for understanding their specific biological functions. Usually, miRNAs down-regulate target genes through binding to the complementary sites in the 3' untranslated region (UTR) of the targets. In part, due to the large number of miRNAs and potential targets, an experimental based prediction design would be extremely laborious and economically unfavorable. However, since the bindings of the animal miRNAs are not a perfect one-to-one match with the complementary sites of their targets, it is difficult to predict targets of animal miRNAs by accessing their alignment to the 3' UTRs of potential targets. Consequently, sophisticated computational approaches for miRNA target prediction are being considered as essential methods in miRNA research. We surveyed most of the current computational miRNA target prediction algorithms in this paper. Particularly, we provided a mathematical definition and formulated the problem of target prediction under the framework of statistical classification. Moreover, we summarized the features of miRNA-target pairs in target prediction approaches and discussed these approaches according to two categories, which are the rule-based and the data-driven approaches. The rule-based approach derives the classifier mainly on biological prior knowledge and important observations from biological experiments, whereas the data driven approach builds statistic models using the training data and makes predictions based on the models. Finally, we tested a few different algorithms on a set of experimentally validated true miRNA-target pairs [1] and a set of false miRNA-target pairs, derived from miRNA overexpression experiment [2]. Receiver Operating Characteristic (ROC) curves were drawn to show the performances of these algorithms.
-
-
-
Signal Processing for Metagenomics: Extracting Information from the Soup
Traditionally, studies in microbial genomics have focused on single-genomes from cultured species, thereby limiting their focus to the small percentage of species that can be cultured outside their natural environment. Fortunately, recent advances in high-throughput sequencing and computational analyses have ushered in the new field of metagenomics, which aims to decode the genomes of microbes from natural communities without the need for cultivation. Although metagenomic studies have shed a great deal of insight into bacterial diversity and coding capacity, several computational challenges remain due to the massive size and complexity of metagenomic sequence data. Current tools and techniques are reviewed in this paper which address challenges in 1) genomic fragment annotation, 2) phylogenetic reconstruction, 3) functional classification of samples, and 4) interpreting complementary metaproteomics and metametabolomics data. Also surveyed are important applications of metagenomic studies, including microbial forensics and the roles of microbial communities in shaping human health and soil ecology.
-
-
-
A Tutorial on Analysis and Simulation of Boolean Gene Regulatory Network Models
By Yufei XiaoDriven by the desire to understand genomic functions through the interactions among genes and gene products, the research in gene regulatory networks has become a heated area in genomic signal processing. Among the most studied mathematical models are Boolean networks and probabilistic Boolean networks, which are rule-based dynamic systems. This tutorial provides an introduction to the essential concepts of these two Boolean models, and presents the up-to-date analysis and simulation methods developed for them. In the Analysis section, we will show that Boolean models are Markov chains, based on which we present a Markovian steady-state analysis on attractors, and also reveal the relationship between probabilistic Boolean networks and dynamic Bayesian networks (another popular genetic network model), again via Markov analysis; we dedicate the last subsection to structural analysis, which opens a door to other topics such as network control. The Simulation section will start from the basic tasks of creating state transition diagrams and finding attractors, proceed to the simulation of network dynamics and obtaining the steady-state distributions, and finally come to an algorithm of generating artificial Boolean networks with prescribed attractors. The contents are arranged in a roughly logical order, such that the Markov chain analysis lays the basis for the most part of Analysis section, and also prepares the readers to the topics in Simulation section.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
