Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Rare genetic disorders collectively affect millions of individuals worldwide, presenting a significant clinical and research challenge due to the diversity and complexity of the underlying mutations. Current treatment options are often limited, focusing on symptom management rather than addressing the root genetic causes. This review article aims to provide a perspective on the evolving field of gene therapy for rare genetic disorders, emphasizing recent advancements, current challenges, and future directions. A comprehensive review of recent advancements in gene therapy for rare genetic disorders was conducted, focusing on therapeutic strategies, delivery systems, and clinical outcomes. Key examples, such as the use of viral vectors and gene-editing technologies (., CRISPR), were highlighted. The challenges, including immune responses and ethical concerns, were also examined. Gene therapy has achieved significant milestones, with the successful development of therapies like for spinal muscular atrophy and for retinal dystrophy. However, several hurdles, including efficient gene delivery, immune reactions, and long-term safety, remain unresolved. Gene therapy holds transformative potential for the treatment of rare genetic disorders. While recent successes mark a new era in genetic medicine, ongoing research is required to refine delivery mechanisms, overcome immune-related barriers, and ensure ethical and safe therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029361490250310041259
2025-03-13
2025-10-21
Loading full text...

Full text loading...

References

  1. Nguengang WakapS. LambertD.M. OlryA. RodwellC. GueydanC. LanneauV. MurphyD. Le CamY. RathA. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database.Eur. J. Hum. Genet.202028216517310.1038/s41431‑019‑0508‑0 31527858
    [Google Scholar]
  2. FerreiraC.R. The burden of rare diseases.Am. J. Med. Genet. A.2019179688589210.1002/ajmg.a.61124 30883013
    [Google Scholar]
  3. BradyR.O. Enzyme replacement for lysosomal diseases.Annu. Rev. Med.200657128329610.1146/annurev.med.57.110104.115650 16409150
    [Google Scholar]
  4. UmairM. Rare genetic disorders: Beyond whole‐exome sequencing.J. Gene Med.20232510e350310.1002/jgm.3503 36987553
    [Google Scholar]
  5. BarrettJ.S. BetourneA. WallsR.L. LasaterK. RussellS. BorensA. RohatagiS. RoddyW. The future of rare disease drug development: The rare disease cures accelerator data analytics platform (RDCA-DAP).J. Pharmacokinet. Pharmacodyn.202350650751910.1007/s10928‑023‑09859‑7 37131052
    [Google Scholar]
  6. GonçalvesG.A.R. PaivaR.M.A. Gene therapy: Advances, challenges and perspectives.Einstein (Sao Paulo)201715336937510.1590/s1679‑45082017rb4024 29091160
    [Google Scholar]
  7. PanX. VeroniainaH. SuN. ShaK. JiangF. WuZ. QiX. Applications and developments of gene therapy drug delivery systems for genetic diseases.Asian J. Pharm. Sci.202116668770310.1016/j.ajps.2021.05.003 35027949
    [Google Scholar]
  8. SchellerE.L. KrebsbachP.H. Gene therapy: Design and prospects for craniofacial regeneration.J. Dent. Res.200988758559610.1177/0022034509337480 19641145
    [Google Scholar]
  9. UddinF. RudinC.M. SenT. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future.Front. Oncol.202010138710.3389/fonc.2020.01387 32850447
