Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

The development of a cancer vaccine comes with its complications and designing and developing a vaccine against foreign invaders such as bacterial and viral particles is not as complex and multi-faceted as the preparation of immunotherapy for host-infected cells which resemble our own body cells. The entire research and development framework of designing a vaccine for cancerous cells lies entirely on the remarkable aspect of notifying specific interactions and acclimatising the immune system. This review aims to compile the several fronts research-based methodology applies to in terms of developing a therapeutic, preventive or personalised vaccine for cancer. The approach lays focus on the identification and selection of targets for vaccine development which have come to light as immune biomarkers. Furthemore, significant aspects of personalised and precision vaccines and the fine line that runs between these approaches have also been discussed.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029319505240821063238
2024-08-30
2025-09-03
Loading full text...

Full text loading...

References

  1. ColeyW.B. The treatment of malignant tumours by repeated inoculations of erysipelas: With a report of ten original cases. 1.Clin Orthop Relat Res.1893262311
    [Google Scholar]
  2. ButterfieldL.H. Cancer vaccines.BMJ2015350apr22 14h98810.1136/bmj.h98825904595
    [Google Scholar]
  3. GretenT.F. JaffeeE.M. Cancer Vaccines.J. Clin. Oncol.19991731047106010.1200/JCO.1999.17.3.104710071300
    [Google Scholar]
  4. GilboaE. The promise of cancer vaccines.Nat. Rev. Cancer20044540141110.1038/nrc135915122211
    [Google Scholar]
  5. PeterJ. Cancer vaccines.Hematol/Oncol Clin.2019332199214
    [Google Scholar]
  6. PaluckaK. UenoH. BanchereauJ. Recent developments in cancer vaccines.J. Immunol.201118631325133110.4049/jimmunol.090253921248270
    [Google Scholar]
  7. MorseM.A. ChuiS. HobeikaA. LyerlyH.K. ClayT. Recent developments in therapeutic cancer vaccines.Nat. Clin. Pract. Oncol.20052210811310.1038/ncponc009816264883
    [Google Scholar]
  8. GalmariniD. GalmariniC.M. GalmariniF.C. Cancer chemotherapy: A critical analysis of its 60 years of history.Crit. Rev. Oncol. Hematol.201284218119910.1016/j.critrevonc.2012.03.00222542531
    [Google Scholar]
  9. ColeyW.B. II. Contribution to the knowledge of sarcoma.Ann. Surg.189114319922010.1097/00000658‑189112000‑0001517859590
    [Google Scholar]
  10. ColeyW.B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893.Clin. Orthop. Relat. Res.199119912623111984929
    [Google Scholar]
  11. ColeyW.B. Treatment of inoperable malignant tumours with toxins of erysipelas and the Bacillus prodigiosus.Trans Am Surg Assoc189412183212
    [Google Scholar]
  12. ColeyWB The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus).Proc R Soc Med.19103148
    [Google Scholar]
  13. JohnstonB.J. NovalesE.T. Clinical effect of Coley’s toxin. II. A seven-year study.Cancer Chemother. Rep.196221436814452138
    [Google Scholar]
  14. KawakamiY. EliyahuS. DelgadoC.H. RobbinsP.F. SakaguchiK. AppellaE. YannelliJ.R. AdemaG.J. MikiT. RosenbergS.A. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection.Proc. Natl. Acad. Sci. USA199491146458646210.1073/pnas.91.14.64588022805
    [Google Scholar]
