Skip to content
2000
image of Application of Machine Learning and Mendelian Randomization Analysis to Identify the Cuproptosis-Related Biomarker and Its Related Regulation in Osteonecrosis of the Femoral Head

Abstract

Introduction

Osteonecrosis of the Femoral Head (ONFH) is one of the common refractory diseases. However, the role of cuproptosis in ONFH pathogenesis remains unexplored. This study aimed to investigate the potential relationship between cuproptosis and ONFH.

Methods

ONFH-related datasets were obtained from the Gene Expression Omnibus (GEO) database, and cuproptosis-related genes in the GSE123568 dataset were identified through differential expression analysis. To further discover potential cuproptosis-related biomarkers, Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and Support Vector Machine (SVM) analysis were conducted. The Receiver Operating Characteristic (ROC) curve analysis was used to explore the diagnostic value of cuproptosis-related biomarkers. The summary Statistics-based Mendelian Randomization (SMR) algorithm was used to investigate the causal relationship between the related genes and ONFH. The immune infiltration analysis was conducted to assess the effect of immune cells on ONFH. Subsequently, the GSE74089 and GSE89587 datasets were used to validate gene expression levels and predict the lncRNA-miRNA-mRNA network. Finally, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was employed to validate the expression of these genes.

Results

The study showed that the upregulation of , a cuproptosis-related biomarker, may contribute to the development of ONFH. Additionally, immune cells were found to play a crucial role in ONFH, and PDHB showed a significant association with various immune cells. Furthermore, the study identified the existence of the // regulatory pathway, which may play a critical role in ONFH through cuproptosis.

Discussion

This study discovered a cuproptosis-related regulating pathway, MIR22HG/let-7c-5p/PDHB. This can provide new insights into the treatment of ONFH. However, further experimental validation is needed.

Conclusion

, identified as a cuproptosis-related biomarker, can induce ONFH through cuproptosis. also contributes to the pathogenesis and progression of ONFH by influencing immune cell function. This is most likely mediated through the regulatory interaction between and .

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029373131251017114954
2025-10-23
2025-12-04
Loading full text...

Full text loading...

