Skip to content
2000
image of Exploring Common Hub Genes in Thyroid Cancer and Hashimoto's Thyroiditis: Diagnostic Insights and Therapeutic Potential with Gefitinib

Abstract

Introduction

Thyroid Cancer (TC) is a prevalent endocrine malignancy with an increasing incidence worldwide, often associated with Hashimoto's Thyroiditis (HT), an autoimmune thyroid disorder. This study aimed to identify and validate key hub genes common to TC and HT and explore their diagnostic, prognostic, and therapeutic roles.

Materials and Methods

Gene expression datasets for TC and HT were analyzed using bioinformatics tools to identify hub genes. In SW579 cells, Gefitinib treatment and siRNA-mediated knockdown of ALDH3A1 and DDX52 were performed, followed by RT-qPCR, Western blot, cell proliferation, colony formation, and wound healing assays.

Results

After analyzing TC and HT datasets, we identified four common dysregulated hub genes: ALDH3A1, DDX52, RASA1, and SPATS2. RT-qPCR confirmed their significant upregulation in TC cell lines compared to normal controls ( < 0.001). ROC analysis demonstrated high diagnostic accuracy, with RASA1 and SPATS2 achieving AUC = 1. Gene expression validation using GSCA and HPA datasets corroborated these findings, and promoter hypomethylation analysis revealed regulatory mechanisms underlying their upregulation. Survival analyses associated elevated ALDH3A1 expression with poor overall survival. Functional assays in TC cells highlighted their oncogenic roles, with knockdown experiments showing reduced proliferation, migration, and colony formation. Immune correlation analyses revealed interactions with immune inhibitors and infiltrates, while miRNA profiling identified tumor-suppressive miRNAs targeting these genes. Drug prediction and molecular docking identified Gefitinib as a promising therapeutic, which effectively suppressed ALDH3A1 and DDX52 expression and oncogenic phenotypes in TC cells.

Conclusion

This study offers comprehensive insights into the molecular underpinnings of TC progression, highlighting the diagnostic and therapeutic potential of these hub genes and their associated regulatory networks. These findings lay a foundation for developing novel therapeutic strategies targeting these genes in TC management.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029376349250819071649
2025-08-29
2025-11-16
Loading full text...

Full text loading...

References

  1. Zhao Q. Chen M. Fu L. Yang Y. Zhan Y. Assessing and projecting the global burden of thyroid cancer, 1990–2030: Analysis of the global burden of disease study. J. Glob. Health 2024 14 04090 10.7189/jogh.14.04090 38577809
    [Google Scholar]
  2. Kruger E. Toraih E.A. Hussein M.H. Shehata S.A. Waheed A. Fawzy M.S. Kandil E. Thyroid carcinoma: A review for 25 years of environmental risk factors studies. Cancers 2022 14 24 6172 10.3390/cancers14246172 36551665
    [Google Scholar]
  3. Prete A. Borges de Souza P. Censi S. Muzza M. Nucci N. Sponziello M. Update on fundamental mechanisms of thyroid cancer. Front. Endocrinol. 2020 11 102 10.3389/fendo.2020.00102 32231639
    [Google Scholar]
  4. Hu J. Yuan I.J. Mirshahidi S. Simental A. Lee S.C. Yuan X. Thyroid carcinoma: Phenotypic features, underlying biology and potential relevance for targeting therapy. Int. J. Mol. Sci. 2021 22 4 1950 10.3390/ijms22041950 33669363
    [Google Scholar]
