Skip to content
2000
image of The Bacterial Role in the Progression of Breast Cancer through Mechanism of Gene Action: Future Prospects with Existing Studies

Abstract

Background

Breast cancer is the main cause of death for women, even with major improvements in treatment. Through processes like DNA damage, estrogen metabolism, and immunological regulation, bacterial populations have been shown to have an impact on breast cancer development in recent studies.

Objectives

This review aimed to examine and evaluate current research on the involvement of bacteria in breast cancer progression, with an emphasis on gene action mechanisms and potential future treatments targeting the microbiome.

Methods

A thorough literature analysis was carried out to identify pertinent research published between 1989-2024 across various databases, including PubMed, Google Scholar, Google, and Scopus.

Results

Bacterial dysbiosis in the gut and breast tissue contributes to the progression of breast cancer through different pathways. Double-strand breaks in DNA are linked to various bacteria, like , , and which contribute to genomic instability. Breast cancers are influenced by hormones that are influenced by gut microbiota, namely the estrobolome, which regulates estrogen levels. Bacteria also impact immune responses by preventing anti-tumor immunity. These results suggest that restoring microbial balance to specific bacterial taxa may open up new treatment options. Different genes may contribute to variations, including an increase in regulatory T (Treg) cells, while FOXP3+ T cells are linked to shorter relapse-free survival. Understanding the microbiota's role in DNA damage, hormone regulation, and immune modulation is important.

Conclusion

Bacteria contribute significantly to the development of breast cancer through gene-level processes. Probiotics, immunomodulatory techniques, and microbiome-targeted treatments are potential future developments that could improve therapy effectiveness and reduce resistance.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029371937250918105052
2025-09-22
2025-11-16
Loading full text...

Full text loading...