References

  1. Li Z. Yang B. Weng X. Tse G. Chan M.T.V. Wu W.K.K. Emerging roles of MicroRNAs in osteonecrosis of the femoral head. Cell Prolif. 2018 51 1 12405 10.1111/cpr.12405 29131454
    [Google Scholar]
  2. Villa J.C. Husain S. van der List J.P. Gianakos A. Lane J.M. Treatment of pre-collapse stages of osteonecrosis of the femoral head: A systematic review of randomized control trials. HSS J. 2016 12 3 261 271 10.1007/s11420‑016‑9505‑9 27703421
    [Google Scholar]
  3. Liu G. Luo S. Lei Y. Jiao M. Cao R. Guan H. Tian R. Wang K. Yang P. Osteogenesis-related long noncoding RNA GAS5 as a novel biomarker for osteonecrosis of femoral head. Front. Cell Dev. Biol. 2022 10 857612 10.3389/fcell.2022.857612 35392165
    [Google Scholar]
  4. Chang C. Greenspan A. Gershwin M.E. The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. J. Autoimmun. 2020 110 102460 10.1016/j.jaut.2020.102460 32307211
    [Google Scholar]
  5. Meng K. Liu Y. Ruan L. Chen L. Chen Y. Liang Y. Suppression of apoptosis in osteocytes, the potential way of natural medicine in the treatment of osteonecrosis of the femoral head. Biomed. Pharmacother. 2023 162 114403 10.1016/j.biopha.2023.114403 37003034
    [Google Scholar]
  6. Wang A. Ren M. Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene 2018 671 103 109 10.1016/j.gene.2018.05.091 29859289
    [Google Scholar]
  7. Yin Z. Ding G. Chen X. Qin X. Xu H. Zeng B. Ren J. Zheng Q. Wang S. Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury. Metabolism 2020 113 154397 10.1016/j.metabol.2020.154397 33058849
    [Google Scholar]
  8. Fan Z.Q. Bai S.C. Xu Q. Li Z.J. Cui W.H. Li H. Li X.H. Zhang H.F. Oxidative stress induced osteocyte apoptosis in steroid‐induced femoral head necrosis. Orthop. Surg. 2021 13 7 2145 2152 10.1111/os.13127 34559465
    [Google Scholar]
  9. Chen K. Liu Y. He J. Pavlos N. Wang C. Kenny J. Yuan J. Zhang Q. Xu J. He W. Steroid-induced osteonecrosis of the femoral head reveals enhanced reactive oxygen species and hyperactive osteoclasts. Int. J. Biol. Sci. 2020 16 11 1888 1900 10.7150/ijbs.40917 32398957
    [Google Scholar]
  10. Fan Y. Liu X. Zhong Y. Zhang J. Liu Y. Fang H. He W. Zhou C. Chen Z. Evaluation of the predictive values of collapse and necrotic lesion boundary for osteonecrosis of the femoral head prognosis. Front. Endocrinol. 2023 14 1137786 10.3389/fendo.2023.1137786 36992802
    [Google Scholar]
  11. Logishetty K. Verhaegen J.C.F. Tse S. Maheswaran T. Fornasiero M. Subbiah Ponniah H. Hutt J.B. Witt J.D. Does total hip arthroplasty benefit patients with minimal radiological osteoarthritis? Bone Jt Open 2025 6 3 328 335 10.1302/2633‑1462.63.BJO‑2024‑0103.R1 40068700
    [Google Scholar]
  12. Chen T. Luo L. Li J. Li J. Lin T. Liu M. Sang H. Hong X. Pu J. Huang W. Advancements in 3D printing technologies for personalized treatment of osteonecrosis of the femoral head. Mater. Today Bio 2025 31 101531 10.1016/j.mtbio.2025.101531 40026627
    [Google Scholar]
  13. Tang H.C. Ling D.I. Hsu S.H. Chuang C.A. Hsu K.L. Ku L.J.E. The incidence of conversion to hip arthroplasty after core decompression. Bone Joint J. 2025 107-B 3 308 313 10.1302/0301‑620X.107B3.BJJ‑2024‑0815.R1 40020710
    [Google Scholar]
