Skip to content
2000
image of Precision Medicine in Neurodegenerative Diseases: Genomic Approaches to Target Amyloid-β, Tau, and Alpha-Synuclein Pathways

Abstract

Neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are characterized by the pathological aggregation of proteins such as amyloid-β, tau, and alpha-synuclein. These hallmark proteins play central roles in disease progression and represent promising targets for therapeutic intervention. Advances in precision medicine, driven by genomic technologies such as CRISPR-Cas systems, RNA-based therapies, and high-throughput sequencing, have enabled the development of tailored strategies to modulate these pathological pathways. This review examines the integration of genomic approaches in targeting amyloid-β, tau, and alpha-synuclein, emphasizing their potential to mitigate disease progression and improve patient outcomes. We highlight current progress in preclinical and clinical studies, discuss challenges associated with translating these therapies into clinical practice, and explore future directions for achieving therapeutic precision in neurodegenerative disorders. By examining the interplay of genetic, molecular, and therapeutic innovations, this review underscores the transformative potential of genomic medicine in addressing the unmet needs of neurodegenerative disease treatment.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029372437251010114053
2025-10-24
2025-12-04
Loading full text...

Full text loading...

References

  1. Wang S. Jiang Y. Yang A. Meng F. Zhang J. The expanding burden of neurodegenerative diseases: An unmet medical and social need. Aging Dis. 2024 10.14336/AD.2024.1071 39571158
    [Google Scholar]
  2. Velkoff V.A. Kowal P.R. Aging in Sub-Saharan Africa: Recommendation for furthering research. Washington, DC National Academies Press 2006
    [Google Scholar]
  3. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  4. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  5. Meijer E. Casanova M. Kim H. Llena-Nozal A. Lee J. Economic costs of dementia in 11 countries in Europe: Estimates from nationally representative cohorts of a panel study. Lancet Reg. Health Eur. 2022 20 100445 10.1016/j.lanepe.2022.100445 35781926
    [Google Scholar]
  6. Strafella C. Caputo V. Galota M.R. Zampatti S. Marella G. Mauriello S. Application of precision medicine in neurodegenerative diseases. Front. Neurol. 2018 9 701 10.3389/fneur.2018.00701 30190701
    [Google Scholar]
  7. Dias-Carvalho A. Sá S.I. Carvalho F. Fernandes E. Costa V.M. Inflammation as common link to progressive neurological diseases. Arch. Toxicol. 2024 98 1 95 119 10.1007/s00204‑023‑03628‑8 37964100
    [Google Scholar]
  8. Su J. Yang L. Sun Z. Zhan X. Personalized drug therapy: Innovative concept guided with proteoformics. Mol. Cell. Proteomics 2024 23 3 100737 10.1016/j.mcpro.2024.100737 38354979
    [Google Scholar]
  9. Dwivedi S. Purohit P. Misra R. Pareek P. Goel A. Khattri S. Pant K.K. Misra S. Sharma P. Diseases and molecular diagnostics: A step closer to precision medicine. Indian J. Clin. Biochem. 2017 32 4 374 398 10.1007/s12291‑017‑0688‑8 29062170
    [Google Scholar]
  10. Rossi S.L. Subramanian P. Bovenkamp D.E. The future is precision medicine-guided diagnoses, preventions and treatments for neurodegenerative diseases. Front. Aging Neurosci. 2023 15 1128619 10.3389/fnagi.2023.1128619 37009453
    [Google Scholar]
  11. Morris G.P. Clark I.A. Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2014 2 1 135 10.1186/s40478‑014‑0135‑5 25231068
    [Google Scholar]
  12. Ono K. Condron M.M. Teplow D.B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA 2009 106 35 14745 14750 10.1073/pnas.0905127106 19706468
    [Google Scholar]
  13. Sengupta U. Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog. Neurobiol. 2022 214 102270 10.1016/j.pneurobio.2022.102270 35447272
    [Google Scholar]
  14. Yokoyama M. Kobayashi H. Tatsumi L. Tomita T. Mouse models of Alzheimer’s disease. Front. Mol. Neurosci. 2022 15 Jun 912995 10.3389/fnmol.2022.912995 35799899
    [Google Scholar]
  15. Fontana I.C. Zimmer A.R. Rocha A.S. Gosmann G. Souza D.O. Lourenco M.V. Ferreira S.T. Zimmer E.R. Amyloid‐β oligomers in cellular models of Alzheimer’s disease. J. Neurochem. 2020 155 4 348 369 10.1111/jnc.15030 32320074
    [Google Scholar]
  16. Gaikwad S. Senapati S. Haque M.A. Kayed R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer’s disease: Evidence from clinical and preclinical studies. Alzheimers Dement. 2024 20 1 709 727 10.1002/alz.13490 37814508
    [Google Scholar]
  17. Greally S. Kumar M. Schlaffner C. van der Heijden H. Lawton E.S. Biswas D. Berretta S. Steen H. Steen J.A. Dementia with lewy bodies patients with high tau levels display unique proteome profiles. Mol. Neurodegener. 2024 19 1 98 10.1186/s13024‑024‑00782‑0 39696638
    [Google Scholar]
  18. Pooler A.M. Polydoro M. Wegmann S. Nicholls S.B. Spires-Jones T.L. Hyman B.T. Propagation of tau pathology in Alzheimer’s disease: Identification of novel therapeutic targets. Alzheimers Res. Ther. 2013 5 5 49 10.1186/alzrt214 24152385
    [Google Scholar]
  19. Schoonhoven D.N. Coomans E.M. Millán A.P. van Nifterick A.M. Visser D. Ossenkoppele R. Tuncel H. van der Flier W.M. Golla S.S.V. Scheltens P. Hillebrand A. van Berckel B.N.M. Stam C.J. Gouw A.A. Tau protein spreads through functionally connected neurons in Alzheimer’s disease: A combined MEG/PET study. Brain 2023 146 10 4040 4054 10.1093/brain/awad189 37279597
    [Google Scholar]
  20. Nawaz M. Fatima F. Extracellular vesicles, tunneling nanotubes, and cellular interplay: Synergies and missing links. Front. Mol. Biosci. 2017 4 JUL 50 10.3389/fmolb.2017.00050 28770210
    [Google Scholar]
  21. Bernal-Conde L.D. Ramos-Acevedo R. Reyes-Hernández M.A. Balbuena-Olvera A.J. Morales-Moreno I.D. Argüero-Sánchez R. Schüle B. Guerra-Crespo M. Alpha-synuclein physiology and pathology: A perspective on cellular structures and organelles. Front. Neurosci. 2020 13 1399 10.3389/fnins.2019.01399 32038126
    [Google Scholar]
  22. Waxman E.A. Giasson B.I. Molecular mechanisms of α-synuclein neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 2009 1792 7 616 624 10.1016/j.bbadis.2008.09.013 18955133
    [Google Scholar]
  23. Jeon Y.M. Kwon Y. Jo M. Lee S. Kim S. Kim H.J. The role of glial mitochondria in α-synuclein toxicity. Front. Cell Dev. Biol. 2020 8 548283 10.3389/fcell.2020.548283 33262983
    [Google Scholar]
  24. Danzer K.M. Kranich L.R. Ruf W.P. Cagsal-Getkin O. Winslow A.R. Zhu L. Vanderburg C.R. McLean P.J. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 2012 7 1 42 10.1186/1750‑1326‑7‑42 22920859
    [Google Scholar]
  25. Moussaud S. Jones D.R. Moussaud-Lamodière E.L. Delenclos M. Ross O.A. McLean P.J. Alpha-synuclein and tau: Teammates in neurodegeneration? Mol. Neurodegener. 2014 9 1 43 10.1186/1750‑1326‑9‑43 25352339
    [Google Scholar]
  26. Jin M. Wang S. Gao X. Zou Z. Hirotsune S. Sun L. Pathological and physiological functional cross-talks of α-synuclein and tau in the central nervous system. Neural Regen. Res. 2024 19 4 855 862 10.4103/1673‑5374.382231 37843221
    [Google Scholar]
  27. Plotkin S.S. Cashman N.R. Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease. Neurobiol. Dis. 2020 144 105010 10.1016/j.nbd.2020.105010 32682954
    [Google Scholar]
  28. Tu S. Okamoto S. Lipton S.A. Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 2014 9 1 48 10.1186/1750‑1326‑9‑48 25394486
    [Google Scholar]
  29. Podvin S. Jones A. Liu Q. Aulston B. Mosier C. Ames J. Winston C. Lietz C.B. Jiang Z. O’Donoghue A.J. Ikezu T. Rissman R.A. Yuan S.H. Hook V. Mutant presenilin 1 dysregulates exosomal proteome cargo produced by human-induced pluripotent stem cell neurons. ACS Omega 2021 6 20 13033 13056 10.1021/acsomega.1c00660 34056454
    [Google Scholar]
  30. Pires M. Rego A.C. Apoe4 and Alzheimer’s disease pathogenesis—mitochondrial deregulation and targeted therapeutic strategies. Int. J. Mol. Sci. 2023 24 1 778 10.3390/ijms24010778 36614219
