Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background

Retinal Vein Occlusion (RVO) is a common and main cause of blindness. Causal, possible risk variables must be identified to develop preventative strategies for RVO. Thus, we decided to evaluate whether smoking, alcohol, obesity, sedentary behaviour, hypertension, and hyperglycemia are associated with increased risk of RVO.

Methods

The data sources of Mendelian Randomization (MR) study included FinnGen consortium and the original GWAS article. A total of 130,604 cases with RVO from FinnGen consortium and 12,136 cases with RVO from the original GWAS article. The exposures of this MR study included smoking, alcoholic consumption, obesity, sedentariness, hypertension, and hyperglycemia. The outcome of this MR study was RVO.

Results

Genetic predispositions to alcohol consumption (OR (odds ratio), 1.124; 95%CI, 1.007-1.254; =0.037) and hyperglycemia (OR, 1.108; 95%CI, 1.023-1.200; =0.012) were associated with increased risks of RVO in FinnGen. There were no significant associations of genetically predicted consumption of smoking (OR, 1.037; 95%CI, 0.341-3.155; =0.949), obesity (OR, 1.045; 95%CI, 0.975-1.119; =0.213), sedentariness (OR, 1.022; 95%CI, 0.753-1.38-; =0.888), or hypertension (OR, 0.944; 95%CI, 0.848-1.051; =0.290) with RVO.

Conclusion

This MR analysis provides genetic evidence that increased alcohol consumption and hyperglycemia may be causal risk factors for RVO. In addition, no genetic evidence in this MR analysis supported that there were causal associations between smoking, sedentariness, obesity and hypertension with RVO.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029320896241218055907
2025-01-17
2025-10-21
Loading full text...

Full text loading...

References

  1. IpM. HendrickA. Retinal vein occlusion review.Asia Pac. J. Ophthalmol. (Phila.)2018714045 29280368
    [Google Scholar]
  2. BharadiaS.K. BurnettL. GabrielV. Hypertrophic Scar.Phys. Med. Rehabil. Clin. N. Am.202334478379810.1016/j.pmr.2023.05.002 37806697
    [Google Scholar]
  3. ChenT.Y. UppuluriA. ZarbinM.A. BhagatN. Risk factors for central retinal vein occlusion in young adults.Eur. J. Ophthalmol.20213152546255510.1177/1120672120960333 33008264
    [Google Scholar]
  4. FerrariS. Di IorioE. BarbaroV. PonzinD. SorrentinoF.S. ParmeggianiF. Retinitis pigmentosa: Genes and disease mechanisms.Curr. Genomics201112423824910.2174/138920211795860107 22131869
    [Google Scholar]
  5. KazantzisD. MachairoudiaG. KroupisC. TheodossiadisG. TheodossiadisP. ChatziralliI. Complete blood count-derived inflammation indices and retinal vein occlusion: A case–control study.Ophthalmol. Ther.20221131241124910.1007/s40123‑022‑00511‑0 35503164
    [Google Scholar]
  6. DeobhaktaA. ChangL.K. Inflammation in retinal vein occlusion.Int. J. Inflamm.201320131610.1155/2013/438412 23653882
    [Google Scholar]
  7. ShaL. ZhaoY. LiS. WeiD. TaoY. WangY. Insights to Ang/Tie signaling pathway: Another rosy dawn for treating retinal and choroidal vascular diseases.J. Transl. Med.202422189810.1186/s12967‑024‑05441‑y 39367441
    [Google Scholar]
  8. NguyenH. LeeS.J. LiY. Selective activation of the wnt-signaling pathway as a novel therapy for the treatment of diabetic retinopathy and other retinal vascular diseases.Pharmaceutics20221411247610.3390/pharmaceutics14112476 36432666
