Skip to content
2000
Volume 26, Issue 4
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Copy Number Variations (CNVs) involving 16p11.2 or 22q11.2 are often linked to neurodevelopmental and neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, cognitive impairment, epilepsy, and schizophrenia. The pathogenetic mechanisms underlying these neurological phenotypes remain incompletely understood, partly due to the multitude of genes involved and the complex gene-gene interactions at these loci. Nonetheless, recent advances in experimental technology and bioinformatics have greatly enhanced our understanding of the neurobiology of 16p11.2- and 22q11.2-related disorders. Herein, we aim to provide an updated mini-review on neurological aspects of these disease-associated CNVs, with emphasis on clinical and mechanistic insights as well as potential therapeutic implications.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029338299241211063307
2025-01-24
2025-10-21
Loading full text...

Full text loading...

References

  1. MarshallC.R. HowriganD.P. MericoD. ThiruvahindrapuramB. WuW. GreerD.S. AntakiD. ShettyA. HolmansP.A. PintoD. GujralM. BrandlerW.M. MalhotraD. WangZ. FajaradoK.V.F. MaileM.S. RipkeS. AgartzI. AlbusM. AlexanderM. AminF. AtkinsJ. BacanuS.A. BelliveauR.A.Jr BergenS.E. BertalanM. BevilacquaE. BigdeliT.B. BlackD.W. BruggemanR. BuccolaN.G. BucknerR.L. Bulik-SullivanB. ByerleyW. CahnW. CaiG. CairnsM.J. CampionD. CantorR.M. CarrV.J. CarreraN. CattsS.V. ChambertK.D. ChengW. CloningerC.R. CohenD. CormicanP. CraddockN. Crespo-FacorroB. CrowleyJ.J. CurtisD. DavidsonM. DavisK.L. DegenhardtF. Del FaveroJ. DeLisiL.E. DikeosD. DinanT. DjurovicS. DonohoeG. DrapeauE. DuanJ. DudbridgeF. EichhammerP. ErikssonJ. Escott-PriceV. EssiouxL. FanousA.H. FarhK.H. FarrellM.S. FrankJ. FrankeL. FreedmanR. FreimerN.B. FriedmanJ.I. ForstnerA.J. FromerM. GenoveseG. GeorgievaL. GershonE.S. GieglingI. Giusti-RodríguezP. GodardS. GoldsteinJ.I. GrattenJ. de HaanL. HamshereM.L. HansenM. HansenT. HaroutunianV. HartmannA.M. HenskensF.A. HermsS. HirschhornJ.N. HoffmannP. HofmanA. HuangH. IkedaM. JoaI. KählerA.K. KahnR.S. KalaydjievaL. KarjalainenJ. KavanaghD. KellerM.C. KellyB.J. KennedyJ.L. KimY. KnowlesJ.A. KonteB. LaurentC. LeeP. LeeS.H. LeggeS.E. LererB. LevyD.L. LiangK.Y. LiebermanJ. LönnqvistJ. LoughlandC.M. MagnussonP.K.E. MaherB.S. MaierW. MalletJ. MattheisenM. MattingsdalM. McCarleyR.W. McDonaldC. McIntoshA.M. MeierS. MeijerC.J. MelleI. Mesholam-GatelyR.I. MetspaluA. MichieP.T. MilaniL. MilanovaV. MokrabY. MorrisD.W. Müller-MyhsokB. MurphyK.C. MurrayR.M. Myin-GermeysI. NenadicI. NertneyD.A. NestadtG. NicodemusK.K. NisenbaumL. NordinA. O’CallaghanE. O’DushlaineC. OhS.Y. OlincyA. OlsenL. O’NeillF.A. Van OsJ. PantelisC. PapadimitriouG.N. ParkhomenkoE. PatoM.T. PaunioT. PerkinsD.O. PersT.H. PietiläinenO. PimmJ. PocklingtonA.J. PowellJ. PriceA. PulverA.E. PurcellS.M. QuestedD. RasmussenH.B. ReichenbergA. ReimersM.A. RichardsA.L. RoffmanJ.L. RoussosP. RuderferD.M. SalomaaV. SandersA.R. SavitzA. SchallU. SchulzeT.G. SchwabS.G. ScolnickE.M. ScottR.J. SeidmanL.J. ShiJ. SilvermanJ.M. SmollerJ.W. SödermanE. SpencerC.C.A. StahlE.A. StrengmanE. StrohmaierJ. StroupT.S. SuvisaariJ. SvrakicD.M. SzatkiewiczJ.P. ThirumalaiS. TooneyP.A. VeijolaJ. VisscherP.M. WaddingtonJ. WalshD. WebbB.T. WeiserM. WildenauerD.B. WilliamsN.M. WilliamsS. WittS.H. WolenA.R. WormleyB.K. WrayN.R. WuJ.Q. ZaiC.C. AdolfssonR. AndreassenO.A. BlackwoodD.H.R. BramonE. BuxbaumJ.D. CichonS. CollierD.A. CorvinA. DalyM.J. DarvasiA. DomeniciE. EskoT. GejmanP.V. GillM. GurlingH. HultmanC.M. IwataN. JablenskyA.V. JönssonE.G. KendlerK.S. KirovG. KnightJ. LevinsonD.F. LiQ.S. McCarrollS.A. McQuillinA. MoranJ.L. MowryB.J. NöthenM.M. OphoffR.A. OwenM.J. PalotieA. PatoC.N. PetryshenT.L. PosthumaD. RietschelM. RileyB.P. RujescuD. SklarP. St ClairD. WaltersJ.T.R. WergeT. SullivanP.F. O’DonovanM.C. SchererS.W. NealeB.M. SebatJ. Psychosis Endophenotypes International Consortium CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.Nat. Genet.2017491273510.1038/ng.372527869829
    [Google Scholar]
  2. MontanucciL. Lewis-SmithD. CollinsR.L. NiestrojL.M. ParthasarathyS. XianJ. GanesanS. MacneeM. BrüngerT. ThomasR.H. TalkowskiM. MotelowJ.E. PovysilG. DhindsaR.S. StanleyK.E. AllenA.S. GoldsteinD.B. FengY-C.A. HowriganD.P. AbbottL.E. TashmanK. CerratoF. CusickC. SinghT. HeyneH. ByrnesA.E. ChurchhouseC. WattsN. SolomonsonM. LalD. GuptaN. NealeB.M. BerkovicS.F. LercheH. LowensteinD.H. CavalleriG.L. CossetteP. CotsapasC. De JongheP. Dixon-SalazarT. GuerriniR. HakonarsonH. HeinzenE.L. HelbigI. KwanP. MarsonA.G. PetrovskiS. KamalakaranS. SisodiyaS.M. StewartR. WeckhuysenS. DepondtC. DlugosD.J. SchefferI.E. StrianoP. FreyerC. KrauseR. MayP. McKennaK. ReganB.M. BennettC.A. LeechS.L. LeuC. Lewis-SmithD. O’BrienT.J. TodaroM. StambergerH. DepondtiC. AndradeD.M. AliQ.Z. SadowayT.R. KrestelH. SchallerA. PapacostasS.S. KousiappaI. TantelesG.A. YiolandaC. ŠtěrbováK. VlčkováM. SedláčkováL. LaššuthováP. KleinK.M. RosenowF. ReifP.S. KnakeS. NeubauerB.A. ZimprichF. FeuchtM. ReinthalerE. KunzW.S. ZsurkaG. SurgesR. BaumgartnerT.H. von