    [Google Scholar]
  10. RaguramA. BanskotaS. LiuD.R. Therapeutic in vivo delivery of gene editing agents.Cell2022185152806282710.1016/j.cell.2022.03.045 35798006
    [Google Scholar]
  11. MendellJ.R. Al-ZaidyS. ShellR. ArnoldW.D. Rodino-KlapacL.R. PriorT.W. LowesL. AlfanoL. BerryK. ChurchK. KisselJ.T. NagendranS. L’ItalienJ. SprouleD.M. WellsC. CardenasJ.A. HeitzerM.D. KasparA. CorcoranS. BraunL. LikhiteS. MirandaC. MeyerK. FoustK.D. BurghesA.H.M. KasparB.K. Single-dose gene-replacement therapy for spinal muscular atrophy.N. Engl. J. Med.2017377181713172210.1056/NEJMoa1706198 29091557
    [Google Scholar]
  12. MingozziF. HighK.A. Therapeutic in vivo gene transfer for genetic disease using AAV: Progress and challenges.Nat. Rev. Genet.201112534135510.1038/nrg2988 21499295
    [Google Scholar]
  13. ShimG. KimD. ParkG.T. JinH. SuhS.K. OhY.K. Therapeutic gene editing: Delivery and regulatory perspectives.Acta Pharmacol. Sin.201738673875310.1038/aps.2017.2 28392568
    [Google Scholar]
  14. SteffinD.H.M. HsiehE.M. RouceR.H. Gene therapy.Adv. Pediatr.201966375410.1016/j.yapd.2019.04.001 31230699
    [Google Scholar]
  15. HsuP.D. LanderE.S. ZhangF. Development and applications of CRISPR-Cas9 for genome engineering.Cell201415761262127810.1016/j.cell.2014.05.010 24906146
    [Google Scholar]
  16. KhoshandamM. SoltaninejadH. MousazadehM. HamidiehA.A. HosseinkhaniS. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine.Genes Dis.202411126828210.1016/j.gendis.2023.02.027 37588217
    [Google Scholar]
  17. JavaidD. GanieS.Y. HajamY.A. ReshiM.S. CRISPR/Cas9 system: A reliable and facile genome editing tool in modern biology.Mol. Biol. Rep.20224912121331215010.1007/s11033‑022‑07880‑6 36030476
    [Google Scholar]
  18. GuptaR.M. MusunuruK. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9.J. Clin. Invest.2014124104154416110.1172/JCI72992 25271723
    [Google Scholar]
  19. RaikwarS.P. RaikwarA.S. ChaurasiaS.S. MohanR.R. Gene editing for corneal disease management.World J. Transl. Med.20165111310.5528/wjtm.v5.i1.1 35757280
    [Google Scholar]
  20. RichardsonC. KelshR.N. JRichardson R. New advances in CRISPR/Cas-mediated precise gene-editing techniques.Dis. Model. Mech.2023162dmm04987410.1242/dmm.049874 36847161
    [Google Scholar]
  21. ReesH.A. LiuD.R. Base editing: Precision chemistry on the genome and transcriptome of living cells.Nat. Rev. Genet.2018191277078810.1038/s41576‑018‑0059‑1 30323312
    [Google Scholar]
  22. De HaanP. Van DiemenF.R. ToscanoM.G. Viral gene delivery vectors: The next generation medicines for immune-related diseases.Hum. Vaccin. Immunother.2021171142110.1080/21645515.2020.1757989 32412865
    [Google Scholar]
  23. BushmanF.D. Retroviral integration and human gene therapy.J. Clin. Invest.200711782083208610.1172/JCI32949 17671645
    [Google Scholar]
  24. TraviesoT. LiJ. MaheshS. MelloJ.D.F.R.E. BlasiM. The use of viral vectors in vaccine development.NPJ Vaccines2022717510.1038/s41541‑022‑00503‑y 35787629
    [Google Scholar]
  25. Von SeggernD.J. NemerowG.R. Adenoviral vectors for protein expression. Gene. Express.Syst.2007211115610.1016/B978‑012253840‑7/50006‑7
    [Google Scholar]