    [Google Scholar]
  9. ZhouY. QiJ. LiuH. LiangS. GuoT. ChenJ. PanW. TanH. WangJ. XuH. ChenZ. Increased intraocular inflammation in retinal vein occlusion is independent of circulating immune mediators and is involved in retinal oedema.Front. Neurosci.202317118602510.3389/fnins.2023.1186025 37554292
    [Google Scholar]
  10. HashimotoY. KanekoH. OkadaA. MatsuiH. YasunagaH. AiharaM. ObataR. Association between retinal vein occlusion and life’s simple 7 cardiovascular health metrics: A large claims database study.Ophthalmol. Retina20226868469210.1016/j.oret.2022.03.012 35364326
    [Google Scholar]
  11. UmeyaR. YoshidaY. OnoK. Impact of retinal vein occlusion on cardiovascular events in elderly Japanese patients.Medicine (Baltimore)202110052e2842410.1097/MD.0000000000028424 34967379
    [Google Scholar]
  12. TranquartF. ArseneS. GiraudeauB. PiquemalR. EderV. Le LezM.L. RossazzaC. PourcelotL. Initial color Doppler findings in retinal vein occlusion.J. Clin. Ultrasound2000281283310.1002/(SICI)1097‑0096(200001)28:1<28:AID‑JCU4>3.0.CO;2‑5 10602102
    [Google Scholar]
  13. SorigueM. JuncàJ. OrnaE. RomanicN. SarrateE. CastellviJ. SolerM. Rodríguez-HernandezI. FeliuE. RuizS. Retinal vein occlusion and paroxysmal nocturnal hemoglobinuria.J. Thromb. Thrombolysis2017441636610.1007/s11239‑017‑1502‑4 28447244
    [Google Scholar]
  14. GillD. BurgessS. Distinguishing causation from genetic correlation in a Mendelian randomisation framework.Eur. Respir. J.2021586210134610.1183/13993003.01346‑2021 34887314
    [Google Scholar]
  15. YangJ. HeX. QianL. ZhaoB. FanY. GaoF. YanB. ZhuF. MaX. Association between plasma proteome and childhood neurodevelopmental disorders: A two-sample Mendelian randomization analysis.EBioMedicine20227810394810.1016/j.ebiom.2022.103948 35306338
    [Google Scholar]
  16. van de VegteY.J. SaidM.A. RienstraM. van der HarstP. VerweijN. Genome-wide association studies and Mendelian randomization analyses for leisure sedentary behaviours.Nat. Commun.2020111177010.1038/s41467‑020‑15553‑w 32317632
    [Google Scholar]
  17. BurgessS. BowdenJ. FallT. IngelssonE. ThompsonS.G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants.Epidemiology2017281304210.1097/EDE.0000000000000559 27749700
    [Google Scholar]
  18. BowdenJ. Davey SmithG. BurgessS. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.Int. J. Epidemiol.201544251252510.1093/ije/dyv080 26050253
    [Google Scholar]
  19. BurgessS. ThompsonS.G. Interpreting findings from Mendelian randomization using the MR-Egger method.Eur. J. Epidemiol.201732537738910.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  20. ChatzirallisA. VarakliotiA. SergentanisT.N. TheodossiadisP. ChatziralliI. Quality of life among patients with retinal vein occlusion: A case-control study.Semin. Ophthalmol.202136865866410.1080/08820538.2021.1896750 33684018
    [Google Scholar]
  21. ThapaR. BajimayaS. PaudyalG. KhanalS. TanS. ThapaS.S. van RensG. Prevalence, pattern and risk factors of retinal vein occlusion in an elderly population in Nepal: The Bhaktapur retina study.BMC Ophthalmol.201717116210.1186/s12886‑017‑0552‑x 28865424