  14. Tsvetkov P. Coy S. Petrova B. Dreishpoon M. Verma A. Abdusamad M. Rossen J. Joesch-Cohen L. Humeidi R. Spangler R.D. Eaton J.K. Frenkel E. Kocak M. Corsello S.M. Lutsenko S. Kanarek N. Santagata S. Golub T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022 375 6586 1254 1261 10.1126/science.abf0529 35298263
    [Google Scholar]
  15. Guan M. Cheng K. Xie X.T. Li Y. Ma M.W. Zhang B. Chen S. Chen W. Liu B. Fan J.X. Zhao Y.D. Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy. Nat. Commun. 2024 15 1 10060 10.1038/s41467‑024‑54469‑7 39567558
    [Google Scholar]
  16. Jin C. Li J. Li Q. Zhang L. Zheng S. Feng Q. Li Y. Zheng Y. Nie Q. Liang J. Wang J. Contribution of cuproptosis and immune-related genes to idiopathic pulmonary fibrosis disease. Front. Immunol. 2025 16 1458341 10.3389/fimmu.2025.1458341 39991151
    [Google Scholar]
  17. Li B. Jiang T. Wang J. Ge H. Zhang Y. Li T. Wang C. Wang W. Cuprorivaite microspheres inhibit cuproptosis and oxidative stress in osteoarthritis via Wnt/β-catenin pathway. Mater. Today Bio 2024 29 101300 10.1016/j.mtbio.2024.101300 39469313
    [Google Scholar]
  18. Pan T. Wu S. Wang S. Wang X. Chen D. Chen Y. Novel insights into cuproptosis in alcoholic liver disease using bioinformatics analysis and experimental validation. Int. Immunopharmacol. 2025 146 113828 10.1016/j.intimp.2024.113828 39709914
    [Google Scholar]
  19. Li J. Li B. Zhao R. Li G. Systematic analysis of the aberrances and functional implications of cuproptosis in cancer. iScience 2023 26 4 106319 10.1016/j.isci.2023.106319 36950125
    [Google Scholar]
  20. Liu S. Ge J. Chu Y. Cai S. Gong A. Wu J. Zhang J. Identification of hub cuproptosis related genes and immune cell infiltration characteristics in periodontitis. Front. Immunol. 2023 14 1164667 10.3389/fimmu.2023.1164667 37215133
    [Google Scholar]
  21. Li D. Gao Z. Li Q. Liu X. Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front. Endocrinol. 2023 14 1135181 10.3389/fendo.2023.1135181 37214253
    [Google Scholar]
  22. Qi B. Li C. Cai X. Pu L. Guo M. Tang Z. Bu P. Xu Y. Bioinformatics-based analysis of key genes in steroid-induced osteonecrosis of the femoral head that are associated with copper metabolism. Biomedicines 2023 11 3 873 10.3390/biomedicines11030873 36979852
    [Google Scholar]
  23. Zhou T. Ma S. Zhao Y. Guo D. Wang H. Kuang M. Li X. Identification and characterization of extrachromosomal circular DNA in alcohol induced osteonecrosis of femoral head. Front. Genet. 2022 13 918379 10.3389/fgene.2022.918379 36246642
    [Google Scholar]
  24. Wu T. Shi W. Zhou Y. Guo S. Tian H. Jiang Y. Li W. Wang Y. Li T. Identification and validation of endoplasmic reticulum stress-related genes in patients with steroid-induced osteonecrosis of the femoral head. Sci. Rep. 2024 14 1 21634 10.1038/s41598‑024‑72941‑8 39284931
    [Google Scholar]
  25. Li C. Liu J. Sheng Y. Wang Y. Jia L. Zhang Y. Li J. Di S. Nie H. Han Y. In situ metabolomic analysis of osteonecrosis of the femoral head (ONFH) using MALDI MSI. Anal. Bioanal. Chem. 2024 416 23 5155 5164 10.1007/s00216‑024‑05453‑z 39090265
    [Google Scholar]
  26. Zhang X. Zhao H. Wan M. Man J. Zhang T. Yang X. Lu M. Associations of 2923 plasma proteins with incident inflammatory bowel disease in a prospective cohort study and genetic analysis. Nat. Commun. 2025 16 1 2813 10.1038/s41467‑025‑57879‑3 40118817
    [Google Scholar]
