Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Introduction

Recent investigations have underscored the importance of long non-coding RNAs (lncRNAs), which exhibit more specific expression in tissues and cells than mRNA and are involved in gene regulation during development, pathology, and other processes through various mechanisms. Despite the predominant focus on the role of lncRNA Dio3os in cancer research, there has been relatively limited exploration of its potential involvement in glycolipid metabolism. Therefore, this study aims to consolidate existing knowledge on the function of Dio3os in glycolipid metabolism and calls for a broader investigation into its physiological roles.

Methods

This review synthesizes available literature to detail the gene characteristics of lncRNA Dio3os and its expression patterns. It also compiles recent insights and mechanisms pertaining to Dio3os's involvement in glycolipid metabolism, particularly its participation in the ceRNA regulatory network.

Results

Recent studies demonstrate that lncRNA Dio3os regulates glycolysis in cancer cells and impacts obesity, potentially serving as an indicator for diabetic peripheral neuropathy. Furthermore, its diminished expression has been noted in atherosclerotic plaques.

Conclusion

lncRNA Dio3os exerts a significant regulatory influence on glycolipid metabolism, with variations in its expression levels potentially affecting disease presentations. Further investigations are warranted to elucidate the precise relationship between lncRNA Dio3os and its associated pathologies.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029345945241125064704
2025-01-07
2025-09-03
Loading full text...

Full text loading...

References

  1. HombachS. KretzM. Non-coding RNAs: Classification, biology and functioning.Adv. Exp. Med. Biol.201693731710.1007/978‑3‑319‑42059‑2_127573892
    [Google Scholar]
  2. WangT. LiJ. YangL. WuM. MaQ. The role of long non-coding RNAs in human imprinting disorders: Prospective therapeutic targets.Front. Cell Dev. Biol.2021973001410.3389/fcell.2021.73001434760887
    [Google Scholar]
  3. HermanA.B. TsitsipatisD. GorospeM. Integrated lncRNA function upon genomic and epigenomic regulation.Mol. Cell202282122252226610.1016/j.molcel.2022.05.02735714586
    [Google Scholar]
  4. AliT. GroteP. Beyond the RNA-dependent function of LncRNA genes.eLife20209e6058310.7554/eLife.6058333095159
    [Google Scholar]
  5. LabialleS. YangL. RuanX. VillemainA. SchmidtJ.V. HernandezA. WiltshireT. CermakianN. NaumovaA.K. Coordinated diurnal regulation of genes from the Dlk1–Dio3 imprinted domain: Implications for regulation of clusters of non-paralogous genes.Hum. Mol. Genet.2008171152610.1093/hmg/ddm28117901046
    [Google Scholar]
  6. HernandezA. Structure and function of the type 3 deiodinase gene.Thyroid200515886587410.1089/thy.2005.15.86516131329
    [Google Scholar]
  7. YangW. LiD. WangG. WuX. ZhangM. ZhangC. CuiY. LiS. Expression and imprinting of DIO3 and DIO3OS genes in Holstein cattle.J. Genet.201796233333910.1007/s12041‑017‑0780‑028674234
    [Google Scholar]
  8. DietzW.H. MastersonK. SittigL.J. RedeiE.E. HerzingL.B.K. Imprinting and expression of Dio3os mirrors Dio3 in rat.Front. Genet.2012327910.3389/fgene.2012.0027923230449
    [Google Scholar]