WredeR. HelbigI. PendziwiatM. MuhleH. RademacherA. van BaalenA. von SpiczakS. StephaniU. AfawiZ. KorczynA.D. KanaanM. CanavatiC. KurlemannG. Müller-SchlüterK. KlugerG. HäuslerM. BlattI. LemkeJ.R. KreyI. WeberY.G. WolkingS. BeckerF. LauxmannS. BosselmannC. KegeleJ. HengsbachC. RauS. SteinhoffB.J. Schulze-BonhageA. BorggräfeI. SchankinC.J. Schubert-BastS. SchreiberH. MayerT. KorinthenbergR. BrockmannK. WolffM. KurlemannG. DennigD. MadeleynR. KälviäinenR. SaarelaA. TimonenO. LinnankiviT. LehesjokiA-E. RheimsS. LescaG. RyvlinP. MaillardL. ValtonL. DerambureP. BartolomeiF. HirschE. MichelV. ChassouxF. ReesM.I. ChungS-K. PickrellW.O. PowellR.H.W. BakerM.D. Fonferko-ShadrachB. LawthomC. AndersonJ. SchneiderN. BalestriniS. ZagagliaS. BraatzV. JohnsonM.R. AuceP. SillsG.J. KwanP. BaumL.W. ShamP.C. ChernyS.S. LuiC.H.T. DelantyN. DohertyC.P. ShukrallaA. El-NaggarH. Widdess-WalshP. BarišićN. CanafogliaL. FranceschettiS. CastellottiB. GranataT. RagonaF. ZaraF. IacominoM. RivaA. MadiaF. VariM.S. SalpietroV. ScalaM. MancardiM.M. LinoN. AmadoriE. GiacominiT. BisulliF. PippucciT. LicchettaL. MinardiR. TinuperP. MuccioliL. MostacciB. GambardellaA. LabateA. AnnesiG. MannaL. GagliardiM. ParriniE. MeiD. VetroA. BianchiniC. MontomoliM. DocciniV. BarbaC. HiroseS. IshiiA. SuzukiT. InoueY. YamakawaK. BeydounA. NasreddineW. Khoueiry-ZgheibN. TumieneB. UtkusA. SadleirL.G. KingC. CaglayanS.H. ArslanM. YapıcıZ. TopalogluP. KaraB. YisU. TurkdoganD. Gundogdu-EkenA. BebekN. Uğur-İşeriS. BaykanB. SalmanB. HaryanyanG. YücesanE. KesimY. ÖzkaraÇ. TsaiM-H. HoC-J. LinC-H. LinK-L. ChouI-J. PoduriA. ShiedleyB.R. ShainC. NoebelsJ.L. GoldmanA. BuschR.M. JehiL. NajmI.M. LalD. FergusonL. KhouryJ. GlauserT.A. ClarkP.O. BuonoR.J. FerraroT.N. SperlingM.R. DlugosD.J. LoW. PriviteraM. FrenchJ.A. SchachterS. KuznieckyR.I. DevinskyO. HegdeM. GreenbergD.A. EllisC.A. GoldbergE. HelbigK.L. CosicoM. VaidiswaranP. FitchE. NewtonC.R.J.C. KariukiS.M. WagnerR.G. Owusu-AgyeiS. ColeA.J. McGrawC.M. SienaS.A. DavisL. HucksD. FauconA. WuD. Abou-KhalilB.W. HaasK. TanejaR.S. HelbigI. LeuC. LalD. Epi25 Collaborative Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals.Nat. Commun.2023141439210.1038/s41467‑023‑39539‑637474567
    [Google Scholar]
  3. MatalonN. ShaniS. WeinbergerR. SerurY. SomechR. GivonU. KatzU. Levy-ShragaY. CarmelE. WeissB. Ben-ZeevB. HochbergY. GurR.E. GothelfD. The contribution of medical burden to 22q11.2 deletion syndrome quality of life and functioning.Genet. Med.2023251010092410.1016/j.gim.2023.10092437422717
    [Google Scholar]
  4. MalhotraD. SebatJ. CNVs: harbingers of a rare variant revolution in psychiatric genetics.Cell201214861223124110.1016/j.cell.2012.02.03922424231
    [Google Scholar]
  5. DuarteM. AfonsoJ. MoreiraA. AntunesD. FerreiraC. CorreiaH. MarquesM. SequeiraS. Hyperprolinemia as a clue in the diagnosis of a patient with psychiatric manifestations.Brain Dev.201739653954110.1016/j.braindev.2017.01.00828202261
    [Google Scholar]
  6. BertránM. TagleF.P. IrarrázavalM. Psychiatric manifestations of 22q11.2 deletion syndrome: A literature review.Neurología (English Edition)201833212112810.1016/j.nrleng.2015.07.01426410024
    [Google Scholar]
  7. ReinB. YanZ. 16p11.2 Copy Number Variations and Neurodevelopmental Disorders.Trends Neurosci.2020431188690110.1016/j.tins.2020.09.00132993859
    [Google Scholar]
  8. WeissL.A. ShenY. KornJ.M. ArkingD.E. MillerD.T. FossdalR. SaemundsenE. StefanssonH. FerreiraM.A.R. GreenT. PlattO.S. RuderferD.M. WalshC.A. AltshulerD. ChakravartiA. TanziR.E. StefanssonK. SantangeloS.L. GusellaJ.F. SklarP. WuB.L. DalyM.J. Autism Consortium Association between microdeletion and microduplication at 16p11.2 and autism.N. Engl. J. Med.2008358766767510.1056/NEJMoa07597418184952
    [Google Scholar]
  9. VaezM. MontalbanoS. Calle SánchezX. Georgii HellbergK.L. DehkordiS.R. KrebsM.D. MeijsenJ. ShorterJ. Bybjerg-GrauholmJ. MortensenP.B. BørglumA.D. HougaardD.M. NordentoftM. GeschwindD.H. BuilA. SchorkA.J. HeleniusD. RaznahanA. ThompsonW.K. WergeT. IngasonA. BørglumA.D. HougaardD.M. NordentoftM. MorsO. MortensenP.B. WergeT. GroveJ. AlsT.D. BuilA. RosengrenA. IngasonA. SchorkA.J. HeleniusD. GådinJ. ZetterbergR. AppaduraiV. MeijsenJ. Georgii HellbergK-L. VilhjálmssonB.J. PedersenC.B. AgerboE. ChristensenJ. PetersenL.V. Gjørtz PedersenM. Byberg-GrauholmJ. Bækvad-HansenM. iPSYCH Investigators Population-Based Risk of Psychiatric Disorders Associated With Recurrent Copy Number Variants.JAMA Psychiatry2024811095796610.1001/jamapsychiatry.2024.145338922630
    [Google Scholar]
  10. NiarchouM. ChawnerS.J.R.A. DohertyJ.L. MaillardA.M. JacquemontS. ChungW.K. Green-SnyderL. BernierR.A. Goin-KochelR.P. HansonE. LindenD.E.J. LindenS.C. RaymondF.L. SkuseD. HallJ. OwenM.J. BreeM.B.M. Psychiatric disorders in children with 16p11.2 deletion and duplication.Transl. Psychiatry201991810.1038/s41398‑018‑0339‑830664628
    [Google Scholar]