References

  1. Ylipää A. Yli-Harja O. Zhang W. Nykter M. Characterization of aberrant pathways across human cancers. BMC Syst. Biol 2013 7 S1 S1 (Suppl. 1) 10.1186/1752‑0509‑7‑S1‑S1 24267866
    [Google Scholar]
  2. Nandra R. Forsberg J. Grimer R. If your lump is bigger than a golf ball and growing, think Sarcoma. Eur. J. Surg. Oncol. 2015 41 10 1400 1405 10.1016/j.ejso.2015.05.017 26163048
    [Google Scholar]
  3. Buccimazza I. Approach to the diagnosis of a breast lump. CME: Your SA Journal of CPD 2010 28 11 515 518
    [Google Scholar]
  4. Ahrodia T. Das S. Bakshi S. Das B. Structure, functions, and diversity of the healthy human microbiome. Prog. Mol. Biol. Transl. Sci. 2022 191 1 53 82 10.1016/bs.pmbts.2022.07.003 36270682
    [Google Scholar]
  5. Urbaniak C. Gloor G.B. Brackstone M. Scott L. Tangney M. Reid G. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 2016 82 16 5039 5048 10.1128/AEM.01235‑16 27342554
    [Google Scholar]
  6. Fernández M.F. Reina-Pérez I. Astorga J.M. Rodríguez-Carrillo A. Plaza-Díaz J. Fontana L. Breast cancer and its relationship with the microbiota. Int. J. Environ. Res. Public Health 2018 15 8 1747 10.3390/ijerph15081747 30110974
    [Google Scholar]
  7. Song X. Wei C. Li X. The relationship between microbial community and breast cancer. Front. Cell. Infect. Microbiol. 2022 12 849022 10.3389/fcimb.2022.849022 35782150
    [Google Scholar]
  8. Nengroo M.A. Verma A. Datta D. Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022 156 155916 10.1016/j.cyto.2022.155916 35644058
    [Google Scholar]
  9. Mena S. Ortega A. Estrela J.M. Oxidative stress in environmental-induced carcinogenesis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009 674 1-2 36 44 10.1016/j.mrgentox.2008.09.017 18977455
    [Google Scholar]
  10. Alpuim Costa D. Nobre J.G. Batista M.V. Ribeiro C. Calle C. Cortes A. Marhold M. Negreiros I. Borralho P. Brito M. Cortes J. Braga S.A. Costa L. Human microbiota and breast cancer—is there any relevant link?—a literature review and new horizons toward personalised medicine. Front. Microbiol. 2021 12 584332 10.3389/fmicb.2021.584332 33716996
    [Google Scholar]
  11. Sheweita S.A. Alsamghan A.S. Molecular mechanisms contributing bacterial infections to the incidence of various types of cancer. Mediators Inflamm. 2020 2020 1 1 10 10.1155/2020/4070419 32724295
    [Google Scholar]
  12. Kipanyula M.J. Seke Etet P.F. Vecchio L. Farahna M. Nukenine E.N. Nwabo Kamdje A.H. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell. Signal. 2013 25 2 403 416 10.1016/j.cellsig.2012.10.014 23123499
    [Google Scholar]
  13. Kang D.H. Oxidative stress, DNA damage, and breast cancer. AACN Clin. Issues 2002 13 4 540 549 10.1097/00044067‑200211000‑00007 12473916
    [Google Scholar]
  14. Larsson L-G.,Ed Oncogene-and tumor suppressor gene-mediated suppression of cellular senescence Seminars in cancer biology. Elsevier 2011
    [Google Scholar]
  15. Gagnière J. Raisch J. Veziant J. Barnich N. Bonnet R. Buc E. Bringer M.A. Pezet D. Bonnet M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 2016 22 2 501 518 10.3748/wjg.v22.i2.501 26811603
    [Google Scholar]
  16. Sepich-Poore G.D. Zitvogel L. Straussman R. Hasty J. Wargo J.A. Knight R. The microbiome and human cancer. Science 2021 371 6536 eabc4552 10.1126/science.abc4552 33766858
    [Google Scholar]
  17. Stolzenberg-Solomon R.Z. Blaser M.J. Limburg P.J. Perez-Perez G. Taylor P.R. Virtamo J. Albanes D. Helicobacter pylori seropositivity as a risk factor for pancreatic cancer. J. Natl. Cancer Inst. 2001 93 12 937 941 10.1093/jnci/93.12.937 11416115