  9. AmaralP.P. MattickJ.S. Noncoding RNA in development.Mamm. Genome2008197-845449210.1007/s00335‑008‑9136‑718839252
    [Google Scholar]
  10. PetersJ. RobsonJ.E. Imprinted noncoding RNAs.Mamm. Genome2008197-849350210.1007/s00335‑008‑9139‑418815833
    [Google Scholar]
  11. KamiokaH. OkuizumiH. HandaS. KitayuguchiJ. MachidaR. Effect of non-surgical interventions on pain relief and symptom improvement in farmers with diseases of the musculoskeletal system or connective tissue: An exploratory systematic review based on randomized controlled trials.J. Rural Med.20221712021-03810.2185/jrm.2021‑03835047096
    [Google Scholar]
  12. JimaD.D. SkaarD.A. PlanchartA. Motsinger-ReifA. CevikS.E. ParkS.S. CowleyM. WrightF. HouseJ. LiuA. JirtleR.L. HoyoC. Genomic map of candidate human imprint control regions: The imprintome.Epigenetics202217131920194310.1080/15592294.2022.209181535786392
    [Google Scholar]
  13. LiaoJ. ChenB. ZhuZ. DuC. GaoS. ZhaoG. ZhaoP. WangY. WangA. SchwartzZ. SongL. HongJ. WagstaffW. HaydonR.C. LuuH.H. FanJ. ReidR.R. HeT.C. ShiL. HuN. HuangW. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases.Genes Dis.20231041351136610.1016/j.gendis.2023.02.00837397543
    [Google Scholar]
  14. StevensonT.J. PrendergastB.J. Reversible DNA methylation regulates seasonal photoperiodic time measurement.Proc. Natl. Acad. Sci. USA201311041166511665610.1073/pnas.131064311024067648
    [Google Scholar]
  15. XiaF. WangY. XueM. ZhuL. JiaD. ShiY. GaoY. LiL. LiY. ChenS. XuG. YuanD. YuanC. LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases.Genes Dis.2022961556156510.1016/j.gendis.2021.07.00336157505
    [Google Scholar]
  16. HouY.R. DiaoL.T. HuY.X. ZhangQ.Q. LvG. TaoS. XuW.Y. XieS.J. ZhangQ. XiaoZ.D. The conserved LncRNA DIO3OS restricts hepatocellular carcinoma stemness by interfering with NONO-mediated nuclear export of ZEB1 mRNA.Adv. Sci.20231023230198310.1002/advs.20230198337271897
    [Google Scholar]
  17. ZhangM. WuJ. ZhongW. ZhaoZ. HeW. DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis.Mol. Ther. Oncolytics20212320521910.1016/j.omto.2021.09.00634761103
    [Google Scholar]
  18. WangM. LiJ. ZuoZ. RenC. TangT. LongC. GongY. YeF. WangZ. HuangJ. Long non-coding RNA DIO3OS/let-7d/NF-κB2 axis regulates cells proliferation and metastasis of thyroid cancer cells.J. Cell Commun. Signal.202115223725010.1007/s12079‑020‑00589‑w33058043
    [Google Scholar]
  19. CuiK. JinS. DuY. YuJ. FengH. FanQ. MaW. Long noncoding RNA DIO3OS interacts with miR-122 to promote proliferation and invasion of pancreatic cancer cells through upregulating ALDOA.Cancer Cell Int.201919120210.1186/s12935‑019‑0922‑y31384177
    [Google Scholar]
  20. ChenX. LuoR. ZhangY. YeS. ZengX. LiuJ. HuangD. LiuY. LiuQ. LuoM.L. SongE. Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer.Nat. Commun.2022131716010.1038/s41467‑022‑34702‑x36418319
    [Google Scholar]
  21. ChenY.T. YangQ.Y. HuY. LiuX.D. de AvilaJ.M. ZhuM.J. NathanielszP.W. DuM. Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance.Nat. Commun.2021121684510.1038/s41467‑021‑27171‑134824246
    [Google Scholar]
  22. ArslanS. ŞahinN.Ö. BayyurtB. BerkanÖ. YılmazM.B. AşamM. AyazF. Role of lncRNAs in remodeling of the coronary artery plaques in patients with atherosclerosis.Mol. Diagn. Ther.202327560161010.1007/s40291‑023‑00659‑w37347334