  11. HansonE. BernierR. PorcheK. JacksonF.I. Goin-KochelR.P. SnyderL.G. SnowA.V. WallaceA.S. CampeK.L. ZhangY. ChenQ. D’AngeloD. Moreno-De-LucaA. OrrP.T. BoomerK.B. EvansD.W. KanneS. BerryL. MillerF.K. OlsonJ. SherrE. MartinC.L. LedbetterD.H. SpiroJ.E. ChungW.K. Simons Variation in Individuals Project Consortium The cognitive and behavioral phenotype of the 16p11.2 deletion in a clinically ascertained population.Biol. Psychiatry201577978579310.1016/j.biopsych.2014.04.02125064419
    [Google Scholar]
  12. BerteroA. LiskaA. PaganiM. ParolisiR. MasferrerM.E. GrittiM. PedrazzoliM. GalbuseraA. SaricaA. CerasaA. BuffelliM. ToniniR. BuffoA. GrossC. PasqualettiM. GozziA. Autism-associated 16p11.2 microdeletion impairs prefrontal functional connectivity in mouse and human.Brain201814172055206510.1093/brain/awy11129722793
    [Google Scholar]
  13. RichterM. MurtazaN. ScharrenbergR. WhiteS.H. JohannsO. WalkerS. YuenR.K.C. SchwankeB. BedürftigB. HenisM. ScharfS. KrausV. DörkR. HellmannJ. LindenmaierZ. EllegoodJ. HartungH. KwanV. SedlacikJ. FiehlerJ. SchweizerM. LerchJ.P. Hanganu-OpatzI.L. MorelliniF. SchererS.W. SinghK.K. Calderon de AndaF. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling.Mol. Psychiatry20192491329135010.1038/s41380‑018‑0025‑529467497
    [Google Scholar]
  14. RadoevaP.D. ComanI.L. SalazarC.A. GentileK.L. HigginsA.M. MiddletonF.A. AntshelK.M. FremontW. ShprintzenR.J. MorrowB.E. KatesW.R. Association between autism spectrum disorder in individuals with velocardiofacial (22q11.2 deletion) syndrome and PRODH and COMT genotypes.Psychiatr. Genet.201424626927210.1097/YPG.000000000000006225325218
    [Google Scholar]
  15. OlsenL. SparsøT. WeinsheimerS.M. Dos SantosM.B.Q. MazinW. RosengrenA. SanchezX.C. HoeffdingL.K. SchmockH. Baekvad-HansenM. Bybjerg-GrauholmJ. DalyM.J. NealeB.M. PedersenM.G. AgerboE. MorsO. BørglumA. NordentoftM. HougaardD.M. MortensenP.B. GeschwindD.H. PedersenC. ThompsonW.K. WergeT. Prevalence of rearrangements in the 22q11.2 region and population-based risk of neuropsychiatric and developmental disorders in a Danish population: a case-cohort study.Lancet Psychiatry20185757358010.1016/S2215‑0366(18)30168‑829886042
    [Google Scholar]
  16. GlessnerJ.T. KhanM.E. ChangX. LiuY. OtienoF.G. LemmaM. SlabyI. HainH. MentchF. LiJ. KaoC. SleimanP.M.A. MarchM.E. ConnollyJ. HakonarsonH. Rare recurrent copy number variations in metabotropic glutamate receptor interacting genes in children with neurodevelopmental disorders.J. Neurodev. Disord.20231511410.1186/s11689‑023‑09483‑z37120522
    [Google Scholar]
  17. BeardenC.E. van ErpT.G.M. DuttonR.A. LeeA.D. SimonT.J. CannonT.D. EmanuelB.S. McDonald-McGinnD. ZackaiE.H. ThompsonP.M. Alterations in midline cortical thickness and gyrification patterns mapped in children with 22q11.2 deletions.Cereb. Cortex200919111512610.1093/cercor/bhn06418483006
    [Google Scholar]
  18. DuyzendM.H. EichlerE.E. Genotype-first analysis of the 16p11.2 deletion defines a new type of “autism”.Biol. Psychiatry201577976977110.1016/j.biopsych.2015.02.03225843334
    [Google Scholar]
  19. VysotskiyM. ZhongX. Miller-FlemingT.W. ZhouD. CoxN.J. WeissL.A. Autism Working Group of the Psychiatric Genomics Consortium^ Bipolar Disorder Working Group of the Psychiatric Genomics Consortium^ Schizophrenia Working Group of the Psychiatric Genomics Consortium^ Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2 and 22q11.2 CNV genes.Genome Med.202113117210.1186/s13073‑021‑00972‑134715901
    [Google Scholar]
  20. BayatM. BayatA. Neurological manifestation of 22q11.2 deletion syndrome.Neurol. Sci.20224331695170010.1007/s10072‑021‑05825‑835039989
    [Google Scholar]
  21. de KoningM.B. van DuinE.D.A. BootE. BloemenO.J.N. BakkerJ.A. AbelK.M. van AmelsvoortT.A.M.J. PRODH rs450046 and proline x COMT Val158Met interaction effects on intelligence and startle in adults with 22q11 deletion syndrome.Psychopharmacology (Berl.)2015232173111312210.1007/s00213‑015‑3971‑526068888
    [Google Scholar]
  22. Moufawad El AchkarC. RosenA. KesslerS.K. SteinmanK.J. SpenceS.J. RamockiM. MarcoE.J. Green SnyderL. SpiroJ.E. ChungW.K. AnnapurnaP. SherrE.H. Clinical Characteristics of Seizures and Epilepsy in Individuals With Recurrent Deletions and Duplications in the 16p11.2 Region.Neurol. Genet.202285e20001810.1212/NXG.000000000020001836531974
    [Google Scholar]
  23. StevelinkR. CampbellC. ChenS. Abou-KhalilB. AdesojiO.M. AfawiZ. AmadoriE. AndersonA. AndersonJ. AndradeD.M. AnnesiG. AuceP. AvbersekA. BahloM. BakerM.D. BalaguraG. BalestriniS. BarbaC. BarbozaK. BartolomeiF. BastT. BaumL. BaumgartnerT. BaykanB. BebekN. BeckerA.J. BeckerF. BennettC.A. BerghuisB. BerkovicS.F. BeydounA. BianchiniC. BisulliF. BlattI. BobbiliD.R. BorggraefeI. BosselmannC. BraatzV. BradfieldJ.P. BrockmannK. BrodyL.C. BuonoR.J. BuschR.M. CaglayanH. CampbellE. CanafogliaL. CanavatiC. CascinoG.D. CastellottiB. CatarinoC.B. CavalleriG.L. CerratoF. ChassouxF. ChernyS.S. CheungC-L. ChinthapalliK. ChouI-J. ChungS-K. ChurchhouseC. ClarkP.O. ColeA.J. CompstonA. CoppolaA. CosicoM. CossetteP. CraigJ.J. CusickC. DalyM.J. DavisL.K. de HaanG-J. DelantyN. DepondtC. DerambureP. DevinskyO. Di