    [Google Scholar]
  31. Twohig D. Nielsen H.M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 23 10.1186/s13024‑019‑0320‑x 31186026
    [Google Scholar]
  32. Priyanka; Qamar, SH; Visanji, NP Toward an animal model of progressive supranuclear palsy. Front. Neurosci. 2024 18 1433465 10.3389/fnins.2024.1433465 39420986
    [Google Scholar]
  33. Mougenot A.L. Nicot S. Bencsik A. Morignat E. Verchère J. Lakhdar L. Legastelois S. Baron T. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 2012 33 9 2225 2228 10.1016/j.neurobiolaging.2011.06.022 21813214
    [Google Scholar]
  34. Vermilyea S.C. Christensen A. Meints J. Singh B. Martell-Martínez H. Karim M.R. Lee M.K. Loss of tau expression attenuates neurodegeneration associated with α-synucleinopathy. Transl. Neurodegener. 2022 11 1 34 10.1186/s40035‑022‑00309‑x 35773715
    [Google Scholar]
  35. Irwin D.J. Hurtig H.I. The contribution of tau, amyloid-beta and alpha-synuclein pathology to dementia in Lewy body disorders. J. Alzheimers Dis. Parkinsonism 2018 8 4 444 10.4172/2161‑0460.1000444 30473927
    [Google Scholar]
  36. Lloyd G.M. Dhillon J.K.S. Gorion K.M.M. Riffe C. Fromholt S.E. Xia Y. Giasson B.I. Borchelt D.R. Collusion of α-Synuclein and Aβ aggravating co-morbidities in a novel prion-type mouse model. Mol. Neurodegener. 2021 16 1 63 10.1186/s13024‑021‑00486‑9 34503546
    [Google Scholar]
  37. Masliah E. Rockenstein E. Veinbergs I. Sagara Y. Mallory M. Hashimoto M. Mucke L. β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2001 98 21 12245 12250 10.1073/pnas.211412398 11572944
    [Google Scholar]
  38. Marsh S.E. Blurton-Jones M. Examining the mechanisms that link β-amyloid and α-synuclein pathologies. Alzheimers Res. Ther. 2012 4 2 11 10.1186/alzrt109 22546279
    [Google Scholar]
  39. Kim J.R. Oligomerization by co-assembly of β-amyloid and α-synuclein. Front. Mol. Biosci. 2023 10 Mar 1153839 10.3389/fmolb.2023.1153839 37021111
    [Google Scholar]
  40. Sung C.C. Lam W.Y. Chung K.K.K. The role of polo‐like kinases 2 in the proteasomal and lysosomal degradation of alpha‐synuclein in neurons. FASEB J. 2024 38 20 e70121 10.1096/fj.202401035R 39436202
    [Google Scholar]
  41. Kurihara M. Matsubara T. Morimoto S. Arakawa A. Ohse K. Kanemaru K. Iwata A. Murayama S. Saito Y. Neuropathological changes associated with aberrant cerebrospinal fluid p-tau181 and Aβ42 in Alzheimer’s disease and other neurodegenerative diseases. Acta Neuropathol. Commun. 2024 12 1 48 10.1186/s40478‑024‑01758‑3 38539238
    [Google Scholar]
  42. Iljina M. Dear A.J. Garcia G.A. De S. Tosatto L. Flagmeier P. Whiten D.R. Michaels T.C.T. Frenkel D. Dobson C.M. Knowles T.P.J. Klenerman D. Quantifying Co-Oligomer Formation by α-Synuclein. ACS Nano 2018 12 11 10855 10866 10.1021/acsnano.8b03575 30371053
    [Google Scholar]
  43. Gadhave D.G. Sugandhi V.V. Jha S.K. Nangare S.N. Gupta G. Singh S.K. Dua K. Cho H. Hansbro P.M. Paudel K.R. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res. Rev. 2024 99 Aug 102357 10.1016/j.arr.2024.102357 38830548
    [Google Scholar]
  44. Ghisays V. Lopera F. Goradia D.D. Protas H.D. Malek-Ahmadi M.H. Chen Y. Devadas V. Luo J. Lee W. Baena A. Bocanegra Y. Guzmán-Vélez E. Pardilla-Delgado E. Vila-Castelar C. Fox-Fuller J.T. Hu N. Clayton D. Thomas R.G. Alvarez S. Espinosa A. Acosta-Baena N. Giraldo M.M. Rios-Romenets S. Langbaum J.B. Chen K. Su Y. Tariot P.N. Quiroz Y.T. Reiman E.M. PET evidence of preclinical cerebellar amyloid plaque deposition in autosomal dominant Alzheimer’s disease-causing Presenilin-1 E280A mutation carriers. Neuroimage Clin. 2021 31 Jan 102749 10.1016/j.nicl.2021.102749 34252876
    [Google Scholar]
  45. Estades Ayuso V. Pickles S. Todd T. Yue M. Jansen-West K. Song Y. González Bejarano J. Rawlinson B. DeTure M. Graff-Radford N.R. Boeve B.F. Knopman D.S. Petersen R.C. Dickson D.W. Josephs K.A. Petrucelli L. Prudencio M. TDP-43-regulated cryptic RNAs accumulate in Alzheimer’s disease brains. Mol. Neurodegener. 2023 18 1 57 10.1186/s13024‑023‑00646‑z 37605276
    [Google Scholar]
  46. Jeremic D. Jiménez-Díaz L. Navarro-López J.D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2021 72 101496 10.1016/j.arr.2021.101496 34687956
    [Google Scholar]
  47. Shendure J. Findlay G.M. Snyder M.W. Genomic medicine–progress, pitfalls, and promise. Cell 2019 177 1 45 57 10.1016/j.cell.2019.02.003 30901547
    [Google Scholar]
  48. van Karnebeek C.D.M. O’Donnell-Luria A. Baynam G. Baudot A. Groza T. Jans J.J.M. Lassmann T. Letinturier M.C.V. Montgomery S.B. Robinson P.N. Sansen S. Mehrian-Shai R. Steward C. Kosaki K. Durao P. Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J. Rare Dis. 2024 19 1 357 10.1186/s13023‑024‑03361‑0 39334316
    [Google Scholar]
  49. Marchant G. Barnes M. Evans J.P. LeRoy B. Wolf S.M. From genetics to genomics: Facing the liability implications in clinical care. J. Law Med. Ethics 2020 48 1 11 43 10.1177/1073110520916994 32342786
    [Google Scholar]
  50. Ho D. Quake S.R. McCabe E.R.B. Chng W.J. Chow E.K. Ding X. Gelb B.D. Ginsburg G.S. Hassenstab J. Ho C.M. Mobley W.C. Nolan G.P. Rosen S.T. Tan P. Yen Y. Zarrinpar A. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020 38 5 497 518 10.1016/j.tibtech.2019.12.021 31980301
    [Google Scholar]
  51. Giani A.M. Gallo G.R. Gianfranceschi L. Formenti G. Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J. 2020 18 9 19 10.1016/j.csbj.2019.11.002 31890139
    [Google Scholar]
  52. Glotov O.S. Chernov A.N. Glotov A.S. Human exome sequencing and prospects for predictive medicine: Analysis of international data and own experience. J. Pers. Med. 2023 13 8 1236 10.3390/jpm13081236 37623486
    [Google Scholar]
  53. Qahwaji R. Ashankyty I. Sannan N.S. Hazzazi M.S. Basabrain A.A. Mobashir M. Pharmacogenomics: A genetic approach to drug development and therapy. Pharmaceuticals 2024 17 7 940 10.3390/ph17070940 39065790
    [Google Scholar]
  54. Chehelgerdi M. Chehelgerdi M. Khorramian-Ghahfarokhi M. Shafieizadeh M. Mahmoudi E. Eskandari F. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol. Cancer 2024 23 1 43 10.1186/s12943‑024‑01961‑9
    [Google Scholar]
  55. Shabbir M.A.B. Shabbir M.Z. Wu Q. Mahmood S. Sajid A. Maan M.K. Ahmed S. Naveed U. Hao H. Yuan Z. CRISPR-cas system: Biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann. Clin. Microbiol. Antimicrob. 2019 18 1 21 10.1186/s12941‑019‑0317‑x 31277669
    [Google Scholar]
  56. Xu Y. Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020 18 2401 2415 10.1016/j.csbj.2020.08.031 33005303
    [Google Scholar]
  57. Hille F. Charpentier E. CRISPR-Cas: Biology, mechanisms and relevance. Philos. Trans R Soc. Lond B Biol. Sci. 2016 371 1707 20150496. 10.1098/rstb.2015.0496 27672148
    [Google Scholar]
  58. Lemaire C. Le Gallou B. Lanotte P. Mereghetti L. Pastuszka A. Distribution, diversity and roles of CRISPR-Cas systems in human and animal pathogenic streptococci. Front. Microbiol. 2022 13 Jan 828031 10.3389/fmicb.2022.828031 35173702
    [Google Scholar]
  59. Asmamaw M. Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics 2021 15 353 361 10.2147/BTT.S326422 34456559
    [Google Scholar]
  60. Xue C. Greene E.C. DNA repair pathway choices in CRISPR-Cas9 mediated genome editing. Trends Genet. 2021 37 7 639 656 10.1016/j.tig.2021.02.008 33896583
    [Google Scholar]
  61. Mou H. Smith J.L. Peng L. Yin H. Moore J. Zhang X.O. Song C.Q. Sheel A. Wu Q. Ozata D.M. Li Y. Anderson D.G. Emerson C.P. Sontheimer E.J. Moore M.J. Weng Z. Xue W. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol. 2017 18 1 108 10.1186/s13059‑017‑1237‑8 28615073
    [Google Scholar]
  62. Ersöz E. Demir-Dora D. Unveiling the potential of antisense oligonucleotides: Mechanisms, therapies, and safety insights. Drug Dev. Res. 2024 85 4 e22187 10.1002/ddr.22187 38764172
    [Google Scholar]
  63. Perry C.M. Barman Balfour J.A. Fomivirsen. Drugs 1999 57 3 375 380 10.2165/00003495‑199957030‑00010 10193689
    [Google Scholar]