    [Google Scholar]
  23. YuD. WangY. MaF. GuanY. YeS. ShenG. YouL. Analysis of lncRNA and mRNA expression profiles in diabetic peripheral neuropathy based on weighted gene co-expression network analysis.All Life2023161222053710.1080/26895293.2023.2220537
    [Google Scholar]
  24. XieH. WangH. LiX. JiH. XuY. ZEA exerts toxic effects on reproduction and development by mediating Dio3os in mouse endometrial stromal cells.J. Biochem. Mol. Toxicol.2019336e2231010.1002/jbt.2231030790392
    [Google Scholar]
  25. HernandezA. MartinezM.E. CroteauW. St GermainD.L. Complex organization and structure of sense and antisense transcripts expressed from the DIO3 gene imprinted locus.Genomics200483341342410.1016/j.ygeno.2003.08.02414962667
    [Google Scholar]
  26. OelkrugR. MittagJ. Too much too soon-tissue-specific inactivation of deiodinase type 3 prematurely exposes brown fat to thyroid hormone.Endocrinology20221635bqac03210.1210/endocr/bqac03235294005
    [Google Scholar]
  27. AyacheL. BushellA. LeeJ. SalminenI. CrespiB. Mother’s warmth from maternal genes: Genomic imprinting of brown adipose tissue.Evol. Med. Public Health202311137938510.1093/emph/eoad03137928960
    [Google Scholar]
  28. LiuH. LiangJ. DaiX. PengY. XiongW. ZhangL. LiX. LiW. LiuK. BiS. WangX. ZhangW. LiuY. Transcriptome-wide N6-methyladenosine (m6A) methylation profiling of long non-coding RNAs in ovarian endometriosis.Genomics2024116211080310.1016/j.ygeno.2024.11080338290592
    [Google Scholar]
  29. MargueronR. ReinbergD. The Polycomb complex PRC2 and its mark in life.Nature2011469733034334910.1038/nature0978421248841
    [Google Scholar]
  30. LiY. LuoM. ShiX. LuZ. SunS. HuangJ. ChenZ. HeJ. Integrated bioinformatics analysis of chromatin regulator EZH2 in regulating mRNA and lncRNA expression by ChIP sequencing and RNA sequencing.Oncotarget2016749817158172610.18632/oncotarget.1316927835578
    [Google Scholar]
  31. BarlowD.P. BartolomeiM.S. Genomic imprinting in mammals.Cold Spring Harb. Perspect. Biol.201462a01838210.1101/cshperspect.a01838224492710
    [Google Scholar]
  32. TucciV. IslesA.R. KelseyG. Ferguson-SmithA.C. TucciV. BartolomeiM.S. BenvenistyN. Bourc’hisD. CharalambousM. DulacC. FeilR. GlaserJ. HuelsmannL. JohnR.M. McNamaraG.I. MoorwoodK. MuscatelliF. SasakiH. StrassmannB.I. VincenzC. WilkinsJ. IslesA.R. KelseyG. Ferguson-SmithA.C. Erice Imprinting Group Genomic imprinting and physiological processes in mammals.Cell2019176595296510.1016/j.cell.2019.01.04330794780
    [Google Scholar]
  33. KesterM.H.A. KuiperG.G.J.M. VersteegR. VisserT.J. Regulation of type III iodothyronine deiodinase expression in human cell lines.Endocrinology2006147125845585410.1210/en.2006‑059016935842
    [Google Scholar]
  34. HivertM.F. CardenasA. AllardC. DoyonM. PoweC.E. CatalanoP.M. PerronP. BouchardL. Interplay of placental DNA methylation and maternal insulin sensitivity in pregnancy.Diabetes202069348449210.2337/db19‑079831882564
    [Google Scholar]
  35. Velez EdwardsD.R. NajA.C. MondaK. NorthK.E. NeuhouserM. MagvanjavO. KusimoI. VitolinsM.Z. MansonJ.E. O’SullivanM.J. RampersaudE. EdwardsT.L. Gene-environment interactions and obesity traits among postmenopausal African-American and Hispanic women in the Women’s Health Initiative SHARe Study.Hum. Genet.2013132332333610.1007/s00439‑012‑1246‑323192594