VitoL. DlugosD.J. DocciniV. DohertyC.P. El-NaggarH. ElgerC.E. EllisC.A. ErikssonJ.G. FauconA. FengY-C.A. FergusonL. FerraroT.N. FerriL. FeuchtM. FitzgeraldM. Fonferko-ShadrachB. FortunatoF. FranceschettiS. FrankeA. FrenchJ.A. FreriE. GagliardiM. GambardellaA. GellerE.B. GiangregorioT. GjerstadL. GlauserT. GoldbergE. GoldmanA. GranataT. GreenbergD.A. GuerriniR. GuptaN. HaasK.F. HakonarsonH. HallmannK. HassaninE. HegdeM. HeinzenE.L. HelbigI. HengsbachC. HeyneH.O. HiroseS. HirschE. HjalgrimH. HowriganD.P. HucksD. HungP-C. IacominoM. ImbachL.L. InoueY. IshiiA. Jamnadas-KhodaJ. JehiL. JohnsonM.R. KälviäinenR. KamataniY. KanaanM. KanaiM. KantanenA-M. KaraB. KariukiS.M. KasperavičiūteD. Kasteleijn-Nolst TreniteD. KatoM. KegeleJ. KesimY. Khoueiry-ZgheibN. KingC. KirschH.E. KleinK.M. KlugerG. KnakeS. KnowltonR.C. KoelemanB.P.C. KorczynA.D. KoupparisA. KousiappaI. KrauseR. KrennM. KrestelH. KreyI. KunzW.S. KurkiM.I. KurlemannG. KuznieckyR. KwanP. LabateA. LaceyA. LalD. LandoulsiZ. LauY-L. LauxmannS. LeechS.L. LehesjokiA-E. LemkeJ.R. LercheH. LescaG. LeuC. LewinN. Lewis-SmithD. LiG.H-Y. LiQ.S. LicchettaL. LinK-L. LindhoutD. LinnankiviT. Lopes-CendesI. LowensteinD.H. LuiC.H.T. MadiaF. MagnussonS. MarsonA.G. MayP. McGrawC.M. MeiD. MillsJ.L. MinardiR. MirzaN. MøllerR.S. MolloyA.M. MontomoliM. MostacciB. MuccioliL. MuhleH. Müller-SchlüterK. NajmI.M. NasreddineW. NealeB.M. NeubauerB. NewtonC.R.J.C. NöthenM.M. NothnagelM. NürnbergP. O’BrienT.J. OkadaY. ÓlafssonE. OliverK.L. ÖzkaraÇ. PalotieA. PangilinanF. PapacostasS.S. ParriniE. PatoC.N. PatoM.T. PendziwiatM. PetrovskiS. PickrellW.O. PinskyR. PippucciT. PoduriA. PondrelliF. PowellR.H.W. PriviteraM. RademacherA. RadtkeR. RagonaF. RauS. ReesM.I. ReganB.M. ReifP.S. RhelmsS. RivaA. RosenowF. RyvlinP. SaarelaA. SadleirL.G. SanderJ.W. SanderT. ScalaM. ScattergoodT. SchachterS.C. SchankinC.J. SchefferI.E. SchmitzB. SchochS. Schubert-BastS. Schulze-BonhageA. ScudieriP. ShamP. SheidleyB.R. ShihJ.J. SillsG.J. SisodiyaS.M. SmithM.C. SmithP.E. SonsmaA.C.M. SpeedD. SperlingM.R. StefanssonH. StefanssonK. SteinhoffB.J. StephaniU. StewartW.C. StipaC. StrianoP. StroinkH. StrzelczykA. SurgesR. SuzukiT. TanK.M. TanejaR.S. TantelesG.A. TaubøllE. ThioL.L. ThomasG.N. ThomasR.H. TimonenO. TinuperP. TodaroM. TopaloğluP. TozziR. TsaiM-H. TumieneB. TurkdoganD. UnnsteinsdóttirU. UtkusA. VaidiswaranP. ValtonL. van BaalenA. VetroA. ViningE.P.G. VisscherF. von BrauchitschS. von WredeR. WagnerR.G. WeberY.G. WeckhuysenS. WeisenbergJ. WellerM. Widdess-WalshP. WolffM. WolkingS. WuD. YamakawaK. YangW. YapıcıZ. YücesanE. ZagagliaS. ZahnertF. ZaraF. ZhouW. ZimprichF. ZsurkaG. Zulfiqar AliQ. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture.Nat. Genet.20235591471148210.1038/s41588‑023‑01485‑w37653029
    [Google Scholar]
  24. Abou-KhalilB. AuceP. AvbersekA. BahloM. BaldingD.J. BastT. BaumL. BeckerA.J. BeckerF. BerghuisB. BerkovicS.F. BoysenK.E. BradfieldJ.P. BrodyL.C. BuonoR.J. CampbellE. CascinoG.D. CatarinoC.B. CavalleriG.L. ChernyS.S. ChinthapalliK. CoffeyA.J. CompstonA. CoppolaA. CossetteP. CraigJ.J. de HaanG-J. De JongheP. de KovelC.G.F. DelantyN. DepondtC. DevinskyO. DlugosD.J. DohertyC.P. ElgerC.E. ErikssonJ.G. FerraroT.N. FeuchtM. FrancisB. FrankeA. FrenchJ.A. FreytagS. GausV. GellerE.B. GiegerC. GlauserT. GlynnS. GoldsteinD.B. GuiH. GuoY. HaasK.F. HakonarsonH. HallmannK. HautS. HeinzenE.L. HelbigI. HengsbachC. HjalgrimH. IacominoM. IngasonA. Jamnadas-KhodaJ. JohnsonM.R. KälviäinenR. KantanenA-M. KasperavičiūteD. Kasteleijn-Nolst TreniteD. KirschH.E. KnowltonR.C. KoelemanB.P.C. KrauseR. KrennM. KunzW.S. KuznieckyR. KwanP. LalD. LauY-L. LehesjokiA-E. LercheH. LeuC. LiebW. LindhoutD. LoW.D. Lopes-CendesI. LowensteinD.H. MaloviniA. MarsonA.G. MayerT. McCormackM. MillsJ.L. MirzaN. MoerzingerM. MøllerR.S. MolloyA.M. MuhleH. NewtonM. NgP-W. NöthenM.M. NürnbergP. O’BrienT.J. OliverK.L. PalotieA. PangilinanF. PeterS. PetrovskiS. PoduriA. PriviteraM. RadtkeR. RauS. ReifP.S. ReinthalerE.M. RosenowF. SanderJ.W. SanderT. ScattergoodT. SchachterS.C. SchankinC.J. SchefferI.E. SchmitzB. SchochS. ShamP.C. ShihJ.J. SillsG.J. SisodiyaS.M. SlatteryL. SmithA. SmithD.F. SmithM.C. SmithP.E. SonsmaA.C.M. SpeedD. SperlingM.R. SteinhoffB.J. StephaniU. StevelinkR. StrauchK. StrianoP. StroinkH. SurgesR. TanK.M. ThioL.L. ThomasG.N. TodaroM. TozziR. VariM.S. ViningE.P.G. VisscherF. von SpiczakS. WalleyN.M. WeberY.G. WeiZ. WeisenbergJ. WhelanC.D. Widdess-WalshP. WolffM. WolkingS. YangW. ZaraF. ZimprichF. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies.Nat. Commun.201891526910.1038/s41467‑018‑07524‑z30531953
    [Google Scholar]
  25. KretzP.F. WagnerC. MikhalevaA. MontillotC. HugelS. MorellaI. KannanM. FischerM.C. MilhauM. YalcinI. BrambillaR. SelloumM. HeraultY. ReymondA. CollinsS.C. YalcinB. Dissecting the autism-associated 16p11.2 locus identifies multiple drivers in neuroanatomical phenotypes and unveils a male-specific role for the major vault protein.Genome Biol.202324126110.1186/s13059‑023‑03092‑837968726
    [Google Scholar]