  64. Baylot V. Le T.K. Taïeb D. Rocchi P. Colleaux, L Erratum in: Between hope and reality: Treatment of genetic diseases through nucleic acid-based drugs. Commun. Biol. 2025 8 1 1036 10.1038/s42003‑025‑08481‑2
    [Google Scholar]
  65. Vickers T.A. Crooke S.T. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. PLoS One 2014 9 10 e108625 10.1371/journal.pone.0108625 25299183
    [Google Scholar]
  66. Mata-Ventosa A. Vila-Planas A. Solsona-Pujol A. Dueña J. Torrents M. Izquierdo-García E. Pastor-Anglada M. Pérez-Torras S. Terrazas M. RNase H-sensitive multifunctional ASO-based constructs as promising tools for the treatment of multifactorial complex pathologies. Bioorg. Chem. 2024 150 Sep 107595 10.1016/j.bioorg.2024.107595 38968904
    [Google Scholar]
  67. Ali Zaidi S.S. Fatima F. Ali Zaidi S.A. Zhou D. Deng W. Liu S. Engineering siRNA therapeutics: Challenges and strategies. J. Nanobiotechnology 2023 21 1 381 10.1186/s12951‑023‑02147‑z 37848888
    [Google Scholar]
  68. Tabrizi S.J. Leavitt B.R. Landwehrmeyer G.B. Wild E.J. Saft C. Barker R.A. Blair N.F. Craufurd D. Priller J. Rickards H. Rosser A. Kordasiewicz H.B. Czech C. Swayze E.E. Norris D.A. Baumann T. Gerlach I. Schobel S.A. Paz E. Smith A.V. Bennett C.F. Lane R.M. Targeting huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med. 2019 380 24 2307 2316 10.1056/NEJMoa1900907 31059641
    [Google Scholar]
  69. Pratt A.J. MacRae I.J. The RNA-induced silencing complex: A versatile gene-silencing machine. J. Biol. Chem. 2009 284 27 17897 17901 10.1074/jbc.R900012200 19342379
    [Google Scholar]
  70. Padda I.S. Mahtani A.U. Patel P. Parmar M. Small interfering RNA (siRNA) therapy. StatPearls. Treasure Island, FL StatPearls Publishing 2024 35593797
    [Google Scholar]
  71. Iwakawa H. Tomari Y. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Mol. Cell 2022 82 1 30 43 10.1016/j.molcel.2021.11.026 34942118
    [Google Scholar]
  72. Kim Y.K. RNA therapy: Rich history, various applications and unlimited future prospects. Exp. Mol. Med. 2022 54 4 455 465 10.1038/s12276‑022‑00757‑5 35440755
    [Google Scholar]
  73. Trujillo C.A. Nery A.A. Alves J.M. Martins A.H. Ulrich H. Development of the anti-VEGF aptamer to a therapeutic agent for clinical ophthalmology. Clin. Ophthalmol. 2007 1 4 393 402 19668516
    [Google Scholar]
  74. Devery A.M. Wadekar R. Bokobza S.M. Weber A.M. Jiang Y. Ryan A.J. Vascular endothelial growth factor directly stimulates tumour cell proliferation in non-small cell lung cancer. Int. J. Oncol. 2015 47 3 849 856 10.3892/ijo.2015.3082 26179332
    [Google Scholar]
  75. Sivaprasad S. Role of pegaptanib sodium in the treatment of neovascular age-related macular degeneration. Clin. Ophthalmol. 2008 2 2 339 346 19668725
    [Google Scholar]
  76. Wang Y.S. Kumari M. Chen G.H. Hong M.H. Yuan J.P.Y. Tsai J.L. Wu H.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications. J. Biomed. Sci. 2023 30 1 84 10.1186/s12929‑023‑00977‑5 37805495
    [Google Scholar]
  77. Bzówka M. Bagrowska W. Góra A. Recent advances in studying toll-like receptors with the use of computational methods. J. Chem. Inf. Model. 2023 63 12 3669 3687 10.1021/acs.jcim.3c00419 37285179
    [Google Scholar]
  78. Bansal A. From rejection to the Nobel Prize: Karikó and Weissman’s pioneering work on mRNA vaccines, and the need for diversity and inclusion in translational immunology. Front. Immunol. 2023 14 1306025 10.3389/fimmu.2023.1306025 38022662
    [Google Scholar]
  79. Obata Y. Murakami K. Kawase T. Hirose K. Izuo N. Shimizu T. Irie K. Detection of amyloid β oligomers with RNA aptamers in App NL-G-F/NL-G-F mice: A model of arctic Alzheimer’s disease. ACS Omega 2020 5 34 21531 21537 10.1021/acsomega.0c02134 32905362
    [Google Scholar]
  80. Stewart K.L. Radford S.E. Amyloid plaques beyond Aβ: A survey of the diverse modulators of amyloid aggregation. Biophys. Rev. 2017 9 4 405 419 10.1007/s12551‑017‑0271‑9 28631243
    [Google Scholar]
  81. Tapia-Arellano A. Cabrera P. Cortés-Adasme E. Riveros A. Hassan N. Kogan M.J. Tau- and α-synuclein-targeted gold nanoparticles: Applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J. Nanobiotechnology 2024 22 1 248 10.1186/s12951‑024‑02526‑0 38741193
    [Google Scholar]
  82. Cummings J.L. Gonzalez M.I. Pritchard M.C. May P.C. Toledo-Sherman L.M. Harris G.A. The therapeutic landscape of tauopathies: Challenges and prospects. Alzheimers Res. Ther. 2023 15 1 168 10.1186/s13195‑023‑01321‑7 37803386
    [Google Scholar]
  83. Pandey S.K. Singh R.K. Recent developments in nucleic acid-based therapies for Parkinson’s disease: Current status, clinical potential, and future strategies. Front. Pharmacol. 2022 13 Oct 986668 10.3389/fphar.2022.986668 36339626
    [Google Scholar]
  84. Ferguson M.W. Kennedy C.J. Palpagama T.H. Waldvogel H.J. Faull R.L.M. Kwakowsky A. Current and possible future therapeutic options for Huntington’s disease. J. Cent. Nerv. Syst. Dis. 2022 14 Apr 11795735221092517 10.1177/11795735221092517 35615642
    [Google Scholar]
  85. van der Bent M.L. Evers M.M. Vallès A. Emerging therapies for Huntington’s disease - focus on N-terminal huntingtin and huntingtin exon 1. Biologics 2022 16 141 160 10.2147/BTT.S270657 36213816
    [Google Scholar]
  86. Singh S. Khan S. Khan S. Ansari O. Malhotra N. Shukla S.K. Narang J. Muscle matters: Transforming amyotrophic lateral sclerosis diagnostics with next-gen biosensors and smart detection. ACS Chem. Neurosci. 2025 16 4 563 587 10.1021/acschemneuro.4c00664 39910731
    [Google Scholar]
  87. Trist B.G. Fifita J.A. Hogan A. Grima N. Smith B. Troakes C. Vance C. Shaw C. Al-Sarraj S. Blair I.P. Double K.L. Co-deposition of SOD1, TDP-43 and p62 proteinopathies in ALS: Evidence for multifaceted pathways underlying neurodegeneration. Acta Neuropathol. Commun. 2022 10 1 122 10.1186/s40478‑022‑01421‑9 36008843
    [Google Scholar]
  88. Prasad A. Bharathi V. Sivalingam V. Girdhar A. Patel B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2019 12 Feb 25 10.3389/fnmol.2019.00025 30837838
    [Google Scholar]
  89. Suk T.R. Rousseaux M.W.C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener. 2020 15 1 45 10.1186/s13024‑020‑00397‑1 32799899
    [Google Scholar]
  90. Bernard C.C.A. Johns T.G. Slavin A. Ichikawa M. Ewing C. Liu J. Bettadapura J. Myelin oligodendrocyte glycoprotein: A novel candidate autoantigen in multiple sclerosis. J. Mol. Med. 1997 75 2 77 88 10.1007/s001090050092 9083925
    [Google Scholar]
  91. Uliassi E. Bolognesi M.L. Milelli A. Targeting tau protein with proximity inducing modulators: A new frontier to combat tauopathies. ACS Pharmacol. Transl. Sci. 2025 8 3 654 672 10.1021/acsptsci.4c00733 40109749
    [Google Scholar]
  92. Zhang X. Wang J. Zhang Z. Ye K. Tau in neurodegenerative diseases: Molecular mechanisms, biomarkers, and therapeutic strategies. Transl. Neurodegener. 2024 13 1 40 10.1186/s40035‑024‑00429‑6 39107835
    [Google Scholar]
  93. Sorrentino Z.A. Goodwin M.S. Riffe C.J. Dhillon J.K.S. Xia Y. Gorion K.M. Vijayaraghavan N. McFarland K.N. Golbe L.I. Yachnis A.T. Giasson B.I. Unique α-synuclein pathology within the amygdala in Lewy body dementia: Implications for disease initiation and progression. Acta Neuropathol. Commun. 2019 7 1 142 10.1186/s40478‑019‑0787‑2 31477175
    [Google Scholar]
  94. Outeiro T.F. Koss D.J. Erskine D. Walker L. Kurzawa-Akanbi M. Burn D. Donaghy P. Morris C. Taylor J.P. Thomas A. Attems J. McKeith I. Dementia with Lewy bodies: An update and outlook. Mol. Neurodegener. 2019 14 1 5 10.1186/s13024‑019‑0306‑8 30665447
    [Google Scholar]
  95. Liu Y. Wang X. Campolo G. Teng X. Ying L. Edel J.B. Ivanov A.P. Single-molecule detection of α-synuclein oligomers in Parkinson’s disease patients using nanopores. ACS Nano 2023 17 22 22999 23009 10.1021/acsnano.3c08456 37947369
    [Google Scholar]
  96. Ou K. Jia Q. Li D. Li S. Li X.J. Yin P. Application of antisense oligonucleotide drugs in amyotrophic lateral sclerosis and Huntington’s disease. Transl. Neurodegener. 2025 14 1 4 10.1186/s40035‑025‑00466‑9 39838446
    [Google Scholar]