    [Google Scholar]
  36. TierlingS. DalbertS. SchoppenhorstS. TsaiC.E. OligerS. Ferguson-SmithA.C. PaulsenM. WalterJ. High-resolution map and imprinting analysis of the Gtl2–Dnchc1 domain on mouse chromosome 12.Genomics200687222523510.1016/j.ygeno.2005.09.01816309881
    [Google Scholar]
  37. MartinezM.E. CoxD.F. YouthB.P. HernandezA. Genomic imprinting of DIO3, a candidate gene for the syndrome associated with human uniparental disomy of chromosome 14.Eur. J. Hum. Genet.201624111617162110.1038/ejhg.2016.6627329732
    [Google Scholar]
  38. SackL.M. DavoliT. LiM.Z. LiY. XuQ. NaxerovaK. WootenE.C. BernardiR.J. MartinT.D. ChenT. LengY. LiangA.C. ScorsoneK.A. WestbrookT.F. WongK.K. ElledgeS.J. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns.Cell20181732499514.e2310.1016/j.cell.2018.02.03729576454
    [Google Scholar]
  39. ZhangM. HuT. MaT. HuangW. WangY. Epigenetics and environmental health.Front. Med.202418457159610.1007/s11684‑023‑1038‑238806988
    [Google Scholar]
  40. ChenT. XuZ.G. LuoJ. ManneR.K. WangZ. HsuC.C. PanB.S. CaiZ. TsaiP.J. TsaiY.S. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance.Cell Metab.202335101782179810.1016/j.cmet.2023.07.009
    [Google Scholar]
  41. Ganapathy-KanniappanS. GeschwindJ.F.H. Tumor glycolysis as a target for cancer therapy: Progress and prospects.Mol. Cancer201312115210.1186/1476‑4598‑12‑15224298908
    [Google Scholar]
  42. SongK. KwonH. HanC. ZhangJ. DashS. LimK. WuT. Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: Regulation by MIR-122.Oncotarget2015638408224083510.18632/oncotarget.581226506419
    [Google Scholar]
  43. ChangY.C. YangY.C. TienC.P. YangC.J. HsiaoM. Roles of aldolase family genes in human cancers and diseases.Trends Endocrinol. Metab.201829854955910.1016/j.tem.2018.05.00329907340
    [Google Scholar]
  44. JohnstonS.R.D. DowsettM. Aromatase inhibitors for breast cancer: Lessons from the laboratory.Nat. Rev. Cancer200331182183110.1038/nrc121114668813
    [Google Scholar]
  45. OberstrassF.C. AuweterS.D. EratM. HargousY. HenningA. WenterP. ReymondL. Amir-AhmadyB. PitschS. BlackD.L. AllainF.H.T. Structure of PTB bound to RNA: Specific binding and implications for splicing regulation.Science200530957432054205710.1126/science.111406616179478
    [Google Scholar]
  46. SpellmanR. SmithC.W.J. Novel modes of splicing repression by PTB.Trends Biochem. Sci.2006312737610.1016/j.tibs.2005.12.00316403634
    [Google Scholar]
  47. ZhaoY. LiuH. LiuZ. DingY. LeDouxS.P. WilsonG.L. VoellmyR. LinY. LinW. NahtaR. LiuB. FodstadO. ChenJ. WuY. PriceJ.E. TanM. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism.Cancer Res.201171134585459710.1158/0008‑5472.CAN‑11‑012721498634
    [Google Scholar]
  48. PorporatoP.E. PayenV.L. De SaedeleerC.J. PréatV. ThissenJ.P. FeronO. SonveauxP. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice.Angiogenesis201215458159210.1007/s10456‑012‑9282‑022660894
    [Google Scholar]
  49. ChenF. ChenJ. YangL. LiuJ. ZhangX. ZhangY. TuQ. YinD. LinD. WongP.P. HuangD. XingY. ZhaoJ. LiM. LiuQ. SuF. SuS. SongE. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells.Nat. Cell Biol.201921449851010.1038/s41556‑019‑0299‑030936474
    [Google Scholar]
  50. WuL. ChenL. LiL. Apelin/APJ system: A novel promising therapy target for pathological angiogenesis.Clin. Chim. Acta2017466788410.1016/j.cca.2016.12.02328025030