  26. AlKalafH.Y. AlHashemA.M. AlSalehN.S. AlJoharN.M. Abo ThneenA.M. ElGhezalH.M. BouhjarI.B. Tlili-GraiessK. SahariA.H. TabarkiB.M. Epilepsy, neuropsychiatric phenotypes, neuroimaging findings, and genotype-neurophenotype correlation in 22q11.2 deletion syndrome.Neurosciences202025428729110.17712/nsj.2020.4.2020004533130809
    [Google Scholar]
  27. WitherR.G. BorlotF. MacDonaldA. ButcherN.J. ChowE.W.C. BassettA.S. AndradeD.M. 22q11.2 deletion syndrome lowers seizure threshold in adult patients without epilepsy.Epilepsia20175861095110110.1111/epi.1374828448680
    [Google Scholar]
  28. MudigoudarB. NuneS. FultonS. DayyatE. WhelessJ.W. Epilepsy in 22q11.2 Deletion Syndrome: A Case Series and Literature Review.Pediatr. Neurol.201776869010.1016/j.pediatrneurol.2017.08.01128969878
    [Google Scholar]
  29. LevinsonD.F. DuanJ. OhS. WangK. SandersA.R. ShiJ. ZhangN. MowryB.J. OlincyA. AminF. CloningerC.R. SilvermanJ.M. BuccolaN.G. ByerleyW.F. BlackD.W. KendlerK.S. FreedmanR. DudbridgeF. Pe’erI. HakonarsonH. BergenS.E. FanousA.H. HolmansP.A. GejmanP.V. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications.Am. J. Psychiatry2011168330231610.1176/appi.ajp.2010.1006087621285140
    [Google Scholar]
  30. SinghT. PoterbaT. CurtisD. AkilH. Al EissaM. BarchasJ.D. BassN. BigdeliT.B. BreenG. BrometE.J. BuckleyP.F. BunneyW.E. Bybjerg-GrauholmJ. ByerleyW.F. ChapmanS.B. ChenW.J. ChurchhouseC. CraddockN. CusickC.M. DeLisiL. DodgeS. EscamillaM.A. EskelinenS. FanousA.H. FaraoneS.V. FiorentinoA. FrancioliL. GabrielS.B. GageD. Gagliano TaliunS.A. GannaA. GenoveseG. GlahnD.C. GroveJ. HallM.H. HämäläinenE. HeyneH.O. HoliM. HougaardD.M. HowriganD.P. HuangH. HwuH.G. KahnR.S. KangH.M. KarczewskiK.J. KirovG. KnowlesJ.A. LeeF.S. LehrerD.S. LescaiF. MalaspinaD. MarderS.R. McCarrollS.A. McIntoshA.M. MedeirosH. MilaniL. MorleyC.P. MorrisD.W. MortensenP.B. MyersR.M. NordentoftM. O’BrienN.L. OlivaresA.M. OngurD. OuwehandW.H. PalmerD.S. PaunioT. QuestedD. RapaportM.H. ReesE. RollinsB. SatterstromF.K. SchatzbergA. ScolnickE. ScottL.J. SharpS.I. SklarP. SmollerJ.W. SobellJ.L. SolomonsonM. StahlE.A. StevensC.R. SuvisaariJ. TiaoG. WatsonS.J. WattsN.A. BlackwoodD.H. BørglumA.D. CohenB.M. CorvinA.P. EskoT. FreimerN.B. GlattS.J. HultmanC.M. McQuillinA. PalotieA. PatoC.N. PatoM.T. PulverA.E. St ClairD. TsuangM.T. VawterM.P. WaltersJ.T. WergeT.M. OphoffR.A. SullivanP.F. OwenM.J. BoehnkeM. O’DonovanM.C. NealeB.M. DalyM.J. Rare coding variants in ten genes confer substantial risk for schizophrenia.Nature2022604790650951610.1038/s41586‑022‑04556‑w35396579
    [Google Scholar]
  31. TangS.X. GurR.E. Longitudinal perspectives on the psychosis spectrum in 22q11.2 deletion syndrome.Am. J. Med. Genet. A.2018176102192220210.1002/ajmg.a.3850029048724
    [Google Scholar]
  32. BrownsteinC.A. DouardE. MollonJ. SmithR. HojloM.A. DasA. GoldmanM. GarveyE. CabralK. LiJ. BowenJ. RaoA.S. GenettiC. CarrollD. KnowlesE.E.M. DeasoE. AgrawalP.B. BeggsA.H. D’AngeloE. AlmasyL. Alexander-BlochA. SaciZ. MoreauC.A. HuguetG. DeoA.J. JacquemontS. GlahnD.C. Gonzalez-HeydrichJ. Similar rates of deleterious copy number variants in early-onset psychosis and autism spectrum disorder.Am. J. Psychiatry20221791185386110.1176/appi.ajp.2111117536000218
    [Google Scholar]
  33. ReesE. KendallK. PardiñasA.F. LeggeS.E. PocklingtonA. Escott-PriceV. MacCabeJ.H. CollierD.A. HolmansP. O’DonovanM.C. OwenM.J. WaltersJ.T.R. KirovG. Analysis of intellectual disability copy number variants for association with schizophrenia.JAMA Psychiatry201673996396910.1001/jamapsychiatry.2016.183127602560
    [Google Scholar]
  34. ReesE. KirovG. SandersA. WaltersJ.T.R. ChambertK.D. ShiJ. SzatkiewiczJ. O’DushlaineC. RichardsA.L. GreenE.K. JonesI. DaviesG. LeggeS.E. MoranJ.L. PatoC. PatoM. GenoveseG. LevinsonD. DuanJ. MoyW. GöringH.H.H. MorrisD. CormicanP. KendlerK.S. O’NeillF.A. RileyB. GillM. CorvinA. CraddockN. SklarP. HultmanC. SullivanP.F. GejmanP.V. McCarrollS.A. O’DonovanM.C. OwenM.J. Evidence that duplications of 22q11.2 protect against schizophrenia.Mol. Psychiatry2014191374010.1038/mp.2013.15624217254
    [Google Scholar]
  35. KhanT.A. RevahO. GordonA. YoonS.J. KrawiszA.K. GooldC. SunY. KimC.H. TianY. LiM.Y. SchaepeJ.M. IkedaK. AminN.D. SakaiN. YazawaM. KushanL. NishinoS. PorteusM.H. RapoportJ.L. BernsteinJ.A. O’HaraR. BeardenC.E. HallmayerJ.F. HuguenardJ.R. GeschwindD.H. DolmetschR.E. PaşcaS.P. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome.Nat. Med.202026121888189810.1038/s41591‑020‑1043‑932989314
    [Google Scholar]
  36. MarinaroF. MarziM.J. HoffmannN. AminH. PelizzoliR. NiolaF. NicassioF. De Pietri TonelliD. MicroRNA‐independent functions of DGCR8 are essential for neocortical development and TBR1 expression.EMBO Rep.201718460361810.15252/embr.20164280028232627
    [Google Scholar]
  37. ParonettE.M. MeechanD.W. KarpinskiB.A. LaMantiaA.S. MaynardT.M. Ranbp1, deleted in digeorge/22q11.2 deletion syndrome, is a microcephaly gene that selectively disrupts layer 2/3 cortical projection neuron generation.Cereb. Cortex201525103977399310.1093/cercor/bhu28525452572
    [Google Scholar]