  27. Lin C. Xia M. Dai Y. Huang Q. Sun Z. Zhang G. Cross-ancestry analyses of Chinese and European populations reveal insights into the genetic architecture and disease implication of metabolites. Cell. Genom 2025 5 4 100810 10.1016/j.xgen.2025.100810
    [Google Scholar]
  28. Lee P.C. Jung I.H. Thussu S. Patel V. Wagoner R. Burks K.H. Amrute J. Elenbaas J.S. Kang C.J. Young E.P. Scherer P.E. Stitziel N.O. Instrumental variable and colocalization analyses identify endotrophin and HTRA1 as potential therapeutic targets for coronary artery disease. iScience 2024 27 7 110104 10.1016/j.isci.2024.110104 38989470
    [Google Scholar]
  29. Lyle S.M. Ahmed S. Elliott J.E. Stener-Victorin E. Nachtigal M.W. Drögemöller B.I. Transcriptome-wide association analyses identify an association between ARL14EP and polycystic ovary syndrome. J. Hum. Genet. 2023 68 5 347 353 10.1038/s10038‑023‑01120‑w 36720993
    [Google Scholar]
  30. Teng F. Zhang R. Wang Y. Li Q. Wang B. Chen H. Liu T. Liu Z. Meng J. Wang C. Dong S. Li Y. Machine learning and mendelian randomization reveal a tumor immune cell profile for predicting bladder cancer risk and immunotherapy outcomes. Am. J. Pathol. 2025 195 6 1141 1157 10.1016/j.ajpath.2025.01.016 40122457
    [Google Scholar]
  31. Zhu X.W. Zheng X. Wang L. Liu J. Yang M. Liu Y.Q. Qian Y. Luo Y. Zhang L. Evaluation of the causal relationship between 28 circulating biomarkers and osteoarthritis. Bone Joint Res. 2025 14 3 259 269 10.1302/2046‑3758.143.BJR‑2024‑0207.R1 40090354
    [Google Scholar]
  32. Dai L. Xia L. Su G. Gao Y. Jiang Q. Yang P. Identifying prioritization of therapeutic targets for ankylosing spondylitis: A multi-omics Mendelian randomization study. J. Transl. Med. 2024 22 1 1115 10.1186/s12967‑024‑05925‑x 39707330
    [Google Scholar]
  33. Jia H. Tian Z. Liang X. Li H. Lu B. Zhang J. Li G. Bone biochemical markers, bone mineral density, and the risk of osteonecrosis of the femoral head: A Mendelian randomization study. BMC Musculoskelet. Disord. 2024 25 1 996 10.1186/s12891‑024‑08130‑5 39639283
    [Google Scholar]
  34. Guo M. He S. Song W. Mai J. Yuan X. Huang Y. Xi H. Sun G. Chen Y. Du B. Liu X. The Lachnospiraceae-butyric acid axis and its role in glucocorticoid-associated osteonecrosis. J. Transl. Med. 2024 22 1 1015 10.1186/s12967‑024‑05813‑4 39529113
    [Google Scholar]
  35. Davis S. Meltzer P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007 23 14 1846 1847 10.1093/bioinformatics/btm254 17496320
    [Google Scholar]
  36. Zhou N. Yuan X. Du Q. Zhang Z. Shi X. Bao J. Ning Y. Peng L. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023 51 D1 D571 D582 10.1093/nar/gkac935 36305834
    [Google Scholar]
  37. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  38. Xu Z. Rasteh A.M. Dong A. Wang P. Liu H. Identification of molecular targets of Hypericum perforatum in blood for major depressive disorder: A machine-learning pharmacological study. Chin. Med. 2024 19 1 141 10.1186/s13020‑024‑01018‑5 39385284
    [Google Scholar]
  39. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  40. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  41. Huang M.L. Hung Y.H. Lee W.M. Li R.K. Jiang B.R. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. ScientificWorldJournal 2014 2014 1 10 10.1155/2014/795624 25295306
    [Google Scholar]