  97. Day J.W. Howell K. Place A. Long K. Rossello J. Kertesz N. Nomikos G. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr. 2022 22 1 632 10.1186/s12887‑022‑03671‑x 36329412
    [Google Scholar]
  98. Pérez-Mato M. López-Arias E. Bugallo-Casal A. Correa-Paz C. Arias S. Rodríguez-Yáñez M. Santamaría-Cadavid M. Campos F. New perspectives in neuroprotection for ischemic stroke. Neuroscience 2024 550 30 42 10.1016/j.neuroscience.2024.02.017 38387732
    [Google Scholar]
  99. Endres M. Moro M.A. Nolte C.H. Dames C. Buckwalter M.S. Meisel A. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ. Res. 2022 130 8 1167 1186 10.1161/CIRCRESAHA.121.319994 35420915
    [Google Scholar]
  100. De Meyer S.F. Stoll G. Wagner D.D. Kleinschnitz C. von Willebrand factor: An emerging target in stroke therapy. Stroke 2012 43 2 599 606 10.1161/STROKEAHA.111.628867 22180250
    [Google Scholar]
  101. Al Fayez N. Nassar M.S. Alshehri A.A. Alnefaie M.K. Almughem F.A. Alshehri B.Y. Alawad A.O. Tawfik E.A. Recent advancement in mRNA vaccine development and applications. Pharmaceutics 2023 15 7 1972 10.3390/pharmaceutics15071972 37514158
    [Google Scholar]
  102. An D. Frassetto A. Jacquinet E. Eybye M. Milano J. DeAntonis C. Nguyen V. Laureano R. Milton J. Sabnis S. Lukacs C.M. Guey L.T. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine 2019 45 519 528 10.1016/j.ebiom.2019.07.003 31303505
    [Google Scholar]
  103. Chen G.F. Xu T.H. Yan Y. Zhou Y.R. Jiang Y. Melcher, K Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017 38 9 1205 1235 10.1038/aps.2017.28 28713158
    [Google Scholar]
  104. Zheng H. Koo E.H. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener. 2011 6 1 27 10.1186/1750‑1326‑6‑27 21527012
    [Google Scholar]
  105. Turner P.R. O’Connor K. Tate W.P. Abraham W.C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 2003 70 1 1 32 10.1016/S0301‑0082(03)00089‑3 12927332
    [Google Scholar]
  106. Zhang Y. Thompson R. Zhang H. Xu H. APP processing in Alzheimer’s disease. Mol. Brain 2011 4 1 3 10.1186/1756‑6606‑4‑3 21214928
    [Google Scholar]
  107. Dang S. Wu S. Wang J. Li H. Huang M. He W. Li Y.M. Wong C.C.L. Shi Y. Cleavage of amyloid precursor protein by an archaeal presenilin homologue PSH. Proc. Natl. Acad. Sci. USA 2015 112 11 3344 3349 10.1073/pnas.1502150112 25733893
    [Google Scholar]
  108. Sun X. Chen W.D. Wang Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol. 2015 6 SEP 221 10.3389/fphar.2015.00221 26483691
    [Google Scholar]
  109. Baranello R. Bharani K. Padmaraju V. Chopra N. Lahiri D. Greig N. Pappolla M. Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Curr. Alzheimer Res. 2015 12 1 32 46 10.2174/1567205012666141218140953 25523424
    [Google Scholar]
  110. Yegambaram M. Manivannan B. Beach T. Halden R. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Curr. Alzheimer Res. 2015 12 2 116 146 10.2174/1567205012666150204121719 25654508
    [Google Scholar]
  111. Nelson O. Supnet C. Liu H. Bezprozvanny I. Familial Alzheimer’s disease mutations in presenilins: Effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes. J. Alzheimers Dis. 2010 21 3 781 793 10.3233/JAD‑2010‑100159 20634584
    [Google Scholar]
  112. Kent S.A. Spires-Jones T.L. Durrant C.S. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020 140 4 417 447 10.1007/s00401‑020‑02196‑w 32728795
    [Google Scholar]
  113. Morris G.P. Clark I.A. Vissel B. Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol. 2018 136 5 663 689 10.1007/s00401‑018‑1918‑8 30349969
    [Google Scholar]
  114. Smith C.D. Structural imaging in early pre-states of dementia. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 3 317 324 10.1016/j.bbadis.2011.07.002 21777674
    [Google Scholar]
  115. Zilocchi M. Wang C. Babu M. Li J. A panoramic view of proteomics and multiomics in precision health. iScience 2021 24 8 102925 10.1016/j.isci.2021.102925 34430814
    [Google Scholar]
  116. Quan M. Cao S. Wang Q. Wang S. Jia J. Genetic phenotypes of Alzheimer’s disease: mechanisms and potential therapy. Phenomics 2023 3 4 333 349 10.1007/s43657‑023‑00098‑x 37589021
    [Google Scholar]
  117. Yu Y. Yu S. Battaglia G. Tian X. Amyloid‐β in Alzheimer’s disease: Structure, toxicity, distribution, treatment, and prospects. Ibrain 2024 10 3 ibra.12155. 10.1002/ibra.12155 39346788
    [Google Scholar]
  118. Azargoonjahromi A. The duality of amyloid-β: Its role in normal and Alzheimer’s disease states. Mol. Brain 2024 17 1 44 10.1186/s13041‑024‑01118‑1 39020435
    [Google Scholar]
  119. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  120. Neuner S.M. Tcw J. Goate A.M. Genetic architecture of Alzheimer’s disease. Neurobiol. Dis. 2020 143 104976 10.1016/j.nbd.2020.104976 32565066
    [Google Scholar]
  121. Li Z. Shue F. Zhao N. Shinohara M. Bu G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 63 10.1186/s13024‑020‑00413‑4 33148290
    [Google Scholar]
  122. Jia L. Xu H. Chen S. Wang X. Yang J. Gong M. Wei C. Tang Y. Qu Q. Chu L. Shen L. Zhou C. Wang Q. Zhao T. Zhou A. Li Y. Li F. Li Y. Jin H. Qin Q. Jiao H. Li Y. Zhang H. Lyu D. Shi Y. Song Y. Jia J. The APOE ε4 exerts differential effects on familial and other subtypes of Alzheimer’s disease. Alzheimers Dement. 2020 16 12 1613 1623 10.1002/alz.12153 32881347
    [Google Scholar]
  123. Morris J.C. Roe C.M. Xiong C. Fagan A.M. Goate A.M. Holtzman D.M. Mintun M.A. APOEpredicts amyloid‐beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 2010 67 1 122 131 10.1002/ana.21843 20186853
    [Google Scholar]
  124. Holstege H. Beker N. Dijkstra T. Pieterse K. Wemmenhove E. Schouten K. Thiessens L. Horsten D. Rechtuijt S. Sikkes S. van Poppel F.W.A. Meijers-Heijboer H. Hulsman M. Scheltens P. The 100-plus Study of cognitively healthy centenarians: Rationale, design and cohort description. Eur. J. Epidemiol. 2018 33 12 1229 1249 10.1007/s10654‑018‑0451‑3 30362018
    [Google Scholar]
  125. Du X. Park J. Zhao R. Smith R.T. Koronyo Y. Koronyo-Hamaoui M. Gao L. Hyperspectral retinal imaging in Alzheimer’s disease and age-related macular degeneration: A review. Acta Neuropathol. Commun. 2024 12 1 157 10.1186/s40478‑024‑01868‑y 39363330
    [Google Scholar]
  126. Fernández-Calle R. Konings S.C. Frontiñán-Rubio J. García-Revilla J. Camprubí-Ferrer L. Svensson M. Martinson I. Boza-Serrano A. Venero J.L. Nielsen H.M. Gouras G.K. Deierborg T. APOE in the bullseye of neurodegenerative diseases: Impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases. Mol. Neurodegener. 2022 17 1 62 10.1186/s13024‑022‑00566‑4 36153580
    [Google Scholar]
  127. Hanafy A.S. Schoch S. Lamprecht A. CRISPR/Cas9 delivery potentials in Alzheimer’s disease management: A mini review. Pharmaceutics 2020 12 9 801 10.3390/pharmaceutics12090801 32854251
    [Google Scholar]
  128. Andrade-Guerrero J. Santiago-Balmaseda A. Jeronimo-Aguilar P. Vargas-Rodríguez I. Cadena-Suárez A.R. Sánchez-Garibay C. Pozo-Molina G. Méndez-Catalá C.F. Cardenas-Aguayo M.C. Diaz-Cintra S. Pacheco-Herrero M. Luna-Muñoz J. Soto-Rojas L.O. Alzheimer’s disease: An updated overview of its genetics. Int. J. Mol. Sci. 2023 24 4 3754 10.3390/ijms24043754 36835161
    [Google Scholar]
  129. De Plano L.M. Calabrese G. Conoci S. Guglielmino S.P.P. Oddo S. Caccamo A. Applications of CRISPR-Cas9 in Alzheimer’s disease and related disorders. Int. J. Mol. Sci. 2022 23 15 8714 10.3390/ijms23158714 35955847
    [Google Scholar]
  130. Bhardwaj S. Kesari K.K. Rachamalla M. Mani S. Ashraf G.M. Jha S.K. Kumar P. Ambasta R.K. Dureja H. Devkota H.P. Gupta G. Chellappan D.K. Singh S.K. Dua K. Ruokolainen J. Kamal M.A. Ojha S. Jha N.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J. Adv. Res. 2022 40 207 221 10.1016/j.jare.2021.07.001 36100328
    [Google Scholar]
  131. Ortiz-Virumbrales M. Moreno C.L. Kruglikov I. Marazuela P. Sproul A. Jacob S. Zimmer M. Paull D. Zhang B. Schadt E.E. Ehrlich M.E. Tanzi R.E. Arancio O. Noggle S. Gandy S. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol. Commun. 2017 5 1 77 10.1186/s40478‑017‑0475‑z 29078805
    [Google Scholar]