  38. Molinard-ChenuA. DayerA. The candidate schizophrenia risk gene DGCR2 regulates early steps of corticogenesis.Biol. Psychiatry201883869270610.1016/j.biopsych.2017.11.01529305086
    [Google Scholar]
  39. NeuhausE. HattingenE. BreuerS. SteidlE. PolomacN. RosenowF. RüberT. HerrmannE. EckerC. KushanL. LinA. VajdiA. BeardenC.E. JurcoaneA. Heterotopia in individuals with 22q11.2 deletion syndrome.AJNR Am. J. Neuroradiol.202142112070207610.3174/ajnr.A728334620586
    [Google Scholar]
  40. SchleiferC.H. O’HoraK.P. FungH. XuJ. RobinsonT.A. WuA.S. Kushan-WellsL. LinA. ChingC.R.K. BeardenC.E. Effects of gene dosage and development on subcortical nuclei volumes in individuals with 22q11.2 copy number variations.Neuropsychopharmacology20244961024103210.1038/s41386‑024‑01832‑338431758
    [Google Scholar]
  41. ModenatoC. Martin-BrevetS. MoreauC.A. Rodriguez-HerrerosB. KumarK. DraganskiB. SønderbyI.E. JacquemontS. Lessons Learned From Neuroimaging Studies of Copy Number Variants: A Systematic Review.Biol. Psychiatry202190959661010.1016/j.biopsych.2021.05.02834509290
    [Google Scholar]
  42. Martin-BrevetS. Rodríguez-HerrerosB. NielsenJ.A. MoreauC. ModenatoC. MaillardA.M. PainA. RichetinS. JønchA.E. QureshiA.Y. ZürcherN.R. ConusP. ChungW.K. SherrE.H. SpiroJ.E. KherifF. BeckmannJ.S. HadjikhaniN. ReymondA. BucknerR.L. DraganskiB. JacquemontS. AddorM-C. AndrieuxJ. ArveilerB. BaujatG. Sloan-BénaF. BelfioreM. BonneauD. BouquillonS. BouteO. BruscoA. BusaT. CabergJ-H. CampionD. ColombertV. CordierM-P. DavidA. DebrayF-G. DelrueM-A. Doco-FenzyM. Dunkhase-HeinlU. EderyP. FagerbergC. FaivreL. ForzanoF. GenevieveD. GérardM. GiachinoD. GuichetA. GuillinO. HéronD. IsidorB. JacquetteA. JaillardS. JournelH. KerenB. LacombeD. LebonS. Le CaignecC. LemaîtreM-P. LespinasseJ. Mathieu-DramartM. MercierS. MignotC. MissirianC. PetitF. Pilekær SørensenK. PinsonL. PlessisG. PrieurF. Rooryck-ThamboC. RossiM. SanlavilleD. Schlott KristiansenB. Schluth-BolardC. TillM. Van HaelstM. Van MaldergemL. AlupayH. AaronsonB. AckermanS. AnkenmanK. AnwarA. AtwellC. BoweA. BeaudetA.L. BenedettiM. BergJ. BermanJ. BerryL.N. BibbA.L. BlaskeyL. BrennanJ. BrewtonC.M. BucknerR. BukshpunP. BurkoJ. CaliP. CerbanB. ChangY. CheongM. ChowV. ChuZ. ChudnovskayaD. CornewL. DaleC. DellJ. DempseyA.G. DeschampsT. EarlR. EdgarJ. ElginJ. OlsonJ.E. EvansY.L. FindlayA. FischbachG.D. FiskC. FregeauB. GaetzB. GaetzL. GarzaS. GerdtsJ. GlennO. GobutyS.E. GolembskiR. GreenupM. HeikenK. HinesK. HinkleyL. JacksonF.I. JenkinsJ.III JeremyR.J. JohnsonK. KanneS.M. KesslerS. KhanS.Y. KuM. KuschnerE. LaakmanA.L. LamP. LasalaM.W. LeeH. LaGuerreK. LevyS. CavanaghA.L. LlorensA.V. CampeK.L. LuksT.L. MarcoE.J. MartinS. MartinA.J. MarzanoG. MassonC. McGovernK.E. McNally KeehnR. MillerD.T. MillerF.K. MossT.J. MurrayR. NagarajanS.S. NowellK.P. OwenJ. PaalA.M. PackerA. PageP.Z. PaulB.M. PetersA. PetersonD. PoduriA. PojmanN.J. PorcheK. ProudM.B. QasmiehS. RamockiM.B. ReillyB. RobertsT.P.L. ShawD. SinhaT. Smith-PackardB. GallagherA.S. SwarnakarV. ThieuT. TriantafallouC. VaughanR. WakahiroM. WallaceA. WardT. WenegratJ. WolkenA. Quantifying the effects of 16p11.2 copy number variants on brain structure: A multisite genetic-first study.Biol. Psychiatry201884425326410.1016/j.biopsych.2018.02.117629778275
    [Google Scholar]
  43. KunduS. SairH. SherrE.H. MukherjeeP. RohdeG.K. Discovering the gene-brain-behavior link in autism via generative machine learning.Sci. Adv.20241024eadl530710.1126/sciadv.adl530738865470
    [Google Scholar]
  44. QureshiA.Y. MuellerS. SnyderA.Z. MukherjeeP. BermanJ.I. RobertsT.P.L. NagarajanS.S. SpiroJ.E. ChungW.K. SherrE.H. BucknerR.L. Opposing brain differences in 16p11.2 deletion and duplication carriers.J. Neurosci.20143434111991121110.1523/JNEUROSCI.1366‑14.201425143601
    [Google Scholar]
  45. UrrestiJ. ZhangP. Moran-LosadaP. YuN.K. NegraesP.D. TrujilloC.A. AntakiD. AmarM. ChauK. PramodA.B. DiedrichJ. TejwaniL. RomeroS. SebatJ. YatesJ.R.III MuotriA.R. IakouchevaL.M. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism.Mol. Psychiatry202126127560758010.1038/s41380‑021‑01243‑634433918
    [Google Scholar]
  46. HorevG. EllegoodJ. LerchJ.P. SonY.E.E. MuthuswamyL. VogelH. KriegerA.M. BujaA. HenkelmanR.M. WiglerM. MillsA.A. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism.Proc. Natl. Acad. Sci. USA201110841170761708110.1073/pnas.111404210821969575
    [Google Scholar]
  47. GolzioC. WillerJ. TalkowskiM.E. OhE.C. TaniguchiY. JacquemontS. ReymondA. SunM. SawaA. GusellaJ.F. KamiyaA. BeckmannJ.S. KatsanisN. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant.Nature2012485739836336710.1038/nature1109122596160
    [Google Scholar]
  48. ArbogastT. RazazP. EllegoodJ. McKinstryS.U. ErdinS. CurrallB. AneichykT. LerchJ.P. QiuL.R. RodriguizR.M. HenkelmanR.M. TalkowskiM.E. WetselW.C. GolzioC. KatsanisN. Kctd13-deficient mice display short-term memory impairment and sex-dependent genetic interactions.Hum. Mol. Genet.20192891474148610.1093/hmg/ddy43630590535
    [Google Scholar]