  5. Qi P. Wang Z. Hao X. Ou X. Zhang B. Shi Q. Li K. Liu X. Wu Z. Lu S. Zhang Q. A retrospective study of 17,995 patients investigating the location and recurrence of papillary thyroid cancer. Sci. Rep. 2025 15 1 10634 10.1038/s41598‑025‑95708‑1 40148456
    [Google Scholar]
  6. Adnan Z. Sabo E. Kassem S. Metastatic papillary thyroid carcinoma with internal jugular vein tumor thrombus - A case report and review of the literature. Front. Endocrinol. 2025 16 1505800 10.3389/fendo.2025.1505800 39944204
    [Google Scholar]
  7. Liu Z. Chen J. Ren Y. Liu S. Ba Y. Zuo A. Luo P. Cheng Q. Xu H. Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct. Target. Ther. 2024 9 1 270 10.1038/s41392‑024‑01955‑5 39389953
    [Google Scholar]
  8. Usman M. Hameed Y. Ahmad M. Iqbal M.J. Maryam A. Mazhar A. Naz S. Tanveer R. Saeed H. Bint-e-Fatima; Ashraf, A.; Hadi, A.; Hameed, Z.; Tariq, E.; Aslam, A.S. SHMT2 is associated with tumor purity, CD8+ T immune cells infiltration, and a novel therapeutic target in four different human cancers. Curr. Mol. Med. 2023 23 2 161 176 10.2174/1566524022666220112142409 35023455
    [Google Scholar]
  9. Dong Y. Wu X. Xu C. Hameed Y. Abdel-Maksoud M.A. Almanaa T.N. Kotob M.H. Al-Qahtani W.H. Mahmoud A.M. Cho W.C. Li C. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures. Aging 2024 16 3 2591 2616 10.18632/aging.205499 38305808
    [Google Scholar]
  10. Wrońska K. Hałasa M. Szczuko M. The role of the immune system in the course of Hashimoto’s Thyroiditis: The current state of knowledge. Int. J. Mol. Sci. 2024 25 13 6883 10.3390/ijms25136883 38999993
    [Google Scholar]
  11. Tywanek E. Michalak A. Świrska J. Zwolak A. Autoimmunity, new potential biomarkers and the thyroid gland—The perspective of hashimoto’s thyroiditis and its treatment. Int. J. Mol. Sci. 2024 25 9 4703 10.3390/ijms25094703 38731922
    [Google Scholar]
  12. Selmi C. Gershwin M.E. Sex and autoimmunity: Proposed mechanisms of disease onset and severity. Expert Rev. Clin. Immunol. 2019 15 6 607 615 10.1080/1744666X.2019.1606714 31033369
    [Google Scholar]
  13. Shukla A.K. Yadav V.K. Yadav V.P. Mishra M.K. Maurya R. Mishra R.K. Autoimmune Diseases in Women and Treatment Options. In: Women’s Health.: A Comprehensive Guide to Common Health. Issues in Women. Bentham Science Publishers 2024 247 266
    [Google Scholar]
  14. Fugazzola L. Muzza M. Pogliaghi G. Vitale M. Intratumoral genetic heterogeneity in papillary thyroid cancer: Occurrence and clinical significance. Cancers 2020 12 2 383 10.3390/cancers12020383 32046148
    [Google Scholar]
  15. Xu S. Huang H. Qian J. Liu Y. Huang Y. Wang, X Prevalence of Hashimoto thyroiditis in adults with papillary thyroid cancer and its association with cancer recurrence and outcomes. JAMA Netw. Open 2021 4 7 e2118526 10.1001/jamanetworkopen.2021.18526 34313737
    [Google Scholar]
  16. Dong L.L. Liu Z.Y. Chen K.J. Li Z.Y. Zhou J.S. Shen H.H. Chen Z.H. The persistent inflammation in COPD: Is autoimmunity the core mechanism? Eur. Respir. Rev. 2024 33 171 230137 10.1183/16000617.0137‑2023 38537947
    [Google Scholar]
  17. Guo J. Ning Y. Pan D. Wu S. Gao X. Wang C. Guo L. Gu Y. Identification of potential hub genes and regulatory networks of smoking-related endothelial dysfunction in atherosclerosis using bioinformatics analysis. Technol. Health Care 2024 32 3 1781 1794 10.3233/THC‑230796 38073349
    [Google Scholar]
  18. Durrani I.A. John P. Bhatti A. Khan J.S. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024 10 17 e36650 10.1016/j.heliyon.2024.e36650 39281650