  132. Lu L. Yu X. Cai Y. Sun M. Yang H. Application of CRISPR/Cas9 in Alzheimer’s disease. Front. Neurosci. 2021 15 Dec 803894 10.3389/fnins.2021.803894 34992519
    [Google Scholar]
  133. T Rohn T.; Kim, N.; F Isho, N.; M Mack, J. The potential of CRISPR/Cas9 gene editing as a treatment strategy for Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism 2018 8 3 439 10.4172/2161‑0460.1000439 30090689
    [Google Scholar]
  134. György B. Lööv C. Zaborowski M.P. Takeda S. Kleinstiver B.P. Commins C. Kastanenka K. Mu D. Volak A. Giedraitis V. Lannfelt L. Maguire C.A. Joung J.K. Hyman B.T. Breakefield X.O. Ingelsson M. CRISPR/Cas9 mediated disruption of the swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol. Ther. Nucleic Acids 2018 11 429 440 10.1016/j.omtn.2018.03.007 29858078
    [Google Scholar]
  135. Good M.A. Hale G. The “Swedish” mutation of the amyloid precursor protein (APPswe) dissociates components of object-location memory in aged Tg2576 mice. Behav. Neurosci. 2007 121 6 1180 1191 10.1037/0735‑7044.121.6.1180 18085872
    [Google Scholar]
  136. Cole S.L. Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener. 2007 2 1 22 10.1186/1750‑1326‑2‑22 18005427
    [Google Scholar]
  137. Supakul S. Murakami R. Oyama C. Shindo T. Hatakeyama Y. Itsuno M. Bannai H. Shibata S. Maeda S. Okano H. Mutual interaction of neurons and astrocytes derived from iPSCs with APP V717L mutation developed the astrocytic phenotypes of Alzheimer’s disease. Inflamm. Regen. 2024 44 1 8 10.1186/s41232‑023‑00310‑5 38419091
    [Google Scholar]
  138. Raulin A.C. Doss S.V. Trottier Z.A. Ikezu T.C. Bu G. Liu C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022 17 1 72 10.1186/s13024‑022‑00574‑4 36348357
    [Google Scholar]
  139. Serrano-Pozo A. Das S. Hyman B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 20 1 68 80 10.1016/S1474‑4422(20)30412‑9 33340485
    [Google Scholar]
  140. Troutwine B.R. Hamid L. Lysaker C.R. Strope T.A. Wilkins H.M. Apolipoprotein E and Alzheimer’s disease. Acta Pharm. Sin. B 2022 12 2 496 510 10.1016/j.apsb.2021.10.002 35256931
    [Google Scholar]
  141. Liraz O. Boehm-Cagan A. Michaelson D.M. ApoE4 induces Aβ42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol. Neurodegener. 2013 8 1 16 10.1186/1750‑1326‑8‑16 23684315
    [Google Scholar]
  142. Frieden C. Garai K. Concerning the structure of apoE. Protein Sci. 2013 22 12 1820 1825 10.1002/pro.2379 24115173
    [Google Scholar]
  143. Jes P. Vigour of CRISPR/Cas9 gene editing in Alzheimer’s disease. J. Neurosci. Neurol. Disord. 2018 2 47 51 10.29328/journal.jnnd.1001014
    [Google Scholar]
  144. Lino C.A. Harper J.C. Carney J.P. Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018 25 1 1234 1257 10.1080/10717544.2018.1474964 29801422
    [Google Scholar]
  145. Riyad J.M. Weber T. Intracellular trafficking of adeno-associated virus (AAV) vectors: Challenges and future directions. Gene Ther. 2021 28 12 683 696 10.1038/s41434‑021‑00243‑z 33658649
    [Google Scholar]
  146. Di Lorenzo D. Tau protein and tauopathies: Exploring tau protein–protein and microtubule interactions, cross‐interactions and therapeutic strategies. ChemMedChem 2024 19 21 e202400180 10.1002/cmdc.202400180 39031682
    [Google Scholar]
  147. Acosta K. Brue C.R. Holubovska P. Kim H.J. Mayne L. Murakami K. Rhoades E. Structural insights into the role of the proline rich region in tau function. Structure 2025 33 3 465 474.e8 10.1016/j.str.2024.12.017 39826549
    [Google Scholar]
  148. Zhong Q. Congdon E.E. Nagaraja H.N. Kuret J. Tau isoform composition influences rate and extent of filament formation. J. Biol. Chem. 2012 287 24 20711 20719 10.1074/jbc.M112.364067 22539343
    [Google Scholar]
  149. Jadhav S. Avila J. Schöll M. Kovacs G.G. Kövari E. Skrabana R. A walk through tau therapeutic strategies. Acta Neuropathol. Commun. 2019 7 1 22 10.1186/s40478‑019‑0664‑z 30767766
    [Google Scholar]
  150. Lane-Donovan C. Boxer A.L. Disentangling tau: One protein, many therapeutic approaches. Neurotherapeutics 2024 21 2 e00321 10.1016/j.neurot.2024.e00321 38278659
    [Google Scholar]
  151. Luo M. Leski M.L. Andreadis A. Tau isoforms which contain the domain encoded by exon 6 and their role in neurite elongation. J. Cell. Biochem. 2004 91 5 880 895 10.1002/jcb.20029 15034924
    [Google Scholar]
  152. Rodrigues S. Anglada-Huguet M. Hochgräfe K. Kaniyappan S. Wegmann S. Mandelkow E.M. Spreading of tau protein does not depend on aggregation propensity. J. Mol. Neurosci. 2023 73 9-10 693 712 10.1007/s12031‑023‑02143‑w 37606769
    [Google Scholar]
  153. Piguet O. Hodges J.R. Behavioural-variant frontotemporal dementia: An update. Dement. Neuropsychol. 2013 7 1 10 18 10.1590/S1980‑57642013DN70100003 29213814
    [Google Scholar]
  154. Wattmo C. Blennow K. Hansson O. Cerebro-spinal fluid biomarker levels: Phosphorylated tau (T) and total tau (N) as markers for rate of progression in Alzheimer’s disease. BMC Neurol. 2020 20 1 10 10.1186/s12883‑019‑1591‑0 31918679
    [Google Scholar]
  155. Schoch K.M. DeVos S.L. Miller R.L. Chun S.J. Norrbom M. Wozniak D.F. Dawson H.N. Bennett C.F. Rigo F. Miller T.M. Increased 4R-tau induces pathological changes in a human-tau mouse model. Neuron 2016 90 5 941 947 10.1016/j.neuron.2016.04.042 27210553
    [Google Scholar]
  156. Valentino R.R. Scotton W.J. Roemer S.F. Lashley T. Heckman M.G. Shoai M. Martinez-Carrasco A. Tamvaka N. Walton R.L. Baker M.C. Macpherson H.L. Real R. Soto-Beasley A.I. Mok K. Revesz T. Christopher E.A. DeTure M. Seeley W.W. Lee E.B. Frosch M.P. Molina-Porcel L. Gefen T. Redding-Ochoa J. Ghetti B. Robinson A.C. Kobylecki C. Rowe J.B. Beach T.G. Teich A.F. Keith J.L. Bodi I. Halliday G.M. Gearing M. Arzberger T. Morris C.M. White C.L. Mechawar N. Boluda S. MacKenzie I.R. McLean C. Cykowski M.D. Wang S.H.J. Graff C. Nagra R.M. Kovacs G.G. Giaccone G. Neumann M. Ang L.C. Carvalho A. Morris H.R. Rademakers R. Hardy J.A. Dickson D.W. Rohrer J.D. Ross O.A. Warner T.T. Jaunmuktane Z. Boeve B.F. Duara R. Graff-Radford N.R. Josephs K.A. Knopman D.S. Koga S. Murray M.E. Lyons K.E. Pahwa R. Petersen R.C. Whitwell J.L. Grinberg L.T. Miller B. Schlereth A. Spina S. Grossman M. Irwin D.J. Suh E.R. Trojanowski J.Q. Van Deerlin V.M. Wolk D.A. Connors T.R. Dooley P.M. Oakley D.H. Aldecoa I. Balasa M. Gelpi E. Borrego-Écija S. Gascon-Bayarri J. Sánchez-Valle R. Sanz-Cartagena P. Piñol-Ripoll G. Bigio E.H. Flanagan M.E. Rogalski E.J. Weintraub S. Schneider J.A. Peng L. Zhu X. Chang K. Troncoso J.C. Prokop S. Newell K.L. Jones M. Richardson A. Roncaroli F. Snowden J. Allinson K. Singh P. Serrano G.E. Flowers X.E. Goldman J.E. Heaps A.C. Leskinen S.P. Black S.E. Masellis M. King A. Al-Sarraj S. Troakes C. Hodges J.R. Kril J.J. Kwok J.B. Piguet O. Roeber S. Attems J. Thomas A.J. Evers B.M. Bieniek K.F. Sieben A.A. Cras P.P. De Vil B.B. Bird T. Castellani R.J. Chaffee A. Franklin E. Haroutunian V. Jacobsen M. Keene D. Latimer C.S. Metcalf J. Perrin R.J. Purohit D.P. Rissman R.A. Schantz A. Walker J. De Deyn P.P. Duyckaerts C. Le Ber I. Seilhean D. Turbant-Leclere S. Ervin J.F. Nennesmo I. Riehl J. Nacmias B. Finger E.C. Blauwendraat C. Nalls M.A. Singleton A.B. Vitale D. Cunha C. Wszolek Z.K. MAPT H2 haplotype and risk of Pick’s disease in the Pick’s disease International Consortium: A genetic association study. Lancet Neurol. 2024 23 5 487 499 10.1016/S1474‑4422(24)00083‑8 38631765
    [Google Scholar]
  157. Pedicone C. Weitzman S.A. Renton A.E. Goate A.M. Unraveling the complex role of MAPT-containing H1 and H2 haplotypes in neurodegenerative diseases. Mol. Neurodegener. 2024 19 1 43 10.1186/s13024‑024‑00731‑x 38812061
    [Google Scholar]
  158. Labbé C. Heckman M.G. Lorenzo-Betancor O. Soto-Ortolaza A.I. Walton R.L. Murray M.E. Allen M. Uitti R.J. Wszolek Z.K. Smith G.E. Kantarci K. Knopman D.S. Lowe V.J. Jack C.R. Ertekin-Taner N. Hassan A. Savica R. Petersen R.C. Parisi J.E. Maraganore D.M. Graff-Radford N.R. Ferman T.J. Boeve B.F. Dickson D.W. Ross O.A. MAPThaplotype H1G is associated with increased risk of dementia with Lewy bodies. Alzheimers Dement. 2016 12 12 1297 1304 10.1016/j.jalz.2016.05.002 27287057