    [Google Scholar]
  22. Trovato BattagliolaE. PacellaF. MalvasiM. Risk factors in central retinal vein occlusion: A multi-center case-control study conducted on the Italian population: Demographic, environmental, systemic, and ocular factors that increase the risk for major thrombotic events in the retinal venous system.Eur. J. Ophthalmol.20223252801280910.1001/archopht.1996.01100130537006 8619763
    [Google Scholar]
  23. da FonsecaM.L.G. SouzaA. PereiraM.B. ViannaR.N.G. CravoL.M. DemoriE. Paracentral acute middle maculopathy associated with hypoperfusion of the cilioretinal artery and impending central retinal vein occlusion.Eur. J. Ophthalmol.2021312NP46NP4810.1177/1120672119885787 31744321
    [Google Scholar]
  24. KleinR. KleinB.E. MossS.E. MeuerS.M. The epidemiology of retinal vein occlusion: The beaver dam eye study.Trans. Am. Ophthalmol. Soc.200098133141 11190017
    [Google Scholar]
  25. LimD.H. ShinK.Y. HanK. KangS.W. HamD.I. KimS.J. ParkY.G. ChungT.Y. Differential effect of the metabolic syndrome on the incidence of retinal vein occlusion in the korean population: A nationwide cohort study.Transl. Vis. Sci. Technol.20209131510.1167/tvst.9.13.15 33344059
    [Google Scholar]
  26. JadejaR.N. MartinP.M. Oxidative stress and inflammation in retinal degeneration.Antioxidants202110579010.3390/antiox10050790 34067655
    [Google Scholar]
  27. MasudaT. ShimazawaM. HaraH. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (Edaravone).Oxid. Med. Cell. Longev.201720171920848910.1155/2017/9208489 28194256
    [Google Scholar]
  28. AhsanuddinS. RiosH.A. Otero-MarquezO. MacanianJ. ZhouD. RichC. RosenR.B. Flavoprotein fluorescence elevation is a marker of mitochondrial oxidative stress in patients with retinal disease.Front. Ophthalmol. (Lausanne)20233111050110.3389/fopht.2023.1110501 38983095
    [Google Scholar]
  29. BöhmE.W. BuonfiglioF. KorbC.A. DauthA. PfeifferN. BręborowiczA. GerickeA. Potential of sulodexide in the treatment of diabetic retinopathy and retinal vein occlusion.Thromb. Haemost.202410.1055/s‑0044‑1791232 39293483
    [Google Scholar]
  30. EdwarL. KarimB. WijayaI.P. AriyantoI. TanudjajaS.A. EstiasariR. SitompulR. PriceP. Factors affecting the health of retinal vessels in human immunodeficiency virus patients beginning anti-retroviral therapy.AIDS Res. Hum. Retroviruses201935652953510.1089/aid.2018.0251 30880399
    [Google Scholar]
  31. GyllencreutzE. AringE. LandgrenV. SvenssonL. LandgrenM. GrönlundM.A. Ophthalmologic findings in fetal alcohol spectrum disorders – A cohort study from childhood to adulthood.Am. J. Ophthalmol.2020214142010.1016/j.ajo.2019.12.016 31926885
    [Google Scholar]
  32. BrennanD. GilesS. Ocular involvement in fetal alcohol spectrum disorder: A review.Curr. Pharm. Des.201420345377538710.2174/1381612820666140205144114 24502600
    [Google Scholar]
  33. ArrigoA. BandelloF. Retinal vein occlusion: Drug targets and therapeutic implications.Expert Opin. Ther. Targets2021251084786410.1080/14728222.2021.2005026 34775882
    [Google Scholar]
  34. PastrezP.R.A. BarbosaA.M. MarianoV.S. CausinR.L. CastroA.G. TorradoE. Longatto-FilhoA. Interleukin-8 and interleukin-6 are biomarkers of poor prognosis in esophageal squamous cell carcinoma.Cancers (Basel)2023157199710.3390/cancers15071997 37046658