  49. EscamillaC.O. FilonovaI. WalkerA.K. XuanZ.X. HolehonnurR. EspinosaF. LiuS. ThymeS.B. López-GarcíaI.A. MendozaD.B. UsuiN. EllegoodJ. EischA.J. KonopkaG. LerchJ.P. SchierA.F. SpeedH.E. PowellC.M. Kctd13 deletion reduces synaptic transmission via increased RhoA.Nature2017551767922723110.1038/nature2447029088697
    [Google Scholar]
  50. ScharrenbergR. RichterM. JohannsO. MekaD.P. RückerT. MurtazaN. LindenmaierZ. EllegoodJ. NaumannA. ZhaoB. SchwankeB. SedlacikJ. FiehlerJ. Hanganu-OpatzI.L. LerchJ.P. SinghK.K. de AndaF.C. TAOK2 rescues autism-linked developmental deficits in a 16p11.2 microdeletion mouse model.Mol. Psychiatry202227114707472110.1038/s41380‑022‑01785‑336123424
    [Google Scholar]
  51. FloreG. CioffiS. BilioM. IllingworthE. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.Cereb. Cortex20172732210222527005988
    [Google Scholar]
  52. HiramotoT. SumiyoshiA. YamauchiT. TanigakiK. ShiQ. KangG. RyokeR. NonakaH. EnomotoS. IzumiT. BhatM.A. KawashimaR. HiroiN. Tbx1, a gene encoded in 22q11.2 copy number variant, is a link between alterations in fimbria myelination and cognitive speed in mice.Mol. Psychiatry202227292993810.1038/s41380‑021‑01318‑434737458
    [Google Scholar]
  53. PaylorR. GlaserB. MupoA. AtaliotisP. SpencerC. SobotkaA. SparksC. ChoiC.H. OghalaiJ. CurranS. MurphyK.C. MonksS. WilliamsN. O’DonovanM.C. OwenM.J. ScamblerP.J. LindsayE. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome.Proc. Natl. Acad. Sci. USA2006103207729773410.1073/pnas.060020610316684884
    [Google Scholar]
  54. IyerJ. SinghM.D. JensenM. PatelP. PizzoL. HuberE. KoerselmanH. WeinerA.T. LepantoP. VadodariaK. KubinaA. WangQ. TalbertA. YennawarS. BadanoJ. ManakJ.R. RollsM.M. KrishnanA. GirirajanS. Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster.Nat. Commun.201891254810.1038/s41467‑018‑04882‑629959322
    [Google Scholar]
  55. CampbellP.D. LeeI. ThymeS. GranatoM. Mitochondrial proteins encoded by the 22q11.2 neurodevelopmental locus regulate neural stem and progenitor cell proliferation.Mol. Psychiatry20232893769378110.1038/s41380‑023‑02272‑z37794116
    [Google Scholar]
  56. KimJ. VanrobaeysY. KelvingtonB. PetersonZ. BaldwinE. GaineM.E. Nickl-JockschatT. AbelT. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevelopmental disorders.Mol. Psychiatry20242951310132110.1038/s41380‑024‑02411‑038278994
    [Google Scholar]
  57. VysotskiyM. WeissL.A. Autism Working Group of the Psychiatric Genomics Consortium Bipolar Disorder Working Group of the Psychiatric Genomics Consortium Schizophrenia Working Group of the Psychiatric Genomics Consortium Combinations of genes at the 16p11.2 and 22q11.2 CNVs contribute to neurobehavioral traits.PLoS Genet.2023196e101078010.1371/journal.pgen.101078037267418
    [Google Scholar]
  58. ForrestM.P. PenzesP. Mechanisms of copy number variants in neuropsychiatric disorders: From genes to therapeutics.Curr. Opin. Neurobiol.20238210275010.1016/j.conb.2023.10275037515924
    [Google Scholar]
  59. LinG.N. CorominasR. LemmensI. YangX. TavernierJ. HillD.E. VidalM. SebatJ. IakouchevaL.M. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases.Neuron201585474275410.1016/j.neuron.2015.01.01025695269
    [Google Scholar]
  60. Martin LorenzoS. NalessoV. ChevalierC. BirlingM.C. HeraultY. Targeting the RHOA pathway improves learning and memory in adult Kctd13 and 16p11.2 deletion mouse models.Mol. Autism2021121110.1186/s13229‑020‑00405‑733436060
    [Google Scholar]
  61. KiznerV. NaujockM. FischerS. JägerS. ReichS. SchlotthauerI. ZuckschwerdtK. GeigerT. HildebrandtT. LawlessN. MacartneyT. Dorner-CiossekC. GillardonF. CRISPR/Cas9-mediated Knockout of the Neuropsychiatric Risk Gene KCTD13 Causes Developmental Deficits in Human Cortical Neurons Derived from Induced Pluripotent Stem Cells.Mol. Neurobiol.202057261663410.1007/s12035‑019‑01727‑131402430
    [Google Scholar]
  62. YadavS. Oses-PrietoJ.A. PetersC.J. ZhouJ. PleasureS.J. BurlingameA.L. JanL.Y. JanY.N. TAOK2 Kinase Mediates PSD95 Stability and Dendritic Spine Maturation through Septin7 Phosphorylation.Neuron201793237939310.1016/j.neuron.2016.12.00628065648
    [Google Scholar]
  63. WakatsukiS. TakahashiY. ShibataM. AdachiN. NumakawaT. KunugiH. ArakiT. Small noncoding vault RNA modulates synapse formation by amplifying MAPK signaling.J. Cell Biol.20212202e20191107810.1083/jcb.20191107833439240
    [Google Scholar]
  64. BlizinskyK.D. Diaz-CastroB. ForrestM.P. SchürmannB. BachA.P. Martin-de-SaavedraM.D. WangL. CsernanskyJ.G. DuanJ. PenzesP. Reversal of dendritic phenotypes in 16p11.2 microduplication mouse model neurons by pharmacological targeting of a network hub.Proc. Natl. Acad. Sci. USA2016113308520852510.1073/pnas.160701411327402753
    [Google Scholar]
  65. ZhangN. LiuL. FanN. ZhangQ. WangW. ZhengM. MaL. LiY. ShiL. The requirement of SEPT2 and SEPT7 for migration and invasion in human breast cancer via MEK/ERK activation.Oncotarget2016738615876160010.18632/oncotarget.1140227557506
    [Google Scholar]
  66. MiyazakiT. HashimotoK. UdaA. SakagamiH. NakamuraY. SaitoS. NishiM. KumeH. TohgoA. KanekoI. KondoH. FukunagaK. KanoM. WatanabeM. TakeshimaH. Disturbance of cerebellar synaptic maturation in mutant mice lacking BSRPs, a novel brain‐specific receptor‐like protein family.FEBS Lett.2006580174057406410.1016/j.febslet.2006.06.04316814779