    [Google Scholar]
  159. Strang K.H. Golde T.E. Giasson B.I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest. 2019 99 7 912 928 10.1038/s41374‑019‑0197‑x 30742061
    [Google Scholar]
  160. Cai Y. An S.S.A. Kim S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin. Interv. Aging 2015 10 1163 1172 10.2147/CIA.S85808 26203236
    [Google Scholar]
  161. Sexton C.E. Bitan G. Bowles K.R. Brys M. Buée L. Maina M.B. Clelland C.D. Cohen A.D. Crary J.F. Dage J.L. Diaz K. Frost B. Gan L. Goate A.M. Golbe L.I. Hansson O. Karch C.M. Kolb H.C. La Joie R. Lee S.E. Matallana D. Miller B.L. Onyike C.U. Quiroz Y.T. Rexach J.E. Rohrer J.D. Rommel A. Sadri-Vakili G. Schindler S.E. Schneider J.A. Sperling R.A. Teunissen C.E. Weninger S.C. Worley S.L. Zheng H. Carrillo M.C. Novel avenues of tau research. Alzheimers Dement. 2024 20 3 2240 2261 10.1002/alz.13533 38170841
    [Google Scholar]
  162. Guo T. Noble W. Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017 133 5 665 704 10.1007/s00401‑017‑1707‑9 28386764
    [Google Scholar]
  163. Powell W.C. Nahum M. Pankratz K. Herlory M. Greenwood J. Poliyenko D. Holland P. Jing R. Biggerstaff L. Stowell M.H.B. Walczak M.A. Post-translational modifications control phase transitions of tau. ACS Cent. Sci. 2024 10 11 2145 2161 10.1021/acscentsci.4c01319 39634209
    [Google Scholar]
  164. Noble W. Hanger D.P. Miller C.C.J. Lovestone S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 2013 4 83 10.3389/fneur.2013.00083 23847585
    [Google Scholar]
  165. Xia Y. Prokop S. Giasson B.I. “Don’t Phos Over Tau”: Recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol. Neurodegener. 2021 16 1 37 10.1186/s13024‑021‑00460‑5 34090488
    [Google Scholar]
  166. Min S.W. Cho S.H. Zhou Y. Schroeder S. Haroutunian V. Seeley W.W. Huang E.J. Shen Y. Masliah E. Mukherjee C. Meyers D. Cole P.A. Ott M. Gan L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010 67 6 953 966 10.1016/j.neuron.2010.08.044 20869593
    [Google Scholar]
  167. Caballero B. Bourdenx M. Luengo E. Diaz A. Sohn P.D. Chen X. Wang C. Juste Y.R. Wegmann S. Patel B. Young Z.T. Kuo S.Y. Rodriguez-Navarro J.A. Shao H. Lopez M.G. Karch C.M. Goate A.M. Gestwicki J.E. Hyman B.T. Gan L. Cuervo A.M. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat. Commun. 2021 12 1 2238 10.1038/s41467‑021‑22501‑9 33854069
    [Google Scholar]
  168. Lee B.E. Suh P.G. Kim J.I.O. GlcNAcylation in health and neurodegenerative diseases. Exp. Mol. Med. 2021 53 11 1674 1682 10.1038/s12276‑021‑00709‑5
    [Google Scholar]
  169. Illiano A. Pinto G. Melchiorre C. Carpentieri A. Faraco V. Amoresano A. Protein glycosylation investigated by mass spectrometry: An overview. Cells 2020 9 9 1986 10.3390/cells9091986 32872358
    [Google Scholar]
  170. Ercan-Herbst E. Ehrig J. Schöndorf D.C. Behrendt A. Klaus B. Gomez Ramos B. Prat Oriol N. Weber C. Ehrnhoefer D.E. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer’s disease brain. Acta Neuropathol. Commun. 2019 7 1 192 10.1186/s40478‑019‑0823‑2 31796124
    [Google Scholar]
  171. Rizzi L. Grinberg L.T. Exploring the significance of caspase-cleaved tau in tauopathies and as a complementary pathology to phospho-tau in Alzheimer’s disease: Implications for biomarker development and therapeutic targeting. Acta Neuropathol. Commun. 2024 12 1 36 10.1186/s40478‑024‑01744‑9 38419122
    [Google Scholar]
  172. Feldman H.H. Cummings J.L. Boxer A.L. Staffaroni A.M. Knopman D.S. Sukoff Rizzo S.J. Territo P.R. Arnold S.E. Ballard C. Beher D. Boeve B.F. Dacks P.A. Diaz K. Ewen C. Fiske B. Gonzalez M.I. Harris G.A. Hoffman B.J. Martinez T.N. McDade E. Nisenbaum L.K. Palma J.A. Quintana M. Rabinovici G.D. Rohrer J.D. Rosen H.J. Troyer M.D. Kim D.Y. Tanzi R.E. Zetterberg H. Ziogas N.K. May P.C. Rommel A. A framework for translating tauopathy therapeutics: Drug discovery to clinical trials. Alzheimers Dement. 2024 20 11 8129 8152 10.1002/alz.14250 39316411
    [Google Scholar]
  173. VandeVrede L. Boxer A.L. Polydoro M. Targeting tau: Clinical trials and novel therapeutic approaches. Neurosci. Lett. 2020 731 134919 10.1016/j.neulet.2020.134919 32380145
    [Google Scholar]
  174. Valencia A. Bieber V.L.R. Bajrami B. Marsh G. Hamann S. Wei R. Ling K. Rigo F. Arnold H.M. Golonzhka O. Hering H. Antisense oligonucleotide-mediated reduction of HDAC6 does not reduce tau pathology in P301S tau transgenic mice. Front. Neurol. 2021 12 Jun 624051 10.3389/fneur.2021.624051 34262517
    [Google Scholar]
  175. Huang L.K. Kuan Y.C. Lin H.W. Hu C.J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. J. Biomed. Sci. 2023 30 1 83 10.1186/s12929‑023‑00976‑6 37784171
    [Google Scholar]
  176. Lauretti E. Praticò D. Alzheimer’s disease: Phenotypic approaches using disease models and the targeting of tau protein. Expert Opin. Ther. Targets 2020 24 4 319 330 10.1080/14728222.2020.1737012 32116063
    [Google Scholar]
  177. Rook M.E. Southwell, AL Antisense oligonucleotide therapy: From design to the Huntington disease clinic. BioDrugs 2022 36 2 105 119 10.1007/s40259‑022‑00519‑9 35254632
    [Google Scholar]
  178. Alquezar C. Arya S. Kao A.W. Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol. 2021 11 595532 10.3389/fneur.2020.595532 33488497
    [Google Scholar]
  179. Zhou Y. Shi J. Chu D. Hu W. Guan Z. Gong C.X. Iqbal K. Liu F. Relevance of phosphorylation and truncation of tau to the etiopathogenesis of Alzheimer’s disease. Front. Aging Neurosci. 2018 10 FEB 27 10.3389/fnagi.2018.00027 29472853
    [Google Scholar]
  180. Le Corre S. Klafki H.W. Plesnila N. Hübinger G. Obermeier A. Sahagún H. Monse B. Seneci P. Lewis J. Eriksen J. Zehr C. Yue M. McGowan E. Dickson D.W. Hutton M. Roder H.M. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc. Natl. Acad. Sci. USA 2006 103 25 9673 9678 10.1073/pnas.0602913103 16769887
    [Google Scholar]
  181. De Simone A. Tumiatti V. Andrisano V. Milelli A. Glycogen synthase kinase 3β: A new gold rush in Anti-Alzheimer’s disease multitarget drug discovery? J. Med. Chem. 2021 64 1 26 41 10.1021/acs.jmedchem.0c00931 33346659
    [Google Scholar]
  182. Trinidad J.C. Barkan D.T. Gulledge B.F. Thalhammer A. Sali A. Schoepfer R. Burlingame A.L. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol. Cell. Proteomics 2012 11 8 215 229 10.1074/mcp.O112.018366 22645316
    [Google Scholar]
  183. Sharma A. Singh A. Debnath R. Gupta G.D. Sharma K. Role of O-GlcNAcylation in Alzheimer’s disease: Insights and perspectives. Eur. J. Med. Chem. Rep. 2024 12 100195 10.1016/j.ejmcr.2024.100195
    [Google Scholar]
  184. Hastings N.B. Wang X. Song L. Butts B.D. Grotz D. Hargreaves R. Fred Hess J. Hong K.L.K. Huang C.R.R. Hyde L. Laverty M. Lee J. Levitan D. Lu S.X. Maguire M. Mahadomrongkul V. McEachern E.J. Ouyang X. Rosahl T.W. Selnick H. Stanton M. Terracina G. Vocadlo D.J. Wang G. Duffy J.L. Parker E.M. Zhang L. Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol. Neurodegener. 2017 12 1 39 10.1186/s13024‑017‑0181‑0 28521765
    [Google Scholar]
  185. VandeVrede L. Ljubenkov P.A. Rojas J.C. Welch A.E. Boxer A.L. Four-repeat tauopathies: Current management and future treatments. Neurotherapeutics 2020 17 4 1563 1581 10.1007/s13311‑020‑00888‑5 32676851
    [Google Scholar]
  186. Soeda Y. Takashima A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci. 2020 13 590896 10.3389/fnmol.2020.590896 33343298
    [Google Scholar]
  187. Ryan JM Quattropani A Abd-Elaziz K Daas I ; den, ; Schneider, M; Ousson, S O1-12-05: Phase 1 study in healthy volunteers of the O-GlcNAcase inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies. Alzheimers Dement, 2018 14 7S_Part_4 P251 10.1016/j.jalz.2018.06.2400
    [Google Scholar]
  188. Baddeley T.C. McCaffrey J. Storey J.M.D. Cheung J.K.S. Melis V. Horsley D. Harrington C.R. Wischik C.M. Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer’s disease. J. Pharmacol. Exp. Ther. 2015 352 1 110 118 10.1124/jpet.114.219352 25320049
    [Google Scholar]