  26. WangD. TaiP.W.L. GaoG. Adeno-associated virus vector as a platform for gene therapy delivery.Nat. Rev. Drug Discov.201918535837810.1038/s41573‑019‑0012‑9 30710128
    [Google Scholar]
  27. ButtM. ZamanM. AhmadA. KhanR. MallhiT. HasanM. KhanY. HafeezS. MassoudE. RahmanM. CavaluS. Appraisal for the potential of viral and nonviral vectors in gene therapy: A review.Genes (Basel)2022138137010.3390/genes13081370 36011281
    [Google Scholar]
  28. DavisM.E. ZuckermanJ.E. ChoiC.H.J. SeligsonD. TolcherA. AlabiC.A. YenY. HeidelJ.D. RibasA. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles.Nature201046472911067107010.1038/nature08956 20305636
    [Google Scholar]
  29. BilensoyE. GürkaynakO. DoğanA.L. HıncalA.A. Safety and efficacy of amphiphilic ß-cyclodextrin nanoparticles for paclitaxel delivery.Int. J. Pharm.20083471-216317010.1016/j.ijpharm.2007.06.051 17689901
    [Google Scholar]
  30. GodinhoB.M.D.C. OgierJ.R. DarcyR. O’DriscollC.M. CryanJ.F. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: Focus on Huntington’s disease.Mol. Pharm.201310264064910.1021/mp3003946 23116281
    [Google Scholar]
  31. QuintasP.C. Al-SalamiH. PfaffA. LiD. KoksS. β-cyclodextrin based nano gene delivery using pharmaceutical applications to treat Wolfram syndrome.Ther. Deliv.202213944946210.4155/tde‑2022‑0036 36748654
    [Google Scholar]
  32. KõksS. Genomics of wolfram syndrome 1 (WFS1).Biomolecules2023139134610.3390/biom13091346 37759745
    [Google Scholar]
  33. PlankC. ZelphatiO. MykhaylykO. Magnetically enhanced nucleic acid delivery. ten years of magnetofection—progress and prospects.Adv. Drug Deliv. Rev.20116314-151300133110.1016/j.addr.2011.08.002 21893135
    [Google Scholar]
  34. Batista NapotnikT. PolajžerT. MiklavčičD. Cell death due to electroporation – A review.Bioelectrochemistry202114110787110.1016/j.bioelechem.2021.107871 34147013
    [Google Scholar]
  35. O’BrienJ.A. LummisS.C.R. Biolistic transfection of neuronal cultures using a hand-held gene gun.Nat. Protoc.20061297798110.1038/nprot.2006.145 17406333
    [Google Scholar]
  36. AdamsJ. Transcriptome: Connecting the genome to gene function.Nat Educator200811195
    [Google Scholar]
  37. KoksG. PfaffA.L. BubbV.J. QuinnJ.P. KoksS. At the dawn of the transcriptomic medicine.Exp. Biol. Med. (Maywood)2021246328629210.1177/1535370220954788 32915637
    [Google Scholar]
  38. BodeD. CullA.H. Rubio-LaraJ.A. KentD.G. Exploiting single-cell tools in gene and cell therapy.Front. Immunol.20211270263610.3389/fimmu.2021.702636 34322133
    [Google Scholar]
  39. KichulaE.A. ProudC.M. FarrarM.A. KwonJ.M. SaitoK. DesguerreI. McMillanH.J. Expert recommendations and clinical considerations in the use of onasemnogene abeparvovec gene therapy for spinal muscular atrophy.Muscle Nerve202164441342710.1002/mus.27363 34196026
    [Google Scholar]
  40. PonomarevA.S. ChulpanovaD.S. YanyginaL.M. SolovyevaV.V. RizvanovA.A. Emerging gene therapy approaches in the management of spinal muscular atrophy (SMA): An overview of clinical trials and patent landscape.Int. J. Mol. Sci.202324181374310.3390/ijms241813743 37762045
    [Google Scholar]
  41. ChiuW. LinT.Y. ChangY.C. LaiI.A.M.H. LinS.C. MaC. YarmishynA.A. LinS.C. ChangK.J. ChouY.B. HsuC.C. LinT.C. ChenS.J. ChienY. YangY.P. HwangD.K. An update on gene therapy for inherited retinal dystrophy: Experience in Leber congenital amaurosis clinical trials.Int. J. Mol. Sci.2021229453410.3390/ijms22094534 33926102