    [Google Scholar]
  19. Abdel-Maksoud M.A. Ullah S. Nadeem A. Shaikh A. Zia M.K. Zakri A.M. Almanaa T.N. Alfuraydi A.A. Mubarak A. Hameed Y. Unlocking the diagnostic, prognostic roles, and immune implications of BAX gene expression in pan-cancer analysis. Am. J. Transl. Res. 2024 16 1 63 74 10.62347/TWOY1681 38322551
    [Google Scholar]
  20. Huang L. Irshad S. Sultana U. Ali S. Jamil A. Zubair A. Sultan R. Abdel-Maksoud M.A. Mubarak A. Almunqedhi B.M. Almanaa T.N. Malik A. Alamri A. Kodous A.S. Mares M. Zaky M.Y. Saba Sajjad S. Hameed Y. Pan-cancer analysis of HS6ST2: Associations with prognosis, tumor immunity, and drug resistance. Am. J. Transl. Res. 2024 16 3 873 888 10.62347/NCPH5416 38586106
    [Google Scholar]
  21. Ashik M.A.R. Hossain M.A. Rahman S.A. Akter M.S. Zaman N.N. Uddin M.H. Hossain M.D.M. Uddin M.N. Hossain M.S. Biswas S.K. Faruquee H.M. Parvin A. Rahman M.H. Bioinformatics and system biology approaches for identifying potential therapeutic targets for prostate cancer. Inform. Med. Unlocked 2024 47 101488 10.1016/j.imu.2024.101488
    [Google Scholar]
  22. Kędzierska M. Bańkosz M. Role of proteins in oncology: Advances in cancer diagnosis, prognosis, and targeted therapy—A narrative review. J. Clin. Med. 2024 13 23 7131 10.3390/jcm13237131 39685591
    [Google Scholar]
  23. Chung C. Umoru G. Prognostic and predictive biomarkers with therapeutic targets in nonsmall-cell lung cancer: A 2023 update on current development, evidence, and recommendation. J. Oncol. Pharm. Pract. 2024 31 3 438 461 10.1177/10781552241242684 38576390
    [Google Scholar]
  24. Wang J. Gilani S.F. Noor N. Ahmed M.R. Munazir M. Zubair A. Sultan R. Abdel-Maksoud M.A. Saleh I.A. Zomot N. Kodous A.S. Ibrahim S.S. El-Tayeb M.A. Aufy M. Zaky M.Y. Hassan S.S. Hameed Y. Decoding the DSCC1 gene as a pan-cancer biomarker in human cancers via comprehensive multi-omics analyses. Am. J. Transl. Res. 2024 16 3 738 754 10.62347/YORR3755 38586115
    [Google Scholar]
  25. Luo M. Rehman A. Haque S. Izhar S. Perveen F. Haris M. Abdel-Maksoud M.A. Saleh I.A. Zomot N. Malik A. Alamri A. Kodous A.S. Aufy M. Zaky M.Y. Zaeem M. Hameed Y. Li J. Thorough examination of the potential biological implications of the cuproptosis-related gene LIPT2 in the prognosis and immunotherapy in pan-cancer. Am. J. Transl. Res. 2024 16 3 940 954 10.62347/QNNE5428 38586090
    [Google Scholar]
  26. Garcia J.P.T. Tayo L.L. Theoretical studies of DNA microarray present potential molecular and cellular interconnectivity of signaling pathways in immune system dysregulation. Genes 2024 15 4 393 10.3390/genes15040393 38674328
    [Google Scholar]
  27. Yuan Q. Li L. Wang L. Xing S. Epidemiological and transcriptome data identify shared gene signatures and immune cell infiltration in type 2 diabetes and non-small cell lung cancer. Diabetol. Metab. Syndr. 2024 16 1 64 10.1186/s13098‑024‑01278‑z 38468345
    [Google Scholar]
  28. Jiang F. Ahmad S. kanwal, S.; Hameed, Y.; Tang, Q. Key wound healing genes as diagnostic biomarkers and therapeutic targets in uterine corpus endometrial carcinoma: An integrated in silico and in vitro study. Hereditas 2025 162 1 5 10.1186/s41065‑025‑00369‑9 39833941
    [Google Scholar]
  29. Barrett T. Suzek T.O. Troup D.B. Wilhite S.E. Ngau W-C. Ledoux P. Rudnev D. Lash A.E. Fujibuchi W. Edgar R. NCBI GEO: Mining millions of expression profiles--Database and tools. Nucleic Acids Res. 2004 33(Database issue), D562- D566.(Suppl. 1) 10.1093/nar/gki022 15608262