    [Google Scholar]
  51. JinH.Y. ParkT.S. Role of inflammatory biomarkers in diabetic peripheral neuropathy.J. Diabetes Investig.2018951016101810.1111/jdi.1279429277966
    [Google Scholar]
  52. RichnerM. FerreiraN. DudeleA. JensenT.S. VaegterC.B. GonçalvesN.P. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy.Front. Neurosci.201912103810.3389/fnins.2018.0103830692907
    [Google Scholar]
  53. ZillioxL.A. RussellJ.W. Physical activity and dietary interventions in diabetic neuropathy: A systematic review.Clin. Auton. Res.201929444345510.1007/s10286‑019‑00607‑x31076938
    [Google Scholar]
  54. WangS. HouY. ChenW. WangJ. XieW. ZhangX. ZengL. KIF9-AS1, LINC01272 and DIO3OS lncRNAs as novel biomarkers for inflammatory bowel disease.Mol. Med. Rep.20171722195220210.3892/mmr.2017.811829207070
    [Google Scholar]
  55. WallaceC. SmythD.J. Maisuria-ArmerM. WalkerN.M. ToddJ.A. ClaytonD.G. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes.Nat. Genet.2010421687110.1038/ng.49319966805
    [Google Scholar]
  56. HernandezA. GarciaB. ObregonM.J. Gene expression from the imprinted Dio3 locus is associated with cell proliferation of cultured brown adipocytes.Endocrinology200714883968397610.1210/en.2007‑002917510246
    [Google Scholar]
  57. XieH.Q. HouY.J. LiX.D. XingG.D. ChenJ. XuY.X. Dlk1-Dio3 locus-derived lncRNA Dio3os affects growth, development and reproductive activity in mice.Pak. Vet. J.2021
    [Google Scholar]
  58. WellnerU. SchubertJ. BurkU.C. SchmalhoferO. ZhuF. SonntagA. WaldvogelB. VannierC. DarlingD. HausenA. BruntonV.G. MortonJ. SansomO. SchülerJ. StemmlerM.P. HerzbergerC. HoptU. KeckT. BrabletzS. BrabletzT. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.Nat. Cell Biol.200911121487149510.1038/ncb199819935649
    [Google Scholar]
  59. KurimaK. HertzanoR. GavrilovaO. MonahanK. ShpargelK.B. NadarajaG. KawashimaY. LeeK.Y. ItoT. HigashiY. EisenmanD.J. StromeS.E. GriffithA.J. A noncoding point mutation of Zeb1 causes multiple developmental malformations and obesity in Twirler mice.PLoS Genet.201179e100230710.1371/journal.pgen.100230721980308
    [Google Scholar]
  60. ShiY. LiF. WangS. WangC. XieY. ZhouJ. LiX. WangB. miR-196b-5p controls adipocyte differentiation and lipogenesis through regulating mTORC1 and TGF-β signaling.FASEB J.20203479207922210.1096/fj.201901562RR32469097
    [Google Scholar]
  61. SaykallyJ.N. DoganS. ClearyM.P. SandersM.M. The ZEB1 transcription factor is a novel repressor of adiposity in female mice.PLoS One2009412e846010.1371/journal.pone.000846020041147
    [Google Scholar]
  62. StuebeA.M. FormanM.R. MichelsK.B. Maternal-recalled gestational weight gain, pre-pregnancy body mass index, and obesity in the daughter.Int. J. Obes.200933774375210.1038/ijo.2009.10119528964
    [Google Scholar]
  63. WuZ. MartinezM.E. St GermainD.L. HernandezA. Type 3 deiodinase role on central thyroid hormone action affects the leptin-melanocortin system and circadian activity.Endocrinology2017158241943010.1210/en.2016‑168027911598
    [Google Scholar]
  64. EsauC. DavisS. MurrayS.F. YuX.X. PandeyS.K. PearM. WattsL. BootenS.L. GrahamM. McKayR. SubramaniamA. ProppS. LolloB.A. FreierS. BennettC.F. BhanotS. MoniaB.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.Cell Metab.200632879810.1016/j.cmet.2006.01.00516459310