  15. KawakamiY. EliyahuS. DelgadoC.H. RobbinsP.F. RivoltiniL. TopalianS.L. MikiT. RosenbergS.A. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor.Proc. Natl. Acad. Sci. USA19949193515351910.1073/pnas.91.9.35158170938
    [Google Scholar]
  16. CoulieP.G. BrichardV. Van PelA. WölfelT. SchneiderJ. TraversariC. MatteiS. De PlaenE. LurquinC. SzikoraJ.P. RenauldJ.C. BoonT. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas.J. Exp. Med.19941801354210.1084/jem.180.1.358006593
    [Google Scholar]
  17. TraversariC. van der BruggenP. LuescherI.F. LurquinC. ChomezP. Van PelA. De PlaenE. Amar-CostesecA. BoonT. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E.J. Exp. Med.199217651453145710.1084/jem.176.5.14531402688
    [Google Scholar]
  18. FinnO.J. BinderR.J. BricknerA.G. Human tumour antigens as targets of immunosurveillance and candidates for cancer vaccines.Tumour-associated antigens: Identification, characterization and clinical applications. GiresO. SeligerB. Berlin, GermanyWiley-VCH Verlag, GmbH & Co2009234310.1002/9783527625970.ch2
    [Google Scholar]
  19. TopalianS.L. RivoltiniL. ManciniM. MarkusN.R. RobbinsP.F. KawakamiY. RosenbergS.A. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene.Proc. Natl. Acad. Sci. USA199491209461946510.1073/pnas.91.20.94617937789
    [Google Scholar]
  20. FinnO.J. JeromeK.R. HendersonR.A. PecherG. DomenechN. Magarian-BlanderJ. Barratt-BoyesS.M. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines.Immunol. Rev.19951451618910.1111/j.1600‑065X.1995.tb00077.x7590831
    [Google Scholar]
  21. BakkerA.B. MarlandG. de BoerA.J. HuijbensR.J. DanenE.H. AdemaG.J. FigdorC.G. Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro.Cancer Res.19955522533053347585596
    [Google Scholar]
  22. BoonT. CerottiniJ.C. Van den EyndeB. van der BruggenP. Van PelA. Tumor antigens recognized by T lymphocytes.Annu. Rev. Immunol.199412133736510.1146/annurev.iy.12.040194.0020058011285
    [Google Scholar]
  23. VollmerC.M.Jr EilberF.C. ButterfieldL.H. RibasA. DissetteV.B. KohA. MontejoL.D. LeeM.C. AndrewsK.J. McBrideW.H. GlaspyJ.A. EconomouJ.S. Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma.Cancer Res.199959133064306710397245
    [Google Scholar]
  24. ButterfieldL.H. KohA. MengW. VollmerC.M. RibasA. DissetteV. LeeE. GlaspyJ.A. McBrideW.H. EconomouJ.S. Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein.Cancer Res.199959133134314210397256
    [Google Scholar]
  25. IrieR.F. GiulianoA.E. MortonD.L. Oncofetal antigen: A tumor-associated fetal antigen immunogenic in man.J. Natl. Cancer Inst.197963236737388539
    [Google Scholar]
  26. CogginJ.H.Jr BarsoumA.L. RohrerJ.W. 37 kiloDalton oncofetal antigen protein and immature laminin receptor protein are identical, universal T-cell inducing immunogens on primary rodent and human cancers.Anticancer Res.1999196C5535554210697612
    [Google Scholar]
  27. CheeverM.A. AllisonJ.P. FerrisA.S. FinnO.J. HastingsB.M. HechtT.T. MellmanI. PrindivilleS.A. VinerJ.L. WeinerL.M. MatrisianL.M. The prioritization of cancer antigens: A national cancer institute pilot project for the acceleration of translational research.Clin. Cancer Res.200915175323533710.1158/1078‑0432.CCR‑09‑073719723653
    [Google Scholar]
  28. VonderheideR.H. NathansonK.L. Immunotherapy at Large: The road to personalized cancer vaccines.Nat. Med.20131991098110010.1038/nm.331724013748
    [Google Scholar]