    [Google Scholar]
  30. Ghatak S. Muthukumaran R.B. Nachimuthu S.K. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J. Biomol Tech. 2013 24 4 jbt.13-2404- 001 10.7171/jbt.13‑2404‑001 24294115
    [Google Scholar]
  31. Hummon A.B. Lim S.R. Difilippantonio M.J. Ried T. Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 2007 42 4 467 472 10.2144/000112401 17489233
    [Google Scholar]
  32. Liu C.J. Hu F.F. Xie G.Y. Miao Y.R. Li X.W. Zeng Y. Guo A.Y. GSCA: An integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief. Bioinform. 2023 24 1 bbac558 10.1093/bib/bbac558 36549921
    [Google Scholar]
  33. Thul P.J. Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018 27 1 233 244 10.1002/pro.3307 28940711
    [Google Scholar]
  34. Chandrashekar D.S. Bashel B. Balasubramanya S.A.H. Creighton C.J. Ponce-Rodriguez I. Chakravarthi B.V.S.K. Varambally S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017 19 8 649 658 10.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  35. Cerami E. Gao J. Dogrusoz U. Gross B.E. Sumer S.O. Aksoy B.A. Jacobsen A. Byrne C.J. Heuer M.L. Larsson E. Antipin Y. Reva B. Goldberg A.P. Sander C. Schultz N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 2 5 401 404 10.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  36. Dwivedi B. Mumme H. Satpathy S. Bhasin S.S. Bhasin M. Survival Genie, a web platform for survival analysis across pediatric and adult cancers. Sci. Rep. 2022 12 1 3069 10.1038/s41598‑022‑06841‑0 35197510
    [Google Scholar]
  37. Park S.J. Yoon B.H. Kim S.K. Kim S.Y. GENT2: An updated gene expression database for normal and tumor tissues. BMC Med. Genomics 2019 12 S5 101.(Suppl. 5) 10.1186/s12920‑019‑0514‑7 31296229
    [Google Scholar]
  38. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  39. Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015 4 4 e05005 10.7554/eLife.05005 26267216
    [Google Scholar]
  40. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  41. Montojo J. Zuberi K. Rodriguez H. Bader G.D. Morris Q. GeneMANIA: Fast gene network construction and function prediction for Cytoscape. F1000 Res. 2014 3 153 10.12688/f1000research.4572.1 25254104
    [Google Scholar]
  42. Pelikan A. Herzel H. Kramer A. Ananthasubramaniam B. Venn diagram analysis overestimates the extent of circadian rhythm reprogramming. FEBS J. 2022 289 21 6605 6621 10.1111/febs.16095 34189845
    [Google Scholar]
  43. Dennis G. Sherman B.T. Hosack D.A. Yang J. Gao W. Lane H.C. Lempicki R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 3 10.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  44. Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. Wang J. Yu B. Zhang J. Bryant S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  45. Birney E. Andrews T.D. Bevan P. Caccamo M. Chen Y. Clarke L. Coates G. Cuff J. Curwen V. Cutts T. Down T. Eyras E. Fernandez-Suarez X.M. Gane P. Gibbins B. Gilbert J. Hammond M. Hotz H.R. Iyer V. Jekosch K. Kahari A. Kasprzyk A. Keefe D. Keenan S. Lehvaslaiho H. McVicker G. Melsopp C. Meidl P. Mongin E. Pettett R. Potter S. Proctor G. Rae M. Searle S. Slater G. Smedley D. Smith J. Spooner W. Stabenau A. Stalker J. Storey R. Ureta-Vidal A. Woodwark K.C. Cameron G. Durbin R. Cox A. Hubbard T. Clamp M. An overview of Ensembl. Genome Res. 2004 14 5 925 928 10.1101/gr.1860604 15078858