    [Google Scholar]
  65. WangZ. SongL. YeY. LiW. Long noncoding RNA DIO3OS hinders cell malignant behaviors of hepatocellular carcinoma cells through the microRNA-328/Hhip axis.Cancer Manag. Res.2020123903391410.2147/CMAR.S24599032547226
    [Google Scholar]
  66. ZuoY. LvY. QianX. WangS. ChenZ. JiangQ. CaoC. SongY. Inhibition of HHIP promoter methylation suppresses human gastric cancer cell proliferation and migration.Cell. Physiol. Biochem.20184551840185010.1159/00048787529539620
    [Google Scholar]
  67. WeiH. LiJ. ShiS. ZhangL. XiangA. ShiX. YangG. ChuG. Hhip inhibits proliferation and promotes differentiation of adipocytes through suppressing hedgehog signaling pathway.Biochem. Biophys. Res. Commun.2019514114815610.1016/j.bbrc.2019.04.04731027733
    [Google Scholar]
  68. MaY. HeS. XieQ. TangZ. JiangZ. LncRNA: An important regulator of atherosclerosis.Curr. Med. Chem.202330384340435410.2174/092986733066623011112514136635933
    [Google Scholar]
  69. TanY.T. LinJ.F. LiT. LiJ.J. XuR.H. JuH.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer.Cancer Commun.202141210912010.1002/cac2.1210833119215
    [Google Scholar]
  70. HeJ. ZhuS. LiangX. ZhangQ. LuoX. LiuC. SongL. LncRNA as a multifunctional regulator in cancer multi-drug resistance.Mol. Biol. Rep.202148811510.1007/s11033‑021‑06603‑734333735
    [Google Scholar]
  71. WangY. SunP. HaoX. CaoD. LiuJ. ZhangD. Decreased DIO3OS expression predicts poor prognosis in hepatocellular carcinoma and is associated with immune infiltration.Biochem. Genet.20236151791180610.1007/s10528‑023‑10345‑536802306
    [Google Scholar]
  72. ZhuQ. LeiZ. XuC. ZhangZ. YuZ. ChengZ. XiaoP. LiS. YuW. ZhouJ. LncRNA HClnc1 facilitates hepatocellular carcinoma progression by regulating PKM2 signaling and indicates poor survival outcome after hepatectomy.Cancer Med.20231213145261454410.1002/cam4.611737212467
    [Google Scholar]
  73. HuM. FuQ. JingC. ZhangX. QinT. PanY. LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia.Biomed. Pharmacother.202012510970310.1016/j.biopha.2019.10970332062551
    [Google Scholar]
  74. WangY. WangJ. WangC. ChenY. ChenJ. DIO3OS as a potential biomarker of papillary thyroid cancer.Pathol. Res. Pract.202222915369510.1016/j.prp.2021.15369534929602
    [Google Scholar]
  75. ShiL. DuanR. SunZ. JiaQ. WuW. WangF. LiuJ. ZhangH. XueX. LncRNA GLTC targets LDHA for succinylation and enzymatic activity to promote progression and radioiodine resistance in papillary thyroid cancer.Cell Death Differ.20233061517153210.1038/s41418‑023‑01157‑637031273
    [Google Scholar]
  76. HuoN. CongR. SunZ. LiW. ZhuX. XueC. ChenZ. MaL. ChuZ. HanY. KangX. JiaS. DuN. KangL. XuX. STAT3/LINC00671 axis regulates papillary thyroid tumor growth and metastasis via LDHA-mediated glycolysis.Cell Death Dis.202112979910.1038/s41419‑021‑04081‑034404767
    [Google Scholar]
  77. YuanJ. JiaJ. WuT. DuZ. ChenQ. ZhangJ. WuZ. YuanZ. ZhaoX. LiuJ. GuoJ. ChengX. Long intergenic non-coding RNA DIO3OS promotes osteosarcoma metastasis via activation of the TGF-β signaling pathway: A potential diagnostic and immunotherapeutic target for osteosarcoma.Cancer Cell Int.202323121510.1186/s12935‑023‑03076‑537752544
    [Google Scholar]