    [Google Scholar]
  18. Raderer M. Wrba F. Kornek G. Maca T. Koller D.Y. Weinlaender G. Hejna M. Scheithauer W. Association between Helicobacter pylori infection and pancreatic cancer. Oncology 1998 55 1 16 19 10.1159/000011830 9428370
    [Google Scholar]
  19. Björkholm B. Falk P. Engstrand L. Nyrén O. Helicobacter pylori: Resurrection of the cancer link. J. Intern. Med. 2003 253 2 102 119 10.1046/j.1365‑2796.2003.01119.x 12542550
    [Google Scholar]
  20. Baj J. Korona-Głowniak I. Forma A. Maani A. Sitarz E. Rahnama-Hezavah M. Radzikowska E. Portincasa P. Mechanisms of the epithelial–mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer. Cells 2020 9 4 1055 10.3390/cells9041055 32340207
    [Google Scholar]
  21. Xu M.Y. Cao B. Chen Y. Musial N. Wang S. Yin J. Liu L. Lu Q.B. Association between Helicobacter pylori infection and tumor markers: an observational retrospective study. BMJ Open 2018 8 8 e022374 10.1136/bmjopen‑2018‑022374 30139906
    [Google Scholar]
  22. Winston K. French B. Ketch L. Skin: Anatomy and Healing. In: Plastic Neurosurgery. Cham Springer 2023 10.1007/978‑3‑031‑27872‑3_1
    [Google Scholar]
  23. Baker J.M. Al-Nakkash L. Herbst-Kralovetz M.M. Estrogen–gut microbiome axis: Physiological and clinical implications. Maturitas 2017 103 45 53 10.1016/j.maturitas.2017.06.025 28778332
    [Google Scholar]
  24. Farhad S.Z. Karbalaeihasanesfahani A. Dadgar E. Nasiri K. Esfahaniani M. Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol. Biol. Rep. 2024 51 1 814 10.1007/s11033‑024‑09737‑6 39008163
    [Google Scholar]
  25. Laborda-Illanes A. Sanchez-Alcoholado L. Dominguez-Recio M.E. Jimenez-Rodriguez B. Lavado R. Comino-Méndez I. Alba E. Queipo-Ortuño M.I. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers (Basel) 2020 12 9 2465 10.3390/cancers12092465 32878124
    [Google Scholar]
  26. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889 133 3421 571 573 10.1016/S0140‑6736(00)49915‑0
    [Google Scholar]
  27. Schmidt B.C. Remarks on the 15th Anniversary of the National Cancer Act of 19711. Journal of the National Cancer Institute: JNCI 1987 78 1039
    [Google Scholar]
  28. Vicidomini G. Current challenges and future advances in lung cancer: Genetics, instrumental diagnosis and treatment. Cancers 2023 15 14 3710 10.3390/cancers15143710. 37509371
    [Google Scholar]
  29. Roheel A. Khan A. Anwar F. Akbar Z. Akhtar M.F. Imran Khan M. Sohail M.F. Ahmad R. Global epidemiology of breast cancer based on risk factors: A systematic review. Front. Oncol. 2023 13 1240098 10.3389/fonc.2023.1240098 37886170
    [Google Scholar]
  30. Abdul Rehman M. Tahir E. Ghulam Hussain H. Khalid A. Taqi S.M. Meenai E.A. Awareness regarding breast cancer amongst women in Pakistan: A systematic review and meta-analysis. PLoS One 2024 19 3 e0298275 10.1371/journal.pone.0298275 38452109
    [Google Scholar]
  31. Zhang J. Lu Y. Zhang N. Yu Z. Li H. He R. Mao Y. Zhu B. Global burden of female breast cancer and its association with socioeconomic development status, 1990–2044. Cancer Rep 2023 6 S1 e1827 (Suppl. 1) 10.1002/cnr2.1827 37095062
    [Google Scholar]
  32. Adeoye, PA Breast Cancer Updates 2023 10.5772/intechopen.109361
    [Google Scholar]
  33. Benitez Fuentes J.D. Morgan E. de Luna Aguilar A. Mafra A. Shah R. Giusti F. Vignat J. Znaor A. Musetti C. Yip C.H. Van Eycken L. Jedy-Agba E. Piñeros M. Soerjomataram I. Global stage distribution of breast cancer at diagnosis: A systematic review and meta-analysis. JAMA Oncol. 2024 10 1 71 78 10.1001/jamaoncol.2023.4837 37943547
    [Google Scholar]