  189. Bentham P. Staff R.T. Schelter B.O. Shiells H. Harrington C.R. Wischik C.M. Long-term hydromethylthionine treatment is associated with delayed clinical onset and slowing of cerebral atrophy in a pre-symptomatic P301S MAPT mutation carrier. J. Alzheimers Dis. 2021 83 3 1017 1023 10.3233/JAD‑210390 34366349
    [Google Scholar]
  190. Lionardi S.K. Hengky A. Haruman S.P. Blue-green urine in traditional medicine consumption: A case report and review of the literature. Ren. Replace. Ther. 2024 10 1 15 10.1186/s41100‑024‑00524‑4
    [Google Scholar]
  191. Meade R.M. Fairlie D.P. Mason J.M. Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Mol. Neurodegener. 2019 14 1 29 10.1186/s13024‑019‑0329‑1 31331359
    [Google Scholar]
  192. Shim K.H. Kang M.J. Youn Y.C. An S.S.A. Kim S. Alpha-synuclein: A pathological factor with Aβ and tau and biomarker in Alzheimer’s disease. Alzheimers Res. Ther. 2022 14 1 201 10.1186/s13195‑022‑01150‑0 36587215
    [Google Scholar]
  193. Lautenschläger J. Stephens A.D. Fusco G. Ströhl F. Curry N. Zacharopoulou M. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat. Commun. 2018 9 1 712 10.1038/s41467‑018‑03111‑4 29459792
    [Google Scholar]
  194. Prabantu V.M. Naveenkumar N. Srinivasan N. Influence of disease-causing mutations on protein structural networks. Front. Mol. Biosci. 2021 7 Mar 620554 10.3389/fmolb.2020.620554 33778000
    [Google Scholar]
  195. Ayers J.I. Lee J. Monteiro O. Woerman A.L. Lazar A.A. Condello C. Paras N.A. Prusiner S.B. Different α-synuclein prion strains cause dementia with Lewy bodies and multiple system atrophy. Proc. Natl. Acad. Sci. USA 2022 119 6 e2113489119 10.1073/pnas.2113489119 35115402
    [Google Scholar]
  196. Srinivasan E. Chandrasekhar G. Chandrasekar P. Anbarasu K. Vickram A.S. Karunakaran R. Rajasekaran R. Srikumar P.S. Alpha-synuclein aggregation in Parkinson’s disease. Front. Med. 2021 8 736978 10.3389/fmed.2021.736978 34733860
    [Google Scholar]
  197. Amos S.B.T.A. Schwarz T.C. Shi J. Cossins B.P. Baker T.S. Taylor R.J. Konrat R. Sansom M.S.P. Membrane interactions of α-synuclein revealed by multiscale molecular dynamics simulations, markov state models, and NMR. J. Phys. Chem. B 2021 125 11 2929 2941 10.1021/acs.jpcb.1c01281 33719460
    [Google Scholar]
  198. Zhao K. Lim Y.J. Liu Z. Long H. Sun Y. Hu J.J. Zhao C. Tao Y. Zhang X. Li D. Li Y.M. Liu C. Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc. Natl. Acad. Sci. USA 2020 117 33 20305 20315 10.1073/pnas.1922741117 32737160
    [Google Scholar]
  199. Emendato A. Spadaccini R. De Santis A. Guerrini R. D’Errico G. Picone D. Preferential interaction of the Alzheimer peptide Aβ‐(1–42) with Omega‐3‐containing lipid bilayers: Structure and interaction studies. FEBS Lett. 2016 590 4 582 591 10.1002/1873‑3468.12082 26821608
    [Google Scholar]
  200. Zhang K. Tang Y. Meng L. Zhu L. Zhou X. Zhao Y. Yan X. Tang B. Guo J. The effects of SNCA rs894278 on resting-state brain activity in Parkinson’s disease. Front. Neurosci. 2019 13 FEB 47 10.3389/fnins.2019.00047 30778284
    [Google Scholar]
  201. Zhang Y. Shu L. Sun Q. Pan H. Guo J. Tang B. A comprehensive analysis of the association between SNCA polymorphisms and the risk of Parkinson’s disease. Front. Mol. Neurosci. 2018 11 Oct 391 10.3389/fnmol.2018.00391 30410434
    [Google Scholar]
  202. Kingo K. Aunin E. Karelson M. Rätsep R. Silm H. Vasar E. Kõks S. Expressional changes in the intracellular melanogenesis pathways and their possible role the pathogenesis of vitiligo. J. Dermatol. Sci. 2008 52 1 39 46 10.1016/j.jdermsci.2008.03.013 18514490
    [Google Scholar]
  203. Miyake Y. Tanaka K. Fukushima W. Kiyohara C. Sasaki S. Tsuboi Y. Yamada T. Oeda T. Shimada H. Kawamura N. Sakae N. Fukuyama H. Hirota Y. Nagai M. SNCA polymorphisms, smoking, and sporadic Parkinson’s disease in Japanese. Parkinsonism Relat. Disord. 2012 18 5 557 561 10.1016/j.parkreldis.2012.02.016 22425546
    [Google Scholar]
  204. Tuttle M.D. Comellas G. Nieuwkoop A.J. Covell D.J. Berthold D.A. Kloepper K.D. Courtney J.M. Kim J.K. Barclay A.M. Kendall A. Wan W. Stubbs G. Schwieters C.D. Lee V.M.Y. George J.M. Rienstra C.M. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 2016 23 5 409 415 10.1038/nsmb.3194 27018801
    [Google Scholar]
  205. Guerrero-Ferreira R. Taylor N.M.I. Arteni A.A. Kumari P. Mona D. Ringler P. Britschgi M. Lauer M.E. Makky A. Verasdonck J. Riek R. Melki R. Meier B.H. Böckmann A. Bousset L. Stahlberg H. Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. eLife 2019 8 e48907 10.7554/eLife.48907 31815671
    [Google Scholar]
  206. Dichiara M. Cosentino G. Giordano G. Pasquinucci L. Marrazzo A. Costanzo G. Amata E. Designing drugs optimized for both blood–brain barrier permeation and intra-cerebral partition. Expert Opin. Drug Discov. 2024 19 3 317 329 10.1080/17460441.2023.2294118 38145409
    [Google Scholar]
  207. Borgkvist A. Mosharov E.V. Sulzer D. Calcium currents regulate dopamine autoreceptors. Brain 2014 137 8 2113 2115 10.1093/brain/awu150 25057130
    [Google Scholar]
  208. Smeele P.H. Vaccari T. Snapshots from within the cell: Novel trafficking and non trafficking functions of Snap29 during tissue morphogenesis. Semin. Cell Dev. Biol. 2023 133 42 52 10.1016/j.semcdb.2022.02.024 35256275
    [Google Scholar]
  209. Best J.A. Nijhout H.F. Reed M.C. Homeostatic mechanisms in dopamine synthesis and release: A mathematical model. Theor. Biol. Med. Model. 2009 6 1 21 10.1186/1742‑4682‑6‑21 19740446
    [Google Scholar]
  210. Zhou Z.D. Yi L.X. Wang D.Q. Lim T.M. Tan E.K. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl. Neurodegener. 2023 12 1 44 10.1186/s40035‑023‑00378‑6 37718439
    [Google Scholar]
  211. Mackie P. Lebowitz J. Saadatpour L. Nickoloff E. Gaskill P. Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson’s Disease. Brain Behav. Immun. 2018 70 21 35 10.1016/j.bbi.2018.03.020 29551693
    [Google Scholar]
  212. Sauer N. Szlasa W. Jonderko L. Oślizło M. Kunachowicz D. Kulbacka J. Karłowicz-Bodalska K. LAG-3 as a potent target for novel anticancer therapies of a wide range of tumors. Int. J. Mol. Sci. 2022 23 17 9958 10.3390/ijms23179958 36077354
    [Google Scholar]
  213. Fouka M. Mavroeidi P. Tsaka G. Xilouri M. In search of effective treatments targeting α-synuclein toxicity in synucleinopathies: Pros and cons. Front. Cell Dev. Biol. 2020 8 Sep 559791 10.3389/fcell.2020.559791 33015057
    [Google Scholar]
  214. Hu J. Ma A. Dinner A.R. Monte Carlo simulations of biomolecules: The MC module in CHARMM. J. Comput. Chem. 2006 27 2 203 216 10.1002/jcc.20327 16323162
    [Google Scholar]
  215. Guedes I.A. Pereira F.S.S. Dardenne L.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges. Front. Pharmacol. 2018 9 SEP 1089 10.3389/fphar.2018.01089 30319422
    [Google Scholar]
  216. Miserez A. Yu J. Mohammadi P. Protein-based biological materials: Molecular design and artificial production. Chem. Rev. 2023 123 5 2049 2111 10.1021/acs.chemrev.2c00621 36692900
    [Google Scholar]
  217. MacLeod D.A. Rhinn H. Kuwahara T. Zolin A. Di Paolo G. McCabe B.D. Marder K.S. Honig L.S. Clark L.N. Small S.A. Abeliovich A. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 2013 77 3 425 439 10.1016/j.neuron.2012.11.033 23395371
    [Google Scholar]
  218. Rahman M.M. Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol. Neurodegener. 2021 16 1 59 10.1186/s13024‑021‑00465‑0 34454574
    [Google Scholar]
  219. Kahler A. Horn A.H.C. Sticht H. Stability of single and double layer fibrillar amyloid-β oligomers. J. Cheminform. 2013 5 S1 9 10.1186/1758‑2946‑5‑S1‑P9
    [Google Scholar]
  220. Roy A. Chandra K. Dolui S. Maiti N.C. Envisaging the structural elevation in the early event of oligomerization of disordered amyloid β peptide. ACS Omega 2017 2 8 4316 4327 10.1021/acsomega.7b00522 31457723
    [Google Scholar]
  221. Iyer A. Sidhu A. Subramaniam V. How important is the N-terminal acetylation of alpha-synuclein for its function and aggregation into amyloids? Front. Neurosci. 2022 16 Nov 1003997 10.3389/fnins.2022.1003997 36466161
    [Google Scholar]