    [Google Scholar]
  46. Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. Heer F.T. de Beer T.A.P. Rempfer C. Bordoli L. Lepore R. Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 46 W1 W296 W303 10.1093/nar/gky427 29788355
    [Google Scholar]
  47. Murail S. de Vries S.J. Rey J. Moroy G. Tufféry P. SeamDock: An interactive and collaborative online docking resource to assist small compound molecular docking. Front. Mol. Biosci. 2021 8 716466 716466 10.3389/fmolb.2021.716466 34604303
    [Google Scholar]
  48. Wang M. Chang A.Y-C. Molecular mechanism of action and potential biomarkers of growth inhibition of synergistic combination of afatinib and dasatinib against gefitinib-resistant non-small cell lung cancer cells. Oncotarget 2018 9 23 16533 16546 10.18632/oncotarget.24814 29662665
    [Google Scholar]
  49. Calcaterra V. Penagini F. Rossi V. Abbattista L. Bianchi A. Turzi M. Cococcioni L. Zuccotti G. Thyroid disorders and inflammatory bowel disease: An association present in adults but also in children and adolescents. Front. Endocrinol. 2025 16 1425241 10.3389/fendo.2025.1425241 39968296
    [Google Scholar]
  50. Feng Y. Xiao A. Xing C. Dai Q. Liu X. Liu J. Feng L. Elevated thyroid-stimulating hormone levels, independent of Hashimoto’s thyroiditis, increase thyroid cancer risk: Insights from genetic and clinical evidence. Endocrine 2024 88 1 175 184 10.1007/s12020‑024‑04126‑2 39645548
    [Google Scholar]
  51. Khudair A. Khudair A. Niinuma S.A. Habib H. Butler A.E. Beyond thyroid dysfunction: The systemic impact of iodine excess. Front. Endocrinol. 2025 16 1568807 10.3389/fendo.2025.1568807 40241991
    [Google Scholar]
  52. Alqahtani S.M. Albalawi H.I. Shehata S.F. Alalawi Y.S. Al-Sobhi S.S. Thyroid cancer and Hashimoto’s thyroiditis in AUS/FLUS nodules: Is there a correlation? A retrospective study. J. Taibah Univ. Med. Sci. 2024 19 6 1157 1164 10.1016/j.jtumed.2024.12.001 39802215
    [Google Scholar]
  53. Subhi O. Schulten H.J. Bagatian N. Al-Dayini R. Karim S. Bakhashab S. Alotibi R. Al-Ahmadi A. Ata M. Elaimi A. Al-Muhayawi S. Mansouri M. Al-Ghamdi K. Hamour O.A. Jamal A. Al-Maghrabi J. Al-Qahtani M.H. Genetic relationship between Hashimoto’s thyroiditis and papillary thyroid carcinoma with coexisting Hashimoto’s thyroiditis. PLoS One 2020 15 6 e0234566 10.1371/journal.pone.0234566 32603365
    [Google Scholar]
  54. Kim H.J. Nguyen Q.K. Jung S.N. Lim M.A. Oh C. Piao Y. Jin Y. Kim J.H. Kim Y.I. Kang Y.E. Chang J.W. Won H.R. Koo B.S. Mitochondrial ribosomal protein L14 promotes cell growth and invasion by modulating reactive oxygen species in thyroid cancer. Clin. Exp. Otorhinolaryngol. 2023 16 2 184 197 10.21053/ceo.2022.01760 36822197
    [Google Scholar]
  55. Pan Z. Tan Z. Xu N. Yao Z. Zheng C. Shang J. Xie L. Xu J. Wang J. Jiang L. Zhu X. Yu D. Li Y. Che Y. Gong Y. Qin Z. Zhang Y. Zou X. Xu T. Guo Z. Jin T. Guo T. Wang W. Chen W. Sun Y. Wang W. Peng X. Yin C. Ding C. Huang P. Ge M. Integrative proteogenomic characterization reveals therapeutic targets in poorly differentiated and anaplastic thyroid cancers. Nat. Commun. 2025 16 1 3601 10.1038/s41467‑025‑58910‑3 40234451
    [Google Scholar]
  56. Singh S.R. Bhaskar R. Ghosh S. Yarlagadda B. Singh K.K. Verma P. Sengupta S. Mladenov M. Hadzi-Petrushev N. Stojchevski R. Sinha J.K. Avtanski D. Exploring the genetic orchestra of cancer: The interplay between oncogenes and tumor-suppressor genes. Cancers 2025 17 7 1082 10.3390/cancers17071082 40227591