  42. Robin X. Turck N. Hainard A. Tiberti N. Lisacek F. Sanchez J.C. Müller M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011 12 1 77 10.1186/1471‑2105‑12‑77 21414208
    [Google Scholar]
  43. Zhu Z. Zhang F. Hu H. Bakshi A. Robinson M.R. Powell J.E. Montgomery G.W. Goddard M.E. Wray N.R. Visscher P.M. Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016 48 5 481 487 10.1038/ng.3538 27019110
    [Google Scholar]
  44. Au Yeung S.L. Gill D. Standardizing the reporting of Mendelian randomization studies. BMC Med. 2023 21 1 187 10.1186/s12916‑023‑02894‑8 37198682
    [Google Scholar]
  45. Võsa U. Claringbould A. Westra H.J. Bonder M.J. Deelen P. Zeng B. Kirsten H. Saha A. Kreuzhuber R. Yazar S. Brugge H. Oelen R. de Vries D.H. van der Wijst M.G.P. Kasela S. Pervjakova N. Alves I. Favé M.J. Agbessi M. Christiansen M.W. Jansen R. Seppälä I. Tong L. Teumer A. Schramm K. Hemani G. Verlouw J. Yaghootkar H. Sönmez Flitman R. Brown A. Kukushkina V. Kalnapenkis A. Rüeger S. Porcu E. Kronberg J. Kettunen J. Lee B. Zhang F. Qi T. Hernandez J.A. Arindrarto W. Beutner F. ‘t Hoen, P.A.C.; van Meurs, J.; van Dongen, J.; van Iterson, M.; Swertz, M.A.; Jan Bonder, M.; Dmitrieva, J.; Elansary, M.; Fairfax, B.P.; Georges, M.; Heijmans, B.T.; Hewitt, A.W.; Kähönen, M.; Kim, Y.; Knight, J.C.; Kovacs, P.; Krohn, K.; Li, S.; Loeffler, M.; Marigorta, U.M.; Mei, H.; Momozawa, Y.; Müller-Nurasyid, M.; Nauck, M.; Nivard, M.G.; Penninx, B.W.J.H.; Pritchard, J.K.; Raitakari, O.T.; Rotzschke, O.; Slagboom, E.P.; Stehouwer, C.D.A.; Stumvoll, M.; Sullivan, P.; ’t Hoen, P.A.C.; Thiery, J.; Tönjes, A.; van Dongen, J.; van Iterson, M.; Veldink, J.H.; Völker, U.; Warmerdam, R.; Wijmenga, C.; Swertz, M.; Andiappan, A.; Montgomery, G.W.; Ripatti, S.; Perola, M.; Kutalik, Z.; Dermitzakis, E.; Bergmann, S.; Frayling, T.; van Meurs, J.; Prokisch, H.; Ahsan, H.; Pierce, B.L.; Lehtimäki, T.; Boomsma, D.I.; Psaty, B.M.; Gharib, S.A.; Awadalla, P.; Milani, L.; Ouwehand, W.H.; Downes, K.; Stegle, O.; Battle, A.; Visscher, P.M.; Yang, J.; Scholz, M.; Powell, J.; Gibson, G.; Esko, T.; Franke, L. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021 53 9 1300 1310 10.1038/s41588‑021‑00913‑z 34475573
    [Google Scholar]
  46. Kurki M.I. Karjalainen J. Palta P. Sipilä T.P. Kristiansson K. Donner K.M. Reeve M.P. Laivuori H. Aavikko M. Kaunisto M.A. Loukola A. Lahtela E. Mattsson H. Laiho P. Della Briotta Parolo P. Lehisto A.A. Kanai M. Mars N. Rämö J. Kiiskinen T. Heyne H.O. Veerapen K. Rüeger S. Lemmelä S. Zhou W. Ruotsalainen S. Pärn K. Hiekkalinna T. Koskelainen S. Paajanen T. Llorens V. Gracia-Tabuenca J. Siirtola H. Reis K. Elnahas A.G. Sun B. Foley C.N. Aalto-Setälä K. Alasoo K. Arvas M. Auro K. Biswas S. Bizaki-Vallaskangas A. Carpen O. Chen C.Y. Dada O.A. Ding Z. Ehm M.G. Eklund K. Färkkilä M. Finucane H. Ganna A. Ghazal A. Graham R.R. Green E.M. Hakanen A. Hautalahti M. Hedman Å.K. Hiltunen M. Hinttala R. Hovatta I. Hu X. Huertas-Vazquez A. Huilaja L. Hunkapiller J. Jacob H. Jensen J.N. Joensuu H. John S. Julkunen V. Jung M. Junttila J. Kaarniranta K. Kähönen M. Kajanne R. Kallio L. Kälviäinen R. Kaprio J. Kerimov N. Kettunen J. Kilpeläinen E. Kilpi T. Klinger K. Kosma V.M. Kuopio T. Kurra V. Laisk T. Laukkanen J. Lawless N. Liu A. Longerich S. Mägi R. Mäkelä J. Mäkitie A. Malarstig A. Mannermaa A. Maranville J. Matakidou A. Meretoja T. Mozaffari S.V. Niemi