    [Google Scholar]
  35. PisaturoC. DolciA. PessagnoA. PaduaG.L. DassioD.A. De NegriM.Jr Aplasia ed ipoplasia del nervo ottico. Comparazione di due casi.Minerva Pediatr.19964810465469[Aplasia and hypoplasia of the optic nerve. Comparison of 2 cases 9053727
    [Google Scholar]
  36. StrömlandK. HellströmA. GustavssonT. Morphometry of the optic nerve and retinal vessels in children by computer-assisted image analysis of fundus photographs.Graefes Arch. Clin. Exp. Ophthalmol.1995233315015310.1007/BF00166607 7758982
    [Google Scholar]
  37. TanoT. Yoshimune Hiratsuka; Koichi Ono; Akira Murakami, Influence of cataract surgery and blood pressure changes caused by sodium restriction on retinal vascular diameter.Clin. Ophthalmol.201041299130910.2147/OPTH.S14786 21139670
    [Google Scholar]
  38. SchweitzerV.G. DarratI. StachB.A. GrayE. Sudden bilateral sensorineural hearing loss following polysubstance narcotic overdose.J. Am. Acad. Audiol.201122420821410.3766/jaaa.22.4.3 21586255
    [Google Scholar]
  39. KhandelwalA. SeshanJ.R. RathG.P. ChaturvediA. Local ulceration following peripheral neurolysis with absolute alcohol in patients with drug-refractory trigeminal neuralgia.Neurol. India20237161244124610.4103/0028‑3886.391396 38174467
    [Google Scholar]
  40. StaresinicM. JapjecM. VranesH. PrtoricA. ZizekH. KrezicI. GojkovicS. SmodayI.M. OrozK. StaresinicE. DretarV. YagoH. MilavicM. SikiricS. LovricE. Batelja VuleticL. SimeonP. DobricI. StrbeS. KokotA. VlainicJ. BlagaicA.B. SkrticA. SeiwerthS. SikiricP. Stable gastric pentadecapeptide BPC 157 and striated, smooth, and heart muscle.Biomedicines20221012322110.3390/biomedicines10123221 36551977
    [Google Scholar]
  41. LiS. ZhouC. LiuT. ZhangL. LiuS. ZhaoQ. LiuJ. ZhaoW. Causal relationships between the gut microbiota, inflammatory cytokines, and alcoholic liver disease: A Mendelian randomization analysis.Front. Endocrinol. (Lausanne)202415144260310.3389/fendo.2024.1442603 39497803
    [Google Scholar]
  42. TaraleP. ChaudharyS. MukherjeeS. SarkarD.K. Ethanol-activated microglial exosomes induce MCP1 signaling mediated death of stress-regulatory proopiomelanocortin neurons in the developing hypothalamus.J. Neuroinflammation202421127910.1186/s12974‑024‑03274‑6 39478585
    [Google Scholar]
  43. KangS. LeeJ. AliD.N. ChoiS. NesbittJ. MinP.H. TrushinaE. ChoiD.S. Low to moderate ethanol exposure reduces astrocyte-induced neuroinflammatory signaling and cognitive decline in presymptomatic APP/PS1 mice.Sci. Rep.20241412398910.1038/s41598‑024‑75202‑w 39402264
    [Google Scholar]
  44. NomaH. YasudaK. ShimuraM. Cytokines and pathogenesis of central retinal vein occlusion.J. Clin. Med.2020911345710.3390/jcm9113457 33121094
    [Google Scholar]
  45. WangX. WangL. LiX. LiuS. LiuB. Characteristics of hematologic parameters in young patients with retinal vein occlusion.Ophthalmic Res.20236611096110310.1159/000531824 37429262
    [Google Scholar]
  46. LiX. CaoX. ZhaoM. BaoY. The changes of irisin and inflammatory cytokines in the age-related macular degeneration and retinal vein occlusion.Front. Endocrinol. (Lausanne)20221386175710.3389/fendo.2022.861757 35370941
    [Google Scholar]