  78. ChenS. XuX. LuS. HuB. Long non-coding RNA HAND2-AS1 targets glucose metabolism and inhibits cancer cell proliferation in osteosarcoma.Oncol. Lett.20191821323132910.3892/ol.2019.1044531423193
    [Google Scholar]
  79. FengZ. OuY. HaoL. The roles of glycolysis in osteosarcoma.Front. Pharmacol.20221395088610.3389/fphar.2022.95088636059961
    [Google Scholar]
  80. LiuJ. ChenM. MaL. DangX. DuG. LncRNA GAS5 suppresses the proliferation and invasion of osteosarcoma cells via the miR-23a-3p/PTEN/PI3K/AKT pathway.Cell Transplant.20202910.1177/096368972095309333121268
    [Google Scholar]
  81. YangH.S. CaiH.Y. ShanS.C. ChenT.F. ZouJ.Y. AbudurufuM. LuoH.H. LeiY.Y. KeZ.F. ZhuY. Methylation of N6 adenosine-related long noncoding RNA : Effects on prognosis and treatment in ‘driver-gene-negative’ lung adenocarcinoma.Mol. Oncol.202317236537710.1002/1878‑0261.1332336221911
    [Google Scholar]
  82. HuaQ. JinM. MiB. XuF. LiT. ZhaoL. LiuJ. HuangG. LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis.J. Hematol. Oncol.20191219110.1186/s13045‑019‑0773‑y31488218
    [Google Scholar]
  83. HuaQ. MiB. XuF. WenJ. ZhaoL. LiuJ. HuangG. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis.Theranostics202010114762477810.7150/thno.4383932308748
    [Google Scholar]
  84. YaoR.W. WangY. ChenL.L. Cellular functions of long noncoding RNAs.Nat. Cell Biol.201921554255110.1038/s41556‑019‑0311‑831048766
    [Google Scholar]
  85. LiuJ. ZhouR. DengM. XueN. LiT. GuoY. GaoL. FanR. ZhaoD. RETRACTED ARTICLE: Long non-coding RNA DIO3OS binds to microRNA-130b to restore radiosensitivity in esophageal squamous cell carcinoma by upregulating PAX9.Cancer Gene Ther.202229687010.1038/s41417‑021‑00344‑234183777
    [Google Scholar]
  86. LiX. WangY. XuC. RehemanX. WangY. XuR. FanJ. HuangX. LongL. YuS. HuangH. Analysis of competitive endogenous mechanism and survival prognosis of serum exosomes in ovarian cancer patients based on sequencing technology and bioinformatics.Front. Genet.20221385008910.3389/fgene.2022.85008935910206
    [Google Scholar]
  87. ChenY. XuH. LiuC. GuM. ZhanM. ChenQ. WangZ. LncRNA DIO3OS regulated by TGF-β1 and resveratrol enhances epithelial mesenchymal transition of benign prostatic hyperplasia epithelial cells and proliferation of prostate stromal cells.Transl. Androl. Urol.202110264365310.21037/tau‑20‑116933718067
    [Google Scholar]
  88. ChenJ. ZhangJ. GaoY. LiY. FengC. SongC. NingZ. ZhouX. ZhaoJ. FengM. ZhangY. WeiL. PanQ. JiangY. QianF. HanJ. YangY. WangQ. LiC. LncSEA: A platform for long non-coding RNA related sets and enrichment analysis.Nucleic Acids Res.202149D1D969D98010.1093/nar/gkaa80633045741
    [Google Scholar]
  89. MattickJ.S. AmaralP.P. CarninciP. CarpenterS. ChangH.Y. ChenL.L. ChenR. DeanC. DingerM.E. FitzgeraldK.A. GingerasT.R. GuttmanM. HiroseT. HuarteM. JohnsonR. KanduriC. KapranovP. LawrenceJ.B. LeeJ.T. MendellJ.T. MercerT.R. MooreK.J. NakagawaS. RinnJ.L. SpectorD.L. UlitskyI. WanY. WiluszJ.E. WuM. Long non-coding RNAs: Definitions, functions, challenges and recommendations.Nat. Rev. Mol. Cell Biol.202324643044710.1038/s41580‑022‑00566‑836596869
    [Google Scholar]
  90. LiuS.J. HorlbeckM.A. ChoS.W. BirkH.S. MalatestaM. HeD. AttenelloF.J. VillaltaJ.E. ChoM.Y. ChenY. MandegarM.A. OlveraM.P. GilbertL.A. ConklinB.R. ChangH.Y. WeissmanJ.S. LimD.A. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells.Science20173556320eaah711110.1126/science.aah711127980086