  34. Rauniyar S.K. Hashizume M. Yoneoka D. Nomura S. Projection of morbidity and mortality due to breast cancer between 2020 and 2050 across 42 low- and middle-income countries. Heliyon 2023 9 6 e16427 10.1016/j.heliyon.2023.e16427 37274661
    [Google Scholar]
  35. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  36. De Miglio M.R. Mello-Thoms C. Reviews in breast cancer. 2023Available from: https://www.frontiersin.org/research-topics/57263/reviews-in-breast-cancer-2023/magazine?page=2.
    [Google Scholar]
  37. Koboldt D.C. Steinberg K.M. Larson D.E. Wilson R.K. Mardis E.R. The next-generation sequencing revolution and its impact on genomics. Cell 2013 155 1 27 38 10.1016/j.cell.2013.09.006 24074859
    [Google Scholar]
  38. Mutz K.O. Heilkenbrinker A. Lönne M. Walter J.G. Stahl F. Transcriptome analysis using next-generation sequencing. Curr. Opin. Biotechnol. 2013 24 1 22 30 10.1016/j.copbio.2012.09.004 23020966
    [Google Scholar]
  39. Ding L. Ellis M.J. Li S. Larson D.E. Chen K. Wallis J.W. Harris C.C. McLellan M.D. Fulton R.S. Fulton L.L. Abbott R.M. Hoog J. Dooling D.J. Koboldt D.C. Schmidt H. Kalicki J. Zhang Q. Chen L. Lin L. Wendl M.C. McMichael J.F. Magrini V.J. Cook L. McGrath S.D. Vickery T.L. Appelbaum E. DeSchryver K. Davies S. Guintoli T. Lin L. Crowder R. Tao Y. Snider J.E. Smith S.M. Dukes A.F. Sanderson G.E. Pohl C.S. Delehaunty K.D. Fronick C.C. Pape K.A. Reed J.S. Robinson J.S. Hodges J.S. Schierding W. Dees N.D. Shen D. Locke D.P. Wiechert M.E. Eldred J.M. Peck J.B. Oberkfell B.J. Lolofie J.T. Du F. Hawkins A.E. O’Laughlin M.D. Bernard K.E. Cunningham M. Elliott G. Mason M.D. Thompson D.M. Ivanovich J.L. Goodfellow P.J. Perou C.M. Weinstock G.M. Aft R. Watson M. Ley T.J. Wilson R.K. Mardis E.R. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 2010 464 7291 999 1005 10.1038/nature08989 20393555
    [Google Scholar]
  40. Stephens P.J. Greenman C.D. Fu B. Yang F. Bignell G.R. Mudie L.J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011 144 1 27 40 10.1016/j.cell.2010.11.055 21215367
    [Google Scholar]
  41. Cai H. Kumar N. Bagheri H.C. von Mering C. Robinson M.D. Baudis M. Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 2014 15 1 82 10.1186/1471‑2164‑15‑82 24476156
    [Google Scholar]
  42. German R. Marino N. Hemmerich C. Podicheti R. Rusch D.B. Stiemsma L.T. Gao H. Xuei X. Rockey P. Storniolo A.M. Exploring breast tissue microbial composition and the association with breast cancer risk factors. Breast Cancer Res. 2023 25 1 82 10.1186/s13058‑023‑01677‑6 37430354
    [Google Scholar]
  43. Kingo K. Aunin E. Karelson M. Philips M.A. Rätsep R. Silm H. Vasar E. Soomets U. Kõks S. Gene expression analysis of melanocortin system in vitiligo. J. Dermatol. Sci. 2007 48 2 113 122 10.1016/j.jdermsci.2007.06.004 17651944
    [Google Scholar]
  44. Kingo K. Philips M.A. Aunin E. Luuk H. Karelson M. Rätsep R. Silm H. Vasar E. Kõks S. MYG1, novel melanocyte related gene, has elevated expression in vitiligo. J. Dermatol. Sci. 2006 44 2 119 122 10.1016/j.jdermsci.2006.08.001 16996721
    [Google Scholar]
  45. Slominski A. Tobin D.J. Shibahara S. Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004 84 4 1155 1228 10.1152/physrev.00044.2003 15383650
    [Google Scholar]
  46. Fernández L. Pannaraj P.S. Rautava S. Rodríguez J.M. The microbiota of the human mammary ecosystem. Front. Cell. Infect. Microbiol. 2020 10 586667 10.3389/fcimb.2020.586667 33330129
    [Google Scholar]
  47. Zhang J. Xia Y. Sun J. Breast and gut microbiome in health and cancer. Genes Dis. 2021 8 5 581 589 10.1016/j.gendis.2020.08.002 34291130
    [Google Scholar]
