Full text loading...
Neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are characterized by the pathological aggregation of proteins such as amyloid-β, tau, and alpha-synuclein. These hallmark proteins play central roles in disease progression and represent promising targets for therapeutic intervention. Advances in precision medicine, driven by genomic technologies such as CRISPR-Cas systems, RNA-based therapies, and high-throughput sequencing, have enabled the development of tailored strategies to modulate these pathological pathways. This review examines the integration of genomic approaches in targeting amyloid-β, tau, and alpha-synuclein, emphasizing their potential to mitigate disease progression and improve patient outcomes. We highlight current progress in preclinical and clinical studies, discuss challenges associated with translating these therapies into clinical practice, and explore future directions for achieving therapeutic precision in neurodegenerative disorders. By examining the interplay of genetic, molecular, and therapeutic innovations, this review underscores the transformative potential of genomic medicine in addressing the unmet needs of neurodegenerative disease treatment.
Article metrics loading...
Full text loading...
References
Data & Media loading...