    [Google Scholar]
  42. MalvasiM. CasilloL. AvogaroF. AbboudaA. VingoloE.M. Gene therapy in hereditary retinal dystrophies: The usefulness of diagnostic tools in candidate patient selections.Int. J. Mol. Sci.202324181375610.3390/ijms241813756 37762059
    [Google Scholar]
  43. SuiH. XuX. SuY. GongZ. YaoM. LiuX. ZhangT. JiangZ. BaiT. WangJ. ZhangJ. XuC. LuoM. Gene therapy for cystic fibrosis: Challenges and prospects.Front. Pharmacol.202213101592610.3389/fphar.2022.1015926 36304167
    [Google Scholar]
  44. ManiniA. AbatiE. NurediniA. CortiS. ComiG.P. Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: The issue of transgene persistence.Front. Neurol.20221281417410.3389/fneur.2021.814174 35095747
    [Google Scholar]
  45. NathwaniA.C. Gene therapy for hemophilia.Hematology (Am. Soc. Hematol. Educ. Program)20222022156957810.1182/hematology.2022000388 36485127
    [Google Scholar]
  46. ChernyiN. GavrilovaD. SaruhanyanM. OloruntimehinE.S. KarabelskyA. BezsonovE. MalogolovkinA. Recent advances in gene therapy for hemophilia: Projecting the perspectives.Biomolecules202414785410.3390/biom14070854 39062568
    [Google Scholar]
  47. KumarS.R.P. MarkusicD.M. BiswasM. HighK.A. HerzogR.W. Clinical development of gene therapy: Results and lessons from recent successes.Mol. Ther. Methods Clin. Dev.201631603410.1038/mtm.2016.34 27257611
    [Google Scholar]
  48. DevermanB.E. RavinaB.M. BankiewiczK.S. PaulS.M. SahD.W.Y. Gene therapy for neurological disorders: Progress and prospects.Nat. Rev. Drug Discov.201817964165910.1038/nrd.2018.110 30093643
    [Google Scholar]
  49. CoxD.B.T. PlattR.J. ZhangF. Therapeutic genome editing: Prospects and challenges.Nat. Med.201521212113110.1038/nm.3793 25654603
    [Google Scholar]
  50. ShirleyJ.L. de JongY.P. TerhorstC. HerzogR.W. Immune responses to viral gene therapy vectors.Mol. Ther.202028370972210.1016/j.ymthe.2020.01.001 31968213
    [Google Scholar]
  51. HamiltonB.A. WrightJ.F. Challenges posed by immune responses to AAV vectors: Addressing root causes.Front. Immunol.20211267589710.3389/fimmu.2021.675897 34084173
    [Google Scholar]
  52. MauleG. ArosioD. CeresetoA. Gene therapy for cystic fibrosis: Progress and challenges of genome editing.Int. J. Mol. Sci.20202111390310.3390/ijms21113903 32486152
    [Google Scholar]
  53. WangD. GaoG. State-of-the-art human gene therapy: Part I. Gene delivery technologies.Discov. Med.201418976777 25091489
    [Google Scholar]
  54. HuntJ.M.T. SamsonC.A. RandA. SheppardH.M. Unintended CRISPR-Cas9 editing outcomes: A review of the detection and prevalence of structural variants generated by gene-editing in human cells.Hum. Genet.2023142670572010.1007/s00439‑023‑02561‑1 37093294
    [Google Scholar]
  55. WaltzM. WalkerR.L. FlattM.A. MacKayD. ConleyJ.M. JuengstE.T. CadiganR.J. Challenging the boundaries between treatment, prevention, and enhancement in human genome editing.CRISPR J.20247418018710.1089/crispr.2024.0021 38976494
    [Google Scholar]