  47. AnY. ParkS.P. KimY.K. Aqueous humor inflammatory cytokine levels and choroidal thickness in patients with macular edema associated with branch retinal vein occlusion.Int. Ophthalmol.20214172433244410.1007/s10792‑021‑01798‑x 33740201
    [Google Scholar]
  48. TangY. ChengY. WangS. WangY. LiuP. WuH. Review: The development of risk factors and cytokines in retinal vein occlusion.Front. Med. (Lausanne)2022991060010.3389/fmed.2022.910600 35783660
    [Google Scholar]
  49. ChenW. YaoX. ZhouC. ZhangZ. GuiG. LinB. Danhong huayu koufuye prevents diabetic retinopathy in streptozotocin-induced diabetic rats via antioxidation and anti-inflammation.Mediators Inflamm.201720171810.1155/2017/3059763 28638179
    [Google Scholar]
  50. BeuseA. DeisslerH. HollbornM. UnterlauftJ. BuschC. RehakM. Different responses of the MIO M1 Mueller cell line to angiotensin II under hyperglycemic or hypoxic conditions.Biomed. Rep.20231936210.3892/br.2023.1644 37614982
    [Google Scholar]
  51. ChengY. RenT. WangN. Biomechanical homeostasis in ocular diseases: A mini-review.Front. Public Health202311110672810.3389/fpubh.2023.1106728 36733902
    [Google Scholar]
  52. NarayananS.P. RojasM. SuwanpradidJ. ToqueH.A. CaldwellR.W. CaldwellR.B. Arginase in retinopathy.Prog. Retin. Eye Res.20133626028010.1016/j.preteyeres.2013.06.002 23830845
    [Google Scholar]
  53. KadomotoS. MuraokaY. UjiA. TamiyaR. OotoS. MurakamiT. OritaniY. KawaiK. TsujikawaA. Ultrastructure and hemodynamics of microaneurysms in retinal vein occlusion examined by an offset pinhole adaptive optics scanning light ophthalmoscope.Biomed. Opt. Express202011116078609210.1364/BOE.402331 33282476
    [Google Scholar]
  54. ChristoffersenN.L.B. LarsenM. Pathophysiology and hemodynamics of branch retinal vein occlusion.Ophthalmology1999106112054206210.1016/S0161‑6420(99)90483‑9 10571337
    [Google Scholar]
  55. CilogluE. Yıldırım CelikdemirA. The short-term effects of intravitreal aflibercept injections and dexamethasone implant on ocular hemodynamics in retinal vein occlusions.Ther. Clin. Risk Manag.20191582383010.2147/TCRM.S200658 31308680
    [Google Scholar]
  56. YoungbloodH. RobinsonR. SharmaA. SharmaS. Proteomic biomarkers of retinal inflammation in diabetic retinopathy.Int. J. Mol. Sci.20192019475510.3390/ijms20194755 31557880
    [Google Scholar]
  57. ChatziralliI. TouhamiS. CicinelliM.V. AgapitouC. DimitriouE. TheodossiadisG. TheodossiadisP. Disentangling the association between retinal non-perfusion and anti-VEGF agents in diabetic retinopathy.Eye (Lond.)202236469270310.1038/s41433‑021‑01750‑4 34408316
    [Google Scholar]
  58. LiuY. ShenJ. FortmannS.D. WangJ. VestweberD. CampochiaroP.A. Reversible retinal vessel closure from VEGF-induced leukocyte plugging.JCI Insight2017218e9553010.1172/jci.insight.95530 28931763
    [Google Scholar]
  59. LeeJ.H. KimS.H. KimE. Influence of smoking and controlled medical conditions on the risks of branch retinal vein occlusion in South Korea: A population-based study.Ophthalmic Epidemiol.20241810.1080/09286586.2024.2321902 38507597
    [Google Scholar]
  60. KandambethV. NagraleP. DaigavaneS. Estimation of vitamin D levels in patients with retinal vein occlusions and a comparison with age-matched control groups.Cureus2023155e3890910.7759/cureus.38909 37313088