    [Google Scholar]
  91. de GoedeO.M. NachunD.C. FerraroN.M. GloudemansM.J. RaoA.S. SmailC. EulalioT.Y. AguetF. NgB. XuJ. BarbeiraA.N. CastelS.E. Kim-HellmuthS. ParkY. ScottA.J. StroberB.J. BrownC.D. WenX. HallI.M. BattleA. LappalainenT. ImH.K. ArdlieK.G. MostafaviS. QuertermousT. KirkegaardK. MontgomeryS.B. AnandS. GabrielS. GetzG.A. GraubertA. HadleyK. HandsakerR.E. HuangK.H. LiX. MacArthurD.G. MeierS.R. NedzelJ.L. NguyenD.T. SegrèA.V. TodresE. BalliuB. BonazzolaR. BrownA. ConradD.F. CotterD.J. CoxN. DasS. DermitzakisE.T. EinsonJ. EngelhardtB.E. EskinE. FlynnE.D. FresardL. GamazonE.R. Garrido-MartínD. GayN.R. GuigóR. HamelA.R. HeY. HoffmanP.J. HormozdiariF. HouL. JoB. KaselaS. KashinS. KellisM. KwongA. LiX. LiangY. MangulS. MohammadiP. Muñoz-AguirreM. NobelA.B. OlivaM. ParkY. ParsanaP. ReverterF. RouhanaJ.M. SabattiC. SahaA. StephensM. StrangerB.E. TeranN.A. ViñuelaA. WangG. WrightF. WucherV. ZouY. FerreiraP.G. LiG. MeléM. Yeger-LotemE. BradburyD. KrubitT. McLeanJ.A. QiL. RobinsonK. RocheN.V. SmithA.M. TaborD.E. UndaleA. BridgeJ. BrighamL.E. FosterB.A. GillardB.M. HaszR. HunterM. JohnsC. JohnsonM. KarasikE. KopenG. LeinweberW.F. McDonaldA. MoserM.T. MyerK. RamseyK.D. RoeB. ShadS. ThomasJ.A. WaltersG. WashingtonM. WheelerJ. JewellS.D. RohrerD.C. ValleyD.R. DavisD.A. MashD.C. BarcusM.E. BrantonP.A. SobinL. BarkerL.K. GardinerH.M. MosavelM. SiminoffL.A. FlicekP. HaeusslerM. JuettemannT. KentW.J. LeeC.M. PowellC.C. RosenbloomK.R. RuffierM. SheppardD. TaylorK. TrevanionS.J. ZerbinoD.R. AbellN.S. AkeyJ. ChenL. DemanelisK. DohertyJ.A. FeinbergA.P. HansenK.D. HickeyP.F. JasmineF. JiangL. KaulR. KibriyaM.G. LiJ.B. LiQ. LinS. LinderS.E. PierceB.L. RizzardiL.F. SkolA.D. SmithK.S. SnyderM. StamatoyannopoulosJ. TangH. WangM. CarithersL.J. GuanP. KoesterS.E. LittleA.R. MooreH.M. NierrasC.R. RaoA.K. VaughtJ.B. VolpiS. GTEx Consortium Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease.Cell20211841026332648.e1910.1016/j.cell.2021.03.05033864768
    [Google Scholar]
  92. XuK. JinX. LuoY. ZouH. LvD. WangL. FuL. CaiY. ShaoT. LiY. XuJ. Spatial transcriptome analysis of long non-coding RNAs reveals tissue specificity and functional roles in cancer.J. Zhejiang Univ. Sci. B2023241153110.1631/jzus.B220020636632748
    [Google Scholar]
  93. ShalmashiH. SafaeiS. ShanehbandiD. AsadiM. BornehdeliS. Mehdi NavazA. Evaluation of lncRNA FOXD2-AS1 expression as a diagnostic biomarker in colorectal cancer.Rep. Biochem. Mol. Biol.202211347147810.52547/rbmb.11.3.47136718294
    [Google Scholar]
  94. CorralA. AlcalaM. Carmen Duran-RuizM. ArrobaA.I. Ponce-GonzalezJ.G. TodorčevićM. SerraD. Calderon-DominguezM. HerreroL. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies.Biochem. Pharmacol.202220611530510.1016/j.bcp.2022.11530536272599
    [Google Scholar]
  95. AsemiR. Rajabpoor NikooN. AsemiZ. ShafabakhshR. HajijafariM. SharifiM. HomayoonfalM. DavoodvandiA. HakamifardA. Modulation of long non-coding RNAs by resveratrol as a potential therapeutic approach in cancer: A comprehensive review.Pathol. Res. Pract.202324615450710.1016/j.prp.2023.15450737196467
    [Google Scholar]
/content/journals/cg/10.2174/0113892029345945241125064704
Loading
/content/journals/cg/10.2174/0113892029345945241125064704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test