  48. Thu M.S. Chotirosniramit K. Nopsopon T. Hirankarn N. Pongpirul K. Human gut, breast, and oral microbiome in breast cancer: A systematic review and meta-analysis. Front. Oncol. 2023 13 1144021 10.3389/fonc.2023.1144021 37007104
    [Google Scholar]
  49. Wang D. Cheng J. Zhang J. Zhou F. He X. Shi Y. Tao Y. The role of respiratory microbiota in lung cancer. Int. J. Biol. Sci. 2021 17 13 3646 3658 10.7150/ijbs.51376 34512172
    [Google Scholar]
  50. Kovács T. Mikó E. Ujlaki G. Yousef H. Csontos V. Uray K. Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev. 2021 40 4 1223 1249 10.1007/s10555‑021‑10013‑3 34967927
    [Google Scholar]
  51. Xuan C. Shamonki J.M. Chung A. DiNome M.L. Chung M. Sieling P.A. Microbial dysbiosis is associated with human breast cancer. PLoS One 2014 9 1 10.1371/journal.pone.0083744 24421902
    [Google Scholar]
  52. Yazdi HR Movafagh A Fallah F Shargh SA Mansouri N Pour, AH Evaluation of Methylobacterium radiotolerance and Sphyngomonas yanoikoaie in sentinel lymph nodes of breast cancer cases. Asian Pac J. Cancer Prev 2016 14 sup3 279 285 10.7314/APJCP.2016.17.S3.279
    [Google Scholar]
  53. Wang H. Altemus J. Niazi F. Green H. Calhoun B.C. Sturgis C. Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 2017 8 50 88122 88138 10.18632/oncotarget.21490
    [Google Scholar]
  54. Thompson K.J. Ingle J.N. Tang X. Chia N. Jeraldo P.R. Walther-Antonio M.R. A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One 2017 12 11 e0188873 10.1371/journal.pone.0188873
    [Google Scholar]
  55. Meng S. Chen B. Yang J. Wang J. Zhu D. Meng Q. Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy. Front. Oncol. 2018 8 318 10.3389/fonc.2018.00318
    [Google Scholar]
  56. Hieken T.J. Chen J. Hoskin T.L. Walther-Antonio M. Johnson S. Ramaker S. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 2016 6 30751 10.1038/srep30751
    [Google Scholar]
  57. Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: A 40-year odyssey. Expert Opin. Biol. Ther. 2015 15 1 21 31
    [Google Scholar]
  58. Goedert J.J. Jones G. Hua X. Xu X. Yu G. Flores R. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J. Natl. Cancer Inst. 2015 107 8 djv147 10.1093/jnci/djv147
    [Google Scholar]
  59. Zhu J. Liao M. Yao Z. Liang W. Li Q. Liu J. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 2018 6 1 136 10.1186/s40168‑018‑0515‑3
    [Google Scholar]
  60. Gupta R. Babb J.S. Singh B. Chiriboga L. Liebes L. Adams, S he numbers of FoxP3+ lymphocytes in sentinel lymph nodes of breast cancer patients correlate with primary tumor size but not nodal status. Cancer Invest. 2011 29 6 419 425
    [Google Scholar]
  61. Wong SH Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2019 16 11 690 704 10.1038/s41575‑019‑0209‑8. 31554963
    [Google Scholar]
  62. Pereira L.M.S. Gomes S.T.M. Ishak R. Regulatory T. Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front. Immunol. 2017 8 605
    [Google Scholar]
  63. Kõks G. Fischer K. Kõks S. Smoking-related general and cause-specific mortality in Estonia. BMC Public Health 2018 18 1 34 10.1186/s12889‑017‑4590‑3 28724413
    [Google Scholar]
  64. Kõks S. Kõks G. Activation of GPR15 and its involvement in the biological effects of smoking. Exp. Biol. Med. (Maywood) 2017 242 11 1207 1212 10.1177/1535370217703977 28423922
    [Google Scholar]
  65. Smith I.M. Mydlarz W.K. Mithani S.K. Califano J.A. DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int. J. Cancer 2007 121 8 1724 1728 10.1002/ijc.22889 17582607
    [Google Scholar]