  56. FangL.T. ZhuB. ZhaoY. ChenW. YangZ. KerriganL. LangenbachK. de MarsM. LuC. IdlerK. JacobH. ZhengY. RenL. YuY. JaegerE. SchrothG.P. AbaanO.D. TalsaniaK. LackJ. ShenT.W. ChenZ. StanboulyS. TranB. ShettyJ. KrigaY. MeerzamanD. NguyenC. PetitjeanV. SultanM. CamM. MehtaM. HungT. PetersE. KalameghamR. SahraeianS.M.E. MohiyuddinM. GuoY. YaoL. SongL. LamH.Y.K. DrabekJ. VojtaP. MaestroR. GasparottoD. KõksS. ReimannE. SchererA. NordlundJ. LiljedahlU. JensenR.V. PiroozniaM. LiZ. XiaoC. SherryS.T. KuskoR. MoosM. DonaldsonE. TezakZ. NingB. TongW. LiJ. Duerken-HughesP. CatalanottiC. MaheshwariS. ShugaJ. LiangW.S. KeatsJ. AdkinsJ. TassoneE. ZismannV. McDanielT. TrentJ. FooxJ. ButlerD. MasonC.E. HongH. ShiL. WangC. XiaoW. AbaanO.D. AshbyM. AygunO. BianX. BlomquistT.M. BushelP. CamM. CampagneF. ChenQ. ChenT. ChenX. ChenY-C. ChuangH-Y. de MarsM. DengY. DonaldsonE. DrabekJ. ErnestB. FooxJ. FreedD. GiresiP. GongP. GranatA. GuanM. GuoY. HatzisC. HesterS. HippJ.A. HongH. HungT. IdlerK. JacobH. JaegerE. JailwalaP. JensenR.V. JonesW. KalameghamR. KanakamedalaB. KeatsJ. KerriganL. KõksS. KrigaY. KuskoR. LababidiS. LangenbachK. LeeE. LiJ-L. LiY. LiZ. LiangS. LiuX. LuC. MaestroR. MasonC.E. McDanielT. MercerT. MeerzamanD. MehraU. MilesC. MillerC. MoosM. MoshrefiA. NatarajanA. NingB. NordlundJ. NguyenC. PandeyJ. PapasB.N. PathakA. PetersE. PetitjeanV. PiroozniaM. PolanoM. RaziuddinA. ReschW. RenL. SchererA. SchrothG.P. SeifuddinF. SherryS.T. ShettyJ. ShiL. ShiT. StaudtL.M. SultanM. TezakZ. TongW. TranB. TrentJ. TruongT. VojtaP. VeraC.J. WaltonA. WangC. WangJ. WangJ. WangM. WilleyJ.C. WuL. XiaoC. XiaoW. XuX. YanC. YavasG. YuY. ZhangC. ZhengY. Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing.Nat. Biotechnol.20213991151116010.1038/s41587‑021‑00993‑6 34504347
    [Google Scholar]
  57. KimJ.J. VitaleD. OtaniD.V. LianM.M. HeilbronK. AslibekyanS. AutonA. BabalolaE. BellR.K. BielenbergJ. BrycK. BullisE. CannonP. CokerD. PartidaG.C. DhamijaD. DasS. ElsonS.L. ErikssonN. FilshteinT. FitchA. Fletez-BrantK. FontanillasP. FreymanW. GrankaJ.M. HernandezA. HicksB. HindsD.A. JewettE.M. JiangY. KukarK. KwongA. LinK-H. LlamasB.A. LoweM. McCreightJ.C. McIntyreM.H. MichelettiS.J. MorenoM.E. NandakumarP. NguyenD.T. NoblinE.S. O’ConnellJ. PetrakovitzA.A. PoznikG.D. ReynosoA. SchloetterM. SchumacherM. ShastriA.J. SheltonJ.F. ShiJ. ShringarpureS. SuQ.J. TatS.A. TchakoutéC.T. TranV. TungJ.Y. WangX. WangW. WeldonC.H. WiltonP. WongC.D. IwakiH. LakeJ. SolsbergC.W. LeonardH. MakariousM.B. TanE-K. SingletonA.B. Bandres-CigaS. NoyceA.J. GattoE.M. KauffmanM. KhachatryanS. TavadyanZ. ShepherdC.E. HunterJ. KumarK. EllisM. RenteríaM.E. KoksS. ZimprichA. Schumacher-SchuhA.F. RiederC. AwadP.S. TumasV. CamargosS. FonE.A. MonchiO. FonT. GalleguillosB.P. MirandaM. BustamanteM.L. OlguinP. ChanaP. TangB. ShangH. GuoJ. ChanP. LuoW. ArboledaG. OrozcJ. del RioM.J. HernandezA. SalamaM. KamelW.A. ZewdeY.Z. BriceA. CorvolJ-C. WestenbergerA. IllarionovaA. MollenhauerB. KleinC. VollstedtE-J. HopfnerF. HöglingerG. MadoevH. TrinhJ. JunkerJ. LohmannK. LangeL.M. SharmaM. GroppaS. GasserT. FangZ-H. AkpaluA. XiromerisiouG. HadjigorgiouG. DagklisI. TarnanasI. StefanisL. StamelouM. DadiotisE. MedinaA. ChanG.H-F. IpN. CheungN.Y-F. ChanP. ZhouX. KishoreA. DivyaK.P. PalP. KukkleP.L. RajanR. BorgohainR. SalariM. QuattroneA. ValenteE.M. ParnettiL. AvenaliM. SchirinziT. FunayamaM. HattoriN. ShiraishiT. KarimovaA. KaishibayevaG. ShambetovaC. KrügerR. TanA.H. Ahmad-AnnuarA. NorlinahM.I. MuradN.A.A. AzminS. LimS-Y. MohamedW. TayY.W. Martinez-RamirezD. Rodriguez-ViolanteM. Reyes-PérezP. TserensodnomB. OjhaR. AndersonT.J. PitcherT.L. SanyaoluA. OkubadejoN. OjoO. AaslyJ.O. PihlstrømL. TanM. Ur-RehmanS. Veliz-OtaniD. Cornejo-OlivasM. DoqueniaM.L. RosalesR. VinuelaA. IakovenkoE. MubarakB.A. UmairM. AmodF. CarrJ. BardienS. JeonB. KimY.J. CuboE. AlvarezI. HoenickaJ. BeyerK. PeriñanM.T. PastorP. El-SadigS. BrolinK. ZweierC. TinkhauserG. KrackP. LinC-H. WuH-C. KungP-J. WuR-M. WuY. AmouriR. SassiS.B. BaşakA.N. GencG. ÇakmakÖ.Ö. ErtanS. Martínez-CarrascoA. SchragA. SchapiraA. CarrollC. BaleC. GrossetD. StaffordE.J. HouldenH. MorrisH.R. HardyJ. MokK.Y. RizigM. WoodN. WilliamsN. OkunoyeO. LewisP.A. KaiyrzhanovR. WeilR. LoveS. StottS. JasaityteS. DeyS. ObeseV. EspayA. O’GradyA. SoberingA.K. SiddiqiB. CaseyB. FiskeB. JonasC. CruchagaC. PantazisC.B. ComartC. WegelC. HallD. HernandezD. ShiamimE. RileyE. FaghriF. SerranoG.E. ChenH. MataI.F. SarmientoI.J.K. WilliamsonJ. JankovicJ. ShulmanJ. SolleJ.C. MurphyK. NuytemansK. KieburtzK. MarkopoulouK. MarekK. LevineK.S. ChahineL.M. IbanezL. ScrevenL. RuffrageL. ShulmanL. MarsiliL. KuhlM. DeanM. KoretskyM. PuckelwartzM.J. Inca-MartinezM. LouieN. MencacciN.E. AlbinR. AlcalayR. WalkerR. ChowdhuryS. DumanisS. LubbeS. XieT. ForoudT. BeachT. ShererT. SongY. NguyenD. NguyenT. AtadzhanovM. BlauwendraatC. NallsM.A. FooJ.N. MataI. Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease.Nat. Genet.2024561273610.1038/s41588‑023‑01584‑8 38155330
    [Google Scholar]
  58. LiZ.H. WangJ. XuJ.P. WangJ. YangX. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research.Mil. Med. Res.20231011210.1186/s40779‑023‑00447‑x 36895064
    [Google Scholar]
  59. PoddarA. AhmadyF. PrithvirajP. LuworR.B. ShuklaR. PolashS.A. LiH. RamakrishnaS. KannourakisG. JayachandranA. Advances in CRISPR/Cas systems-based cell and gene therapy.Prog. Mol. Biol. Transl. Sci.2024208Jun16118310.1016/bs.pmbts.2024.07.005 39266181
    [Google Scholar]
  60. PapaioannouI. OwenJ.S. Yáñez-MuñozR.J. Clinical applications of gene therapy for rare diseases: A review.Int. J. Exp. Pathol.2023104415417610.1111/iep.12478 37177842
    [Google Scholar]
  61. SalzmanR. CookF. HuntT. MalechH.L. ReillyP. Foss-CampbellB. BarrettD. Addressing the value of gene therapy and enhancing patient access to transformative treatments.Mol. Ther.201826122717272610.1016/j.ymthe.2018.10.017 30414722
    [Google Scholar]
  62. RasulM.F. HussenB.M. SalihiA. IsmaelB.S. JalalP.J. ZanichelliA. JamaliE. BaniahmadA. Ghafouri-FardS. BasiriA. TaheriM. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy.Mol. Cancer20222116410.1186/s12943‑021‑01487‑4 35241090
    [Google Scholar]
  63. UmairM. WaqasA. Undiagnosed rare genetic disorders: Importance of functional characterization of variants.Genes (Basel)2023147146910.3390/genes14071469 37510373
    [Google Scholar]
  64. ChehelgerdiM. ChehelgerdiM. Khorramian-GhahfarokhiM. ShafieizadehM. MahmoudiE. EskandariF. RashidiM. ArshiA. Mokhtari-FarsaniA. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy.Mol. Cancer2024231910.1186/s12943‑023‑01925‑5 38195537
    [Google Scholar]
/content/journals/cg/10.2174/0113892029361490250310041259
Loading
/content/journals/cg/10.2174/0113892029361490250310041259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test