  222. Bustamante-Barrientos F.A. Luque-Campos N. Araya M.J. Lara-Barba E. de Solminihac J. Pradenas C. Molina L. Herrera-Luna Y. Utreras-Mendoza Y. Elizondo-Vega R. Vega-Letter A.M. Luz-Crawford P. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J. Transl. Med. 2023 21 1 613 10.1186/s12967‑023‑04493‑w 37689642
    [Google Scholar]
  223. Jin S.M. Youle R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012 125 Pt 4 795 799 10.1242/jcs.093849 22448035
    [Google Scholar]
  224. Kowalczyk P. Sulejczak D. Kleczkowska P. Bukowska-Ośko I. Kucia M. Popiel M. Wietrak E. Kramkowski K. Wrzosek K. Kaczyńska K. Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 2021 22 24 13384 10.3390/ijms222413384 34948180
    [Google Scholar]
  225. Mencke P. Boussaad I. Romano C.D. Kitami T. Linster C.L. Krüger R. The role of DJ-1 in cellular metabolism and pathophysiological implications for Parkinson’s disease. Cells 2021 10 2 347 10.3390/cells10020347 33562311
    [Google Scholar]
  226. Boer D.E.C. van Smeden J. Bouwstra J.A. Aerts J.M.F.G. Glucocerebrosidase: Functions in and beyond the lysosome. J. Clin. Med. 2020 9 3 736 10.3390/jcm9030736 32182893
    [Google Scholar]
  227. Verma M. Steer E.K. Chu C.T. ERKed by LRRK2: A cell biological perspective on hereditary and sporadic Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 8 1273 1281 10.1016/j.bbadis.2013.11.005 24225420
    [Google Scholar]
  228. Azkona G. López de Maturana R. del Rio P. Sousa A. Vazquez N. Zubiarrain A. Jimenez-Blasco D. Bolaños J.P. Morales B. Auburger G. Arbelo J.M. Sánchez-Pernaute R. LRRK2 expression is deregulated in fibroblasts and neurons from parkinson patients with mutations in PINK1. Mol. Neurobiol. 2018 55 1 506 516 10.1007/s12035‑016‑0303‑7 27975167
    [Google Scholar]
  229. Rahman M. Bilal M. Shah J.A. Kaushik A. Teissedre P.L. Kujawska M. CRISPR-Cas9-based technology and its relevance to gene editing in Parkinson’s disease. Pharmaceutics 2022 14 6 1252 10.3390/pharmaceutics14061252 35745824
    [Google Scholar]
  230. Uchihara T. Giasson B.I. Propagation of alpha-synuclein pathology: Hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol. 2016 131 1 49 73 10.1007/s00401‑015‑1485‑1 26446103
    [Google Scholar]
  231. Arias-Fuenzalida J. Jarazo J. Qing X. Walter J. Gomez-Giro G. Nickels S.L. Zaehres H. Schöler H.R. Schwamborn J.C. FACS-assisted CRISPR-Cas9 genome editing facilitates Parkinson’s Disease modeling. Stem Cell Reports 2017 9 5 1423 1431 10.1016/j.stemcr.2017.08.026 28988985
    [Google Scholar]
  232. Pinjala P. Tryphena K.P. Prasad R. Khatri D.K. Sun W. Singh S.B. Gugulothu D. Srivastava S. Vora L. CRISPR/Cas9 assisted stem cell therapy in Parkinson’s disease. Biomater. Res. 2023 27 1 46 10.1186/s40824‑023‑00381‑y 37194005
    [Google Scholar]
  233. Breydo L. Wu J.W. Uversky V.N. α-Synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 2 261 285 10.1016/j.bbadis.2011.10.002 22024360
    [Google Scholar]
  234. Kim S. Yun S.P. Lee S. Umanah G.E. Bandaru V.V.R. Yin X. Rhee P. Karuppagounder S.S. Kwon S.H. Lee H. Mao X. Kim D. Pandey A. Lee G. Dawson V.L. Dawson T.M. Ko H.S. GBA1 deficiency negatively affects physiological α-synuclein tetramers and related multimers. Proc. Natl. Acad. Sci. USA 2018 115 4 798 803 10.1073/pnas.1700465115 29311330
    [Google Scholar]
  235. McTague A. Rossignoli G. Ferrini A. Barral S. Kurian M.A. Genome editing in iPSC-based neural systems: from disease models to future therapeutic strategies. Front. Genome Ed 2021 3 630600 10.3389/fgeed.2021.630600 34713254
    [Google Scholar]
  236. Amirian R. Badrbani M.A. Derakhshankhah H. Izadi Z. Shahbazi M.A. Targeted protein degradation for the treatment of Parkinson’s disease: Advances and future perspective. Biomed. Pharmacother. 2023 166 115408 10.1016/j.biopha.2023.115408 37651798
    [Google Scholar]
  237. Maiti P. Manna J. Dunbar G.L. Maiti P. Dunbar G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 2017 6 1 28 10.1186/s40035‑017‑0099‑z 29090092
    [Google Scholar]
  238. Raikwar S.P. Kikkeri N.S. Sakuru R. Saeed D. Zahoor H. Premkumar K. Mentor S. Thangavel R. Dubova I. Ahmed M.E. Selvakumar G.P. Kempuraj D. Zaheer S. Iyer S.S. Zaheer A. Next generation precision Medicine: CRISPR-mediated genome editing for the treatment of neurodegenerative disorders. J. Neuroimmune Pharmacol. 2019 14 4 608 641 10.1007/s11481‑019‑09849‑y 31011884
    [Google Scholar]
  239. Liu Z. Song S.Y. Genomic and transcriptomic approaches advance the diagnosis and prognosis of neurodegenerative diseases. Genes 2025 16 2 135 10.3390/genes16020135
    [Google Scholar]
  240. Weggen S. Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer’s disease. Alzheimers Res. Ther. 2012 4 2 9 10.1186/alzrt107 22494386
    [Google Scholar]
  241. Molla G. Bitew M. Revolutionizing personalized medicine: Synergy with multi-omics data generation, main hurdles, and future perspectives. Biomedicines 2024 12 12 2750 10.3390/biomedicines12122750 39767657
    [Google Scholar]
  242. Firdaus Z. Li X. Unraveling the genetic landscape of neurological disorders: Insights into pathogenesis, techniques for variant identification, and therapeutic approaches. Int. J. Mol. Sci. 2024 25 4 2320 10.3390/ijms25042320
    [Google Scholar]
  243. Krawczuk D. Groblewska M. Mroczko J. Winkel I. Mroczko B. The role of α-synuclein in etiology of neurodegenerative diseases. Int. J. Mol. Sci. 2024 25 17 9197 10.3390/ijms25179197 39273146
    [Google Scholar]
  244. Hanna E. Rémuzat C. Auquier P. Toumi M. Gene therapies development: Slow progress and promising prospect. J. Mark. Access Health Policy 2017 5 1 1265293 10.1080/20016689.2017.1265293 28265348
    [Google Scholar]
  245. Zhang X.H. Tee L.Y. Wang X.G. Huang Q.S. Yang S.H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 2015 4 11 e264 10.1038/mtna.2015.37 26575098
    [Google Scholar]
  246. Ran F.A. Hsu P.D. Lin C.Y. Gootenberg J.S. Konermann S. Trevino A.E. Scott D.A. Inoue A. Matoba S. Zhang Y. Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013 154 6 1380 1389 10.1016/j.cell.2013.08.021 23992846
    [Google Scholar]
  247. Cui Y. Xu J. Cheng M. Liao X. Peng S. Review of CRISPR/Cas9 sgRNA design tools. Interdiscip. Sci. 2018 10 2 455 465 10.1007/s12539‑018‑0298‑z 29644494
    [Google Scholar]
  248. Ihry R.J. Worringer K.A. Salick M.R. Frias E. Ho D. Theriault K. Kommineni S. Chen J. Sondey M. Ye C. Randhawa R. Kulkarni T. Yang Z. McAllister G. Russ C. Reece-Hoyes J. Forrester W. Hoffman G.R. Dolmetsch R. Kaykas A. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018 24 7 939 946 10.1038/s41591‑018‑0050‑6 29892062
    [Google Scholar]
  249. Cullot G. Boutin J. Toutain J. Prat F. Pennamen P. Rooryck C. Teichmann M. Rousseau E. Lamrissi-Garcia I. Guyonnet-Duperat V. Bibeyran A. Lalanne M. Prouzet-Mauléon V. Turcq B. Ged C. Blouin J.M. Richard E. Dabernat S. Moreau-Gaudry F. Bedel A. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 2019 10 1 1136 10.1038/s41467‑019‑09006‑2 30850590
    [Google Scholar]
  250. Xu X. Wan T. Xin H. Li D. Pan H. Wu J. Ping Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J. Gene Med. 2019 21 7 e3107 10.1002/jgm.3107 31237055
    [Google Scholar]
  251. Arnold S.E. Hyman B.T. Betensky R.A. Dodge H.H. Pathways to personalized medicine—Embracing heterogeneity for progress in clinical therapeutics research in Alzheimer’s disease. Alzheimers Dement. 2024 20 10 7384 7394 10.1002/alz.14063 39240044
    [Google Scholar]
  252. Hadi F. Akrami H. Totonchi M. Barzegar A. Nabavi S.M. Shahpasand K. α‐synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson disease. J. Neurochem. 2021 157 3 727 751 10.1111/jnc.15257 33264426
    [Google Scholar]
  253. Shi Y. Zhao Y. Lu L. Gao Q. Yu D. Sun M. CRISPR/Cas9: Implication for modeling and therapy of amyotrophic lateral sclerosis. Front. Neurosci. 2023 17 1223777 10.3389/fnins.2023.1223777 37483353
    [Google Scholar]
/content/journals/cg/10.2174/0113892029372437251010114053
Loading
/content/journals/cg/10.2174/0113892029372437251010114053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test