  66. Zhu Z.Z. Hou L. Bollati V. Tarantini L. Marinelli B. Cantone L. Yang A.S. Vokonas P. Lissowska J. Fustinoni S. Pesatori A.C. Bonzini M. Apostoli P. Costa G. Bertazzi P.A. Chow W.H. Schwartz J. Baccarelli A. Predictors of global methylation levels in blood DNA of healthy subjects: A combined analysis. Int. J. Epidemiol. 2012 41 1 126 139 10.1093/ije/dyq154 20846947
    [Google Scholar]
  67. Nguyen L.P. Pan J. Dinh T.T. Hadeiba H. O’Hara E. Ebtikar A. Hertweck A. Gökmen M.R. Lord G.M. Jenner R.G. Butcher E.C. Habtezion A. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat. Immunol. 2015 16 2 207 213 10.1038/ni.3079 25531831
    [Google Scholar]
  68. Kõks G. Uudelepp M.L. Limbach M. Peterson P. Reimann E. Kõks S. Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies. Am. J. Pathol. 2015 185 11 2898 2906 10.1016/j.ajpath.2015.07.006 26348578
    [Google Scholar]
  69. Danforth D.N. The role of chronic inflammation in the development of breast cancer. Cancers (Basel) 2021 13 15 3918 10.3390/cancers13153918 34359821
    [Google Scholar]
  70. Barrett M. Hand C.K. Shanahan F. Murphy T. O’Toole P.W. Mutagenesis by microbe: The role of the microbiota in shaping the cancer genome. Trends Cancer 2020 6 4 277 287 10.1016/j.trecan.2020.01.019 32209443
    [Google Scholar]
  71. Haque S. Raina R. Afroze N. Hussain A. Alsulimani A. Singh V. Microbial dysbiosis and epigenetics modulation in cancer development–A chemopreventive approach. Seminars in cancer biology; Elsevier 2022 86 666 681
    [Google Scholar]
  72. Parida S. Sharma D. Microbial alterations and risk factors of breast cancer: Connections and mechanistic insights. Cells 2020 9 5 1091 10.3390/cells9051091 32354130
    [Google Scholar]
  73. Shi C. Zhang Z. Crosby M. Inflammation in Skin-Related Diseases. 2024Available from: https://www.frontiersin.org/ research-topics/55740/inflammation-in-skin-related-diseases/ magazine. 10.3389/978‑2‑8325‑5340‑4
    [Google Scholar]
  74. Lyons K.E. Ryan C.A. Dempsey E.M. Ross R.P. Stanton C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 2020 12 4 1039 10.3390/nu12041039 32283875
    [Google Scholar]
  75. Chakraborti S. Das R.K. Dysbiosis of Oral microbiota and its effect on epithelial-mesenchymal transition: A review. SN Compr. Clin. Med. 2020 2 11 2324 2335 10.1007/s42399‑020‑00573‑w
    [Google Scholar]
  76. Czarnecka-Chrebelska K.H. Kordiak J. Brzeziańska-Lasota E. Pastuszak-Lewandoska D. Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now? Cancers (Basel) 2023 15 20 4935 10.3390/cancers15204935 37894302
    [Google Scholar]
  77. Siddique S. Kubwabo C. Harris S.A. A review of the role of emerging environmental contaminants in the development of breast cancer in women. Emerg. Contam. 2016 2 4 204 219 10.1016/j.emcon.2016.12.003
    [Google Scholar]
  78. Ruo S.W. Alkayyali T. Win M. Tara A. Joseph C. Kannan A. Srivastava K. Ochuba O. Sandhu J.K. Went T.R. Sultan W. Kantamaneni K. Poudel S. Role of gut microbiota dysbiosis in breast cancer and novel approaches in prevention, diagnosis, and treatment. Cureus 2021 13 8 e17472 10.7759/cureus.17472 34513524
    [Google Scholar]
  79. Zhang Y. Huang R. Jiang Y. Shen W. Pei H. Wang G. Pei P. Yang K. The role of bacteria and its derived biomaterials in cancer radiotherapy. Acta Pharm. Sin. B 2023 13 10 4149 4171 10.1016/j.apsb.2022.10.013 37799393
    [Google Scholar]
/content/journals/cg/10.2174/0113892029371937250918105052
Loading
/content/journals/cg/10.2174/0113892029371937250918105052
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Breast cancer ; cancer management ; microbiota ; gene mechanism ; bacterial role
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test