M.E.K. Niemi M. Niiranen T. O’Donnell C.J. Obeidat M. Okafo G. Ollila H.M. Palomäki A. Palotie T. Partanen J. Paul D.S. Pelkonen M. Pendergrass R.K. Petrovski S. Pitkäranta A. Platt A. Pulford D. Punkka E. Pussinen P. Raghavan N. Rahimov F. Rajpal D. Renaud N.A. Riley-Gillis B. Rodosthenous R. Saarentaus E. Salminen A. Salminen E. Salomaa V. Schleutker J. Serpi R. Shen H. Siegel R. Silander K. Siltanen S. Soini S. Soininen H. Sul J.H. Tachmazidou I. Tasanen K. Tienari P. Toppila-Salmi S. Tukiainen T. Tuomi T. Turunen J.A. Ulirsch J.C. Vaura F. Virolainen P. Waring J. Waterworth D. Yang R. Nelis M. Reigo A. Metspalu A. Milani L. Esko T. Fox C. Havulinna A.S. Perola M. Ripatti S. Jalanko A. Laitinen T. Mäkelä T.P. Plenge R. McCarthy M. Runz H. Daly M.J. Palotie A. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023 613 7944 508 518 10.1038/s41586‑022‑05473‑8 36653562
    [Google Scholar]
  47. Miao Y.R. Zhang Q. Lei Q. Luo M. Xie G.Y. Wang H. Guo A.Y. ImmuCellAI: A unique method for comprehensive t‐cell subsets abundance prediction and its application in cancer immunotherapy. Adv. Sci. 2020 7 7 1902880 10.1002/advs.201902880 32274301
    [Google Scholar]
  48. Li J.H. Liu S. Zhou H. Qu L.H. Yang J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014 42 D1 D92 D97 10.1093/nar/gkt1248 24297251
    [Google Scholar]
  49. Kang J. Tang Q. He J. Li L. Yang N. Yu S. Wang M. Zhang Y. Lin J. Cui T. Hu Y. Tan P. Cheng J. Zheng H. Wang D. Su X. Chen W. Huang Y. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 2022 50 D1 D326 D332 10.1093/nar/gkab997 34718726
    [Google Scholar]
  50. Loher P. Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics 2012 28 24 3322 3323 10.1093/bioinformatics/bts615 23074262
    [Google Scholar]
  51. Sticht C. De La Torre C. Parveen A. Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One 2018 13 10 0206239 10.1371/journal.pone.0206239 30335862
    [Google Scholar]
  52. Karagkouni D. Paraskevopoulou M.D. Tastsoglou S. Skoufos G. Karavangeli A. Pierros V. Zacharopoulou E. Hatzigeorgiou A.G. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res. 2020 48 D1 D101 D110 31732741
    [Google Scholar]
  53. Gao Y. Zhu H. Wang Q. Feng Y. Zhang C. Inhibition of PERK signaling prevents against glucocorticoid-induced endotheliocyte apoptosis and osteonecrosis of the femoral head. Int. J. Biol. Sci. 2020 16 4 543 552 10.7150/ijbs.35256 32025204
    [Google Scholar]
  54. Yang H. Ding N. Qing S. Hao Y. Zhao C. Wu, K Knockdown of lncRNA XR_877193.1 suppresses ferroptosis and promotes osteogenic differentiation via the PI3K/AKT signaling pathway in SONFH. Acta Biochim. Biophys. Sin. 2025 10.3724/abbs.2025014
    [Google Scholar]
  55. Cao R. Li H. Liu G. Yan P. Zhang J. Chen Y. Duan X. Zhao Y. Lei Y. Liu C. Guan H. Xing F. Li Y. Wang K. Kong N. Tian R. Yang P. Aging and autophagic phenotypic changes in bone marrow mesenchymal stem cells in glucocorticoid-induced osteonecrosis. Int. Immunopharmacol. 2025 152 114389 10.1016/j.intimp.2025.114389 40073811
    [Google Scholar]
  56. Li S. Kong Z. Ma B. Wang H. Han Y. Zhao H. Shi X. Lv P. Yue H. Grässel S. Yin L. Low miR ‐182‐5p expressing extracellular vesicles derived from human bone marrow stromal cells of subjects with steroid‐induced osteonecrosis of the femoral head aggravate disease progression. J. Bone Miner. Res. 2023 38 7 976 993 10.1002/jbmr.4823 37155311