    [Google Scholar]
  57. Lou Y. Shi E. Yang R. Yang Y. Exploring the mechanisms of glycolytic genes involvement in pulmonary arterial hypertension through integrative bioinformatics analysis. J. Cell. Mol. Med. 2024 28 11 e18447 10.1111/jcmm.18447 38837574
    [Google Scholar]
  58. Kong S. Pan H. Zhang Y.W. Wang F. Chen J. Dong J. Yin C. Wu J. Zhou D. Peng J. Ma J. Zhou J. Ge D. Lu Y. Wei D.D. Fang J. Han W. Shen C. Koeffler H.P. Wang B. Jiang Y. Jiang Y.Y. Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer. Oncogene 2025 44 15 1037 1050 10.1038/s41388‑025‑03277‑4 39863749
    [Google Scholar]
  59. Baldari S. Antonini A. Di Rocco G. Toietta G. Expression pattern and prognostic significance of aldehyde dehydrogenase 2 in lung adenocarcinoma as a potential predictor of immunotherapy efficacy. Cancer Innovation 2025 4 1 e149 10.1002/cai2.149 39640071
    [Google Scholar]
  60. Gu X. Mu C. Zheng R. Zhang Z. Zhang Q. Liang T. The cancer antioxidant regulation system in therapeutic resistance. Antioxidants 2024 13 7 778 10.3390/antiox13070778 39061847
    [Google Scholar]
  61. Xu H. Ren S.M. Wang Y. Zhang T.T. Lu J. Abnormal activation of the Ras/MAPK signaling pathway in oncogenesis and progression. Cancer Advances 2025 8 0 e25002 10.53388/2025825002
    [Google Scholar]
  62. Ge Z. Fan Z. He W. Zhou G. Zhou Y. Zheng M. Zhang S. Recent advances in targeted degradation in the RAS pathway. Future Med. Chem. 2025 17 6 693 708 10.1080/17568919.2025.2476387 40065567
    [Google Scholar]
  63. Tseng T.L. Wang Y.T. Tsao C.Y. Ke Y.T. Lee Y.C. Hsu H.J. Poss K.D. Chen C.H. The RNA helicase Ddx52 functions as a growth switch in juvenile zebrafish. Development 2021 148 15 dev199578 10.1242/dev.199578 34323273
    [Google Scholar]
  64. Chen S.N. Peng X.Y. Nie P. The composition and unrevealed immune role of non-RLR DExD/H box RNA helicases in fish. Comp Immunol. Rep 2024 7 200172
    [Google Scholar]
  65. Taschuk F. Cherry S. DEAD-box helicases: Sensors, regulators, and effectors for antiviral defense. Viruses 2020 12 2 181 10.3390/v12020181 32033386
    [Google Scholar]
  66. Zhang Y. Li Y. Wang Q. Su B. Xu H. Sun Y. Sun P. Li R. Peng X. Cai J. Role of RASA1 in cancer: A review and update. (Review) Oncol. Rep. 2020 44 6 2386 2396 10.3892/or.2020.7807 33125148
    [Google Scholar]
  67. Basu S. Nadhan R. Dhanasekaran D.N. Long non-coding RNAs in ovarian cancer: Mechanistic insights and clinical applications. Cancers 2025 17 3 472 10.3390/cancers17030472 39941838
    [Google Scholar]
  68. Paul M.E. Chen D. Vish K.J. Lartey N.L. Hughes E. Freeman Z.T. Saunders T.L. Stiegler A.L. King P.D. Boggon T.J. The C2 domain augments Ras GTPase-activating protein catalytic activity. Proc. Natl. Acad. Sci. USA 2025 122 6 e2418433122 10.1073/pnas.2418433122 39899710
    [Google Scholar]
  69. Luo Z.D. Wang Y.F. Zhao Y.X. Yu L.C. Li T. Fan Y.J. Zeng S.J. Zhang Y.L. Zhang Y. Zhang X. Emerging roles of non-coding RNAs in colorectal cancer oxaliplatin resistance and liquid biopsy potential. World J. Gastroenterol. 2023 29 1 1 18 10.3748/wjg.v29.i1.1 36683709
    [Google Scholar]
  70. Lin J. Yan J. Deng X. Wang C. Wang H. SPATS2 is correlated with cell cycle progression and immune cells infiltration in hepatocellular carcinoma. BMC Gastroenterol. 2023 23 1 8 10.1186/s12876‑022‑02633‑y 36631750
    [Google Scholar]