    [Google Scholar]
  61. PaciulloF. ValerianiE. PorfidiaA. Di NisioM. DonadiniM.P. MarcucciR. PriscoD. CaginiC. GreseleP. AgenoW. Antithrombotic treatment of retinal vein occlusion: A position statement from the Italian Society on Thrombosis and Haemostasis (SISET).Blood Transfus.2022204341347 35175186
    [Google Scholar]
  62. RehakM. WiedemannP. Retinal vein thrombosis: Pathogenesis and management.J. Thromb. Haemost.2010891886189410.1111/j.1538‑7836.2010.03909.x 20492457
    [Google Scholar]
  63. TauqeerZ. BrachaP. McGeehanB. VanderBeekB.L. Hypercoagulability testing and hypercoagulable disorders in young central retinal vein occlusion patients.Ophthalmol. Retina202261374210.1016/j.oret.2021.03.009 33774219
    [Google Scholar]
  64. HamidS. MirzaS.A. ShokhI. Branch retinal vein occlusion.J. Ayub Med. Coll. Abbottabad2008202128132 19385476
    [Google Scholar]
  65. AlbergA.J. The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients.Toxicology2002180212113710.1016/S0300‑483X(02)00386‑4 12324189
    [Google Scholar]
  66. ChangM.A. BresslerS.B. MunozB. WestS.K. Racial differences and other risk factors for incidence and progression of age-related macular degeneration: Salisbury Eye Evaluation (SEE) Project.Invest. Ophthalmol. Vis. Sci.20084962395240210.1167/iovs.07‑1584 18263809
    [Google Scholar]
  67. WuC.Y. CilicA. PakO. DartschR.C. WilhelmJ. WujakM. LoK. BrosienM. ZhangR. AlkoudmaniI. WitteB. PedersenF. WatzH. VoswinckelR. GüntherA. GhofraniH.A. BrandesR.P. SchermulyR.T. GrimmingerF. SeegerW. SommerN. WeissmannN. HadzicS. CEACAM6 as a novel therapeutic target to boost HO-1—mediated antioxidant defense in COPD.Am. J. Respir. Crit. Care Med.2023207121576159010.1164/rccm.202208‑1603OC 37219322
    [Google Scholar]
  68. Bin HomranF.M. AlaskariA.A. DevarajA. UdeaborS.E. Al-HakamiA. JosephB. HaralurS.B. ChandramoorthyH.C. Chronic metabolic and induced stress impacts mesenchymal stromal cell differentiation and modulation of dental origin in-vitro.Saudi J. Biol. Sci.20222942230223710.1016/j.sjbs.2021.11.038 35531217
    [Google Scholar]
  69. KovarnikT. HitoshiM. KralA. JerabekS. ZemanekD. KawaseY. OmoriH. TanigakiT. PudilJ. VodzinskaA. BrannyM. StipalR. KalaP. MrozekJ. PorzerM. GrezlT. NovobilskyK. MendizO. KoprivaK. MatesM. ChvalM. ChenZ. MartasekP. LinhartA. KovarnikT. KralA. JerabekS. ZemanekD. PudilJ. HumhalJ. GoricanK. PadourM. ŠimekS. BelohlavekJ. RobD. HronovaM. KralA. HitoshiM. KawaseY. OmoriH. TanigakiT. VodzinskaA. CernyJ. IndrakJ. HudecM. BrannyM. MrozekJ. PorzerM. GrezlT. StipalR. KalaP. KanovskyJ. BocekO. PoloczekM. JerabekP. NovobilskyK. KolomaznikT. MendizO. KoprivaK. MatesM. HolyF. ChvalM. ChenZ. MartasekP. KralikL. Fractional flow reserve versus instantaneous wave‐free ratio in assessment of lesion hemodynamic significance and explanation of their discrepancies. international, multicenter and prospective trial: The figaro study.J. Am. Heart Assoc.2022119e02149010.1161/JAHA.121.021490 35502771
    [Google Scholar]