    [Google Scholar]
  57. Jiang J. Zhan X. Liang T. Chen L. Huang S. Sun X. Jiang W. Chen J. Chen T. Li H. Yao Y. Wu S. Zhu J. Liu C. Dysregulation of SAA1, TUBA8 and monocytes are key factors in ankylosing spondylitis with femoral head necrosis. Front. Immunol. 2022 12 814278 10.3389/fimmu.2021.814278 35126370
    [Google Scholar]
  58. Ren G. Wen S. Han J. Xu Z. Qi W. Shang Y. Wu Y. Network‐based pharmacology and bioinformatics study on the mechanism of action of gujiansan in the treatment of steroid‐induced avascular necrosis of the femoral head. BioMed Res. Int. 2022 2022 1 8080679 10.1155/2022/8080679 35915795
    [Google Scholar]
  59. Quan H. Ren C. Xie H. He Z. Ding H. Li J. Li T. Wang F. Dong S. Jiang H. An injectable hydrogel loaded with miRNA nanocarriers promotes vessel-associated osteoclast (VAO)-mediated angiogenesis and bone regeneration in osteonecrosis of the rat femoral head. Biomaterials 2025 320 123252 10.1016/j.biomaterials.2025.123252 40081225
    [Google Scholar]
  60. Xie J. Yang Y. Gao Y. He J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023 22 1 46 10.1186/s12943‑023‑01732‑y 36882769
    [Google Scholar]
  61. Chen L. Min J. Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022 7 1 378 10.1038/s41392‑022‑01229‑y 36414625
    [Google Scholar]
  62. Zhao J. Guo S. Schrodi S.J. He D. Cuproptosis and cuproptosis–related genes in rheumatoid arthritis: Implication, prospects, and perspectives. Front. Immunol. 2022 13 930278 10.3389/fimmu.2022.930278 35990673
    [Google Scholar]
  63. Saunier E. Benelli C. Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int. J. Cancer 2016 138 4 809 817 10.1002/ijc.29564 25868605
    [Google Scholar]
  64. Patel M.S. Nemeria N.S. Furey W. Jordan F. The pyruvate dehydrogenase complexes: Structure-based function and regulation. J. Biol. Chem. 2014 289 24 16615 16623 10.1074/jbc.R114.563148 24798336
    [Google Scholar]
  65. Qin L. Cao X. Huang T. Liu Y. Li S. Identification of potential biomarkers of cuproptosis in cerebral ischemia. Front. Nutr. 2024 11 1410431 10.3389/fnut.2024.1410431 39360273
    [Google Scholar]
  66. Zhang J. Wu Y. Du Y. Du Y. Bao D. Lu H. Zhou X. Li R. Pei H. She H. Mao Q. Cuproptosis-related genes as prognostic biomarkers for sepsis: Insights into immune function and personalized immunotherapy. J. Inflamm. Res. 2024 17 4229 4245 10.2147/JIR.S461766 38979432
    [Google Scholar]
  67. Jin C. Jia L. Tang Z. Zheng Y. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/AKT pathway. Cell Death Dis. 2020 11 7 601 10.1038/s41419‑020‑02813‑2 32732881
    [Google Scholar]
  68. Long H. Li Q. Xiao Z. Yang B. LncRNA MIR22HG promotes osteoarthritis progression via regulating miR-9-3p/ADAMTS5 pathway. Bioengineered 2021 12 1 3148 3158 10.1080/21655979.2021.1945362 34187303
    [Google Scholar]
  69. Xiao M. Li J. Li W. Wang Y. Wu F. Xi Y. Zhang L. Ding C. Luo H. Li Y. Peng L. Zhao L. Peng S. Xiao Y. Dong S. Cao J. Yu W. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017 14 10 1326 1334 10.1080/15476286.2015.1112487 26853707
    [Google Scholar]
  70. Liang Y. Lu Q. Li W. Zhang D. Zhang F. Zou Q. Chen L. Tong Y. Liu M. Wang S. Li W. Ren X. Xu P. Yang Z. Dong S. Zhang B. Huang Y. Li D. Wang H. Yu W. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021 49 15 8556 8572 10.1093/nar/gkab626 34329471