  71. Dong G. Zhang S. Shen S. Sun L. Wang X. Wang H. Wu J. Liu T. Wang C. Wang H. Lu T. Rao B. Ren Z. SPATS2, negatively regulated by miR-145-5p, promotes hepatocellular carcinoma progression through regulating cell cycle. Cell Death Dis. 2020 11 10 837 10.1038/s41419‑020‑03039‑y 33037180
    [Google Scholar]
  72. Huang Y. Li Z. Lin E. He P. Ru G. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Exp. Mol. Med. 2021 53 11 1792 1806 10.1038/s12276‑021‑00700‑0 34848840
    [Google Scholar]
  73. Chaudhary S. Siddiqui J.A. Pothuraju R. Bhatia R. Ribosome biogenesis, altered metabolism and ribotoxic stress response in pancreatic ductal adenocarcinoma tumor microenvironment. Cancer Lett. 2025 612 217484 10.1016/j.canlet.2025.217484 39842499
    [Google Scholar]
  74. Behluli E. Xharra S. Nefic H. Hadziselimovic R. Temaj G. Reactive oxygen species (ROS) on Ribosome: From damage to regulation. Curr. Issues Pharm. Med. Sci. 2025 38 1 22 26 10.12923/cipms‑2025‑0003
    [Google Scholar]
  75. Naim M.J. Samad A. A mini-review on EGFR-Tyrosine kinase inhibitors and their resistance mechanisms. Curr. Pharm. Des. 2025 31 10.2174/0113816128349342250121053445 40070329
    [Google Scholar]
  76. Soni S. Rastogi A. Prasad K.T. Behera D. Singh N. Thyroid dysfunction in non-small cell lung cancer patients treated with epidermal growth factor receptor and anaplastic lymphoma kinase inhibitors: Results of a prospective cohort. Lung Cancer 2021 151 16 19 10.1016/j.lungcan.2020.11.007 33278669
    [Google Scholar]
  77. Šelemetjev S. Bartolome A. Išić Denčić T. Đorić I. Paunović I. Tatić S. Cvejić D. Overexpression of epidermal growth factor receptor and its downstream effector, focal adhesion kinase, correlates with papillary thyroid carcinoma progression. Int. J. Exp. Pathol. 2018 99 2 87 94 10.1111/iep.12268 29665129
    [Google Scholar]
  78. Feng S. Liu H. Yun C. Zhu W. Pan Y. Application of EGFR-TKIs in brain tumors, a breakthrough in future? J. Transl. Med. 2025 23 1 449 10.1186/s12967‑025‑06448‑9 40241139
    [Google Scholar]
  79. Zhang J. Vokes N. Li M. Xu J. Bai H. Wang J. Wang Z. Zhang J. Overcoming EGFR-TKI resistance by targeting the tumor microenvironment. Chin Med. J. Pulm. 2024 2 3 151 161 10.1016/j.pccm.2024.08.002 39403414
    [Google Scholar]
  80. Li R. You S. Hu Z. Chen Z.G. Sica G.L. Khuri F.R. Curran W.J. Shin D.M. Deng X. Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PLoS One 2013 8 9 e74670 10.1371/journal.pone.0074670 24019973
    [Google Scholar]
  81. Yang Z. Hackshaw A. Feng Q. Fu X. Zhang Y. Mao C. Tang J. Comparison of gefitinib, erlotinib and afatinib in non‐small cell lung cancer: A meta‐analysis. Int. J. Cancer 2017 140 12 2805 2819 10.1002/ijc.30691 28295308
    [Google Scholar]
  82. Chen X. Zhu Q. Zhu L. Pei D. Liu Y. Yin Y. Schuler M. Shu Y. Clinical perspective of afatinib in non-small cell lung cancer. Lung Cancer 2013 81 2 155 161 10.1016/j.lungcan.2013.02.021 23664448
    [Google Scholar]
  83. Tang Z.H. Lu J.J. Osimertinib resistance in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Lett. 2018 420 242 246 10.1016/j.canlet.2018.02.004 29425688
    [Google Scholar]
/content/journals/cg/10.2174/0113892029376349250819071649
Loading
/content/journals/cg/10.2174/0113892029376349250819071649
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: DEGs ; diagnosis ; hashimoto's thyroiditis ; hub genes ; Thyroid cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test