    [Google Scholar]
  67. LinW.S. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders.Adv. Genet.202342220001810.1002/ggn2.20220001837288166
    [Google Scholar]
  68. ForrestM.P. Dos SantosM. PiguelN.H. WangY.Z. HawkinsN.A. BagchiV.A. DionisioL.E. YoonS. SimkinD. Martin-de-SaavedraM.D. GaoR. HoranK.E. GeorgeA.L.Jr LeDouxM.S. KearneyJ.A. SavasJ.N. PenzesP. Rescue of neuropsychiatric phenotypes in a mouse model of 16p11.2 duplication syndrome by genetic correction of an epilepsy network hub.Nat. Commun.202314182510.1038/s41467‑023‑36087‑x36808153
    [Google Scholar]
  69. ChungW.K. HerreraF.F. Simon’s Searchlight Foundation Health supervision for children and adolescents with 16p11.2 deletion syndrome.Molecular Case Studies202394a00631610.1101/mcs.a00631638050025
    [Google Scholar]
  70. GunaA. ButcherN.J. BassettA.S. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms.J. Neurodev. Disord.2015711810.1186/s11689‑015‑9113‑x26137170
    [Google Scholar]
  71. PaterliniM. ZakharenkoS.S. LaiW.S. QinJ. ZhangH. MukaiJ. WestphalK.G.C. OlivierB. SulzerD. PavlidisP. SiegelbaumS.A. KarayiorgouM. GogosJ.A. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice.Nat. Neurosci.20058111586159410.1038/nn156216234811
    [Google Scholar]
  72. Mayneris-PerxachsJ. Castells-NobauA. Arnoriaga-RodríguezM. MartinM. de la Vega-CorreaL. ZapataC. BurokasA. BlascoG. CollC. EscrichsA. BiarnésC. Moreno-NavarreteJ.M. PuigJ. Garre-OlmoJ. RamosR. PedrazaS. BrugadaR. VilanovaJ.C. SerenaJ. GichJ. Ramió-TorrentàL. Pérez-BrocalV. MoyaA. PamplonaR. SolJ. JovéM. RicartW. Portero-OtinM. DecoG. MaldonadoR. Fernández-RealJ.M. Microbiota alterations in proline metabolism impact depression.Cell Metab.2022345681701.e1010.1016/j.cmet.2022.04.00135508109
    [Google Scholar]
  73. CrabtreeG.W. ParkA.J. GordonJ.A. GogosJ.A. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.Cell Rep.201617257058210.1016/j.celrep.2016.09.02927705802
    [Google Scholar]
  74. ClellandC.L. DrouetV. RilettK.C. SmeedJ.A. NadrichR.H. RajpariaA. ReadL.L. ClellandJ.D. Evidence that COMT genotype and proline interact on negative-symptom outcomes in schizophrenia and bipolar disorder.Transl. Psychiatry201669e89110.1038/tp.2016.15727622935
    [Google Scholar]
  75. RenD. LuoB. ChenP. YuL. XiongM. FuZ. ZhouT. ChenW.B. FeiE. DiGeorge syndrome critical region gene 2 (DGCR2), a schizophrenia risk gene, regulates dendritic spine development through cell adhesion.Cell Biosci.202313113410.1186/s13578‑023‑01081‑937480133
    [Google Scholar]
  76. MaurerG.W. MalitaA. NagyS. KoyamaT. WergeT.M. HalbergK.A. TexadaM.J. RewitzK. Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control.PLoS Genet.2020164e100872710.1371/journal.pgen.100872732339168
    [Google Scholar]
  77. SundbergM. PinsonH. SmithR.S. WindenK.D. VenugopalP. TaiD.J.C. GusellaJ.F. TalkowskiM.E. WalshC.A. TegmarkM. SahinM. 16p11.2 deletion is associated with hyperactivation of human iPSC-derived dopaminergic neuron networks and is rescued by RHOA inhibition in vitro.Nat. Commun.2021121289710.1038/s41467‑021‑23113‑z34006844
    [Google Scholar]
  78. GurR.C. BeardenC.E. JacquemontS. SwillenA. van AmelsvoortT. van den BreeM. VorstmanJ. SebatJ. RuparelK. GallagherR.S. McClellanE. WhiteL. CrowleyT.B. GiuntaV. KushanL. O’HoraK. VerbesseltJ. VandensandeA. VingerhoetsC. van HaelstM. HallJ. HarwoodJ. ChawnerS.J.R.A. PatelN. PaladK. HongO. GuevaraJ. MartinC.O. JiziK. BélangerA.M. SchererS.W. BassettA.S. McDonald-McGinnD.M. GurR.E. Neurocognitive profiles of 22q11.2 and 16p11.2 deletions and duplications.Mol. Psychiatry202410.1038/s41380‑024‑02661‑y39048645
    [Google Scholar]
  79. KosticM. RaymondJ.J. FreyreC.A.C. HenryB. TumkayaT. KhlghatyanJ. DvornikJ. LiJ. HsiaoJ.S. CheonS.H. ChungJ. SunY. DolmetschR.E. WorringerK.A. IhryR.J. Patient Brain Organoids Identify a Link between the 16p11.2 Copy Number Variant and the RBFOX1 Gene.ACS Chem. Neurosci.202314223993401210.1021/acschemneuro.3c0044237903506
    [Google Scholar]
  80. RothJ.G. MuenchK.L. AsokanA. MallettV.M. GaiH. VermaY. WeberS. CharltonC. FowlerJ.L. LohK.M. DolmetschR.E. PalmerT.D. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development.eLife20209e5817810.7554/eLife.5817833169669
    [Google Scholar]
  81. ShinD. KimC.N. RossJ. HennickK.M. WuS.R. ParanjapeN. LeonardR. WangJ.C. KeefeM.G. PavlovicB.J. DonohueK.C. MoreauC. WigdorE.M. LarsonH.H. AllenD.E. CadwellC.R. BhaduriA. PopovaG. BeardenC.E. PollenA.A. JacquemontS. SandersS.J. HausslerD. WiitaA.P. FrostN.A. SohalV.S. NowakowskiT.J. Thalamocortical organoids enable in vitro modeling of 22q11.2 microdeletion associated with neuropsychiatric disorders.Cell Stem Cell2024313421432.e810.1016/j.stem.2024.01.01038382530
    [Google Scholar]
/content/journals/cg/10.2174/0113892029338299241211063307
Loading
/content/journals/cg/10.2174/0113892029338299241211063307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test