    [Google Scholar]
  71. Liu S. He X. Di Y. Li Q. Li F. Ma Y. Chen L. Gao Y. Xu J. Yang S. Xu L. Corpe C. Ling Y. Zhang X. Xu J. Yu W. Wang J. NamiRNA-enhancer network of miR-492 activates the NR2C1-TGF-β/Smad3 pathway to promote epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis 2023 44 2 153 165 10.1093/carcin/bgac102 36591938
    [Google Scholar]
  72. Jame-Chenarboo F. Ng H.H. Macdonald D. Mahal L.K. High-throughput analysis reveals mirna upregulating α-2,6-sialic acid through direct miRNA–mRNA interactions. ACS Cent. Sci. 2022 8 11 1527 1536 10.1021/acscentsci.2c00748 36439307
    [Google Scholar]
  73. Liang X.Z. Liu X.C. Li S. Wen M.T. Chen Y.R. Luo D. Xu B. Li N.H. Li G. IRF8 and its related molecules as potential diagnostic biomarkers or therapeutic candidates and immune cell infiltration characteristics in steroid-induced osteonecrosis of the femoral head. J. Orthop. Surg. Res. 2023 18 1 27 10.1186/s13018‑022‑03381‑1 36627660
    [Google Scholar]
  74. Lu H Fan Y Yan Q Chen Z Wei Z Liu Y Identification and of the femoral head. Int. Immunopharmacol 2023 124 Pt A 110906 10.1016/j.intimp.2023.110906
    [Google Scholar]
  75. Deng Z. Kim H.K.W. Hernandez P.A. Ren Y. Fat phagocytosis promotes anti-inflammatory responses of macrophages in a mouse model of osteonecrosis. Cells 2024 13 14 1227 10.3390/cells13141227 39056808
    [Google Scholar]
  76. Mao R. Bi W. Yang M. Qin L. Li W. Integrated bioinformatics analysis and experimental validation of exosome-related gene signature in steroid-induced osteonecrosis of the femoral head. J. Orthop. Surg. Res. 2025 20 1 29 10.1186/s13018‑025‑05456‑1 39789578
    [Google Scholar]
  77. Stifel U. Wolfschmitt E.M. Vogt J. Wachter U. Vettorazzi S. Tews D. Hogg M. Zink F. Koll N.M. Winning S. Mounier R. Chazaud B. Radermacher P. Fischer-Posovszky P. Caratti G. Tuckermann J. Glucocorticoids coordinate macrophage metabolism through the regulation of the tricarboxylic acid cycle. Mol. Metab. 2022 57 101424 10.1016/j.molmet.2021.101424 34954109
    [Google Scholar]
  78. Chen C. Zhao X. Luo Y. Li B. Li Q. Zhao C. Huang Y. Kang P. Imbalanced T-cell subsets may facilitate the occurrence of osteonecrosis of the femoral head. J. Inflamm. Res. 2022 15 4159 4169 10.2147/JIR.S367214 35912401
    [Google Scholar]
  79. Ma J. Ge J. Gao F. Wang B. Yue D. Sun W. Wang W. The role of immune regulatory cells in nontraumatic osteonecrosis of the femoral head: A retrospective clinical study. BioMed Res. Int. 2019 2019 1 7 10.1155/2019/1302015 31828086
    [Google Scholar]
  80. Srivastava R.K. Dar H.Y. Mishra P.K. Immunoporosis: Immunology of osteoporosis—role of T cells. Front. Immunol. 2018 9 657 10.3389/fimmu.2018.00657 29675022
    [Google Scholar]
  81. Mayu N. Shimizu T. Yoshinari M. Hashimoto Y. Nakamura Y. Takahashi D. Asano T. Nishibata Y. Masuda S. Nakazawa D. Tanaka S. Tomaru U. Iwasaki N. Ishizu A. Association of neutrophil extracellular traps with the development of idiopathic osteonecrosis of the femoral head. Am. J. Pathol. 2020 190 11 2282 2289 10.1016/j.ajpath.2020.07.008 32702358
    [Google Scholar]
/content/journals/cg/10.2174/0113892029373131251017114954
Loading
/content/journals/cg/10.2174/0113892029373131251017114954
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test