  70. KuanV. WarwickA. HingoraniA. TufailA. CiprianiV. BurgessS. SofatR. FritscheL.G. IglW. Cooke BaileyJ.N. GrassmannF. SenguptaS. Bragg-GreshamJ.L. BurdonK.P. HebbringS.J. WenC. GorskiM. KimI.K. ChoD. ZackD. SouiedE. SchollH.P.N. BalaE. LeeK.E. HunterD.J. SardellR.J. MitchellP. MerriamJ.E. HoffmanJ.D. SchickT. LechanteurY.T.E. GuymerR.H. JohnsonM.P. JiangY. StantonC.M. BuitendijkG.H.S. ZhanX. KwongA.M. BoledaA. BrooksM. GieserL. RatnapriyaR. BranhamK.E. FoersterJ.R. HeckenlivelyJ.R. OthmanM.I. VoteB.J. LiangH.H. SouzeauE. McAllisterI.L. IsaacsT. HallJ. LakeS. MackeyD.A. ConstableI.J. CraigJ.E. KitchnerT.E. YangZ. SuZ. LuoH. ChenD. OuyangH. FlaggK. LinD. MaoG. FerreyraH. StarkK. StrachwitzC.N. WolfA. BrandlC. RudolphG. OldenM. MorrisonM.A. MorganD.J. SchuM. AhnJ. SilvestriG. TsironiE.E. ParkK.H. FarrerL.A. OrlinA. BruckerA. LiM. CurcioC.A. Mohand-SaïdS. SahelJ-A. AudoI. BenchabouneM. CreeA.J. RennieC.A. GoverdhanS.V. GruninM. Hagbi-LeviS. CampochiaroP. KatsanisN. HolzF.G. BlondF. BlanchéH. DeleuzeJ-F. IgoR.P.Jr TruittB. PeacheyN.S. MeuerS.M. MyersC.E. MooreE.L. KleinR. HauserM.A. PostelE.A. CourtenayM.D. SchwartzS.G. KovachJ.L. ScottW.K. LiewG. TanA.G. GopinathB. MerriamJ.C. SmithR.T. KhanJ.C. ShahidH. MooreA.T. McGrathJ.A. LauxR. BrantleyM.A.Jr AgarwalA. ErsoyL. CaramoyA. LangmannT. SaksensN.T.M. JongE.K. HoyngC.B. CainM.S. RichardsonA.J. MartinT.M. BlangeroJ. WeeksD.E. DhillonB. Van DuijnC.M. DohenyK.F. RommJ. KlaverC.C.W. HaywardC. GorinM.B. KleinM.L. BairdP.N. HollanderA.I. FauserS. YatesJ.R.W. AllikmetsR. WangJ.J. SchaumbergD.A. KleinB.E.K. HagstromS.A. ChowersI. LoteryA.J. LéveillardT. ZhangK. BrilliantM.H. HewittA.W. SwaroopA. ChewE.Y. Pericak-VanceM.A. DeAngelisM. StambolianD. HainesJ.L. IyengarS.K. WeberB.H.F. AbecasisG.R. HeidI.M. Association of smoking, alcohol consumption, blood pressure, body mass index, and glycemic risk factors with age-related macular degeneration.JAMA Ophthalmol.2021139121299130610.1001/jamaophthalmol.2021.4601 34734970
    [Google Scholar]
  71. SoodG. SiddikA.B. Ocular Ischemic Syndrome.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  72. KolarP. Risk factors for central and branch retinal vein occlusion: A meta-analysis of published clinical data.J. Ophthalmol.201420141510.1155/2014/724780 25009743
    [Google Scholar]
  73. SchreiberovaZ. RehakJ. BabkovaB. SinM. RybarikovaM. PaskovaB. SinovaI. HubnerovaP. MaluskovaM. MaresovaK. KarhanovaM. Hypertension, hyperlipidaemia and thrombophilia as the most common risk factors for retinal vein occlusion in patients under 50 years.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.20241681444910.5507/bp.2022.036 36036564
    [Google Scholar]
  74. SongP. XuY. ZhaM. ZhangY. RudanI. Global epidemiology of retinal vein occlusion: A systematic review and meta-analysis of prevalence, incidence, and risk factors.J. Glob. Health20199101042710.7189/jogh.09.010427 31131101
    [Google Scholar]
  75. WengH. LiH. ZhangZ. ZhangY. XiL. ZhangD. DengC. WangD. ChenR. ChenG. TangS. ZuoX. YangP. ZhaiZ. WangC. Association between uric acid and risk of venous thromboembolism in East Asian populations: A cohort and Mendelian randomization study.Lancet Reg. Health West. Pac.20233910084810.1016/j.lanwpc.2023.100848 37565068
    [Google Scholar]
/content/journals/cg/10.2174/0113892029320896241218055907
Loading
/content/journals/cg/10.2174/0113892029320896241218055907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test