  29. TranE. TurcotteS. GrosA. RobbinsP.F. LuY.C. DudleyM.E. WunderlichJ.R. SomervilleR.P. HoganK. HinrichsC.S. ParkhurstM.R. YangJ.C. RosenbergS.A. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science2014344618464164510.1126/science.125110224812403
    [Google Scholar]
  30. OverwijkWW WangE MarincolaFM Mining the mutanome: Developing highly personalized Immunotherapies based on mutational analysis of tumors.J Immunother Cancer201329111
    [Google Scholar]
  31. LehmannP.V. ForsthuberT. MillerA. SercarzE.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen.Nature1992358638215515710.1038/358155a01377368
    [Google Scholar]
  32. ButterfieldL.H. RibasA. DissetteV.B. AmarnaniS.N. VuH.T. OsegueraD. WangH.J. ElashoffR.M. McBrideW.H. MukherjiB. CochranA.J. GlaspyJ.A. EconomouJ.S. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma.Clin. Cancer Res.200393998100812631598
    [Google Scholar]
  33. RibasA. GlaspyJ.A. LeeY. DissetteV.B. SejaE. VuH.T. TchekmedyianN.S. OsegueraD. Comin-AnduixB. WargoJ.A. AmarnaniS.N. McBrideW.H. EconomouJ.S. ButterfieldL.H. Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy.J. Immunother.200427535436710.1097/00002371‑200409000‑0000415314544
    [Google Scholar]
  34. RibasA. TimmermanJ.M. ButterfieldL.H. EconomouJ.S. Determinant spreading and tumor responses after peptide-based cancer immunotherapy.Trends Immunol.2003242586110.1016/S1471‑4906(02)00029‑712547500
    [Google Scholar]
  35. DisisM.L. GooleyT.A. RinnK. DavisD. PiepkornM. CheeverM.A. KnutsonK.L. SchiffmanK. Generation of T- cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines.J. Clin. Oncol.200220112624263210.1200/JCO.2002.06.17112039923
    [Google Scholar]
  36. DisisM.L. Immunologic biomarkers as correlates of clinical response to cancer immunotherapy.Cancer Immunol. Immunother.201160343344210.1007/s00262‑010‑0960‑821221967
    [Google Scholar]
  37. WiereckyJ. MüllerM.R. WirthsS. Halder-OehlerE. DörfelD. SchmidtS.M. HäntschelM. BruggerW. SchröderS. HorgerM.S. KanzL. BrossartP. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients.Cancer Res.200666115910591810.1158/0008‑5472.CAN‑05‑390516740731
    [Google Scholar]
  38. HuY. PetroniG.R. OlsonW.C. CzarkowskiA. SmolkinM.E. GroshW.W. Chianese-BullockK.A. SlingluffC.L.Jr Immunologic hierarchy, class II MHC promiscuity, and epitope spreading of a melanoma helper peptide vaccine.Cancer Immunol. Immunother.201463877978610.1007/s00262‑014‑1551‑x24756419
    [Google Scholar]
  39. MontanoD. Chemical and biological work-related risks across occupations in Europe: A review.J. Occup. Med. Toxicol.2014912810.1186/1745‑6673‑9‑2825071862
    [Google Scholar]
  40. StuckeyA.R. OnstadM.A. Hereditary breast cancer: An update on risk assessment and genetic testing in 2015.Am. J. Obstet. Gynecol.2015213216116510.1016/j.ajog.2015.03.00325747548
    [Google Scholar]
  41. RathM.G. MasciariS. GelmanR. MironA. MironP. FoleyK. RichardsonA.L. KropI.E. VerselisS.J. DillonD.A. GarberJ.E. Prevalence of germline TP53 mutations in HER2+ breast cancer patients.Breast Cancer Res. Treat.2013139119319810.1007/s10549‑012‑2375‑z23580068
    [Google Scholar]
  42. Amanote ResearchMisguided cancer goal.Nature2012491742663710.1038/491637a23198300
    [Google Scholar]
  43. FracolM. XuS. MickR. FitzpatrickE. NisenbaumH. RosesR. FisherC. TchouJ. FoxK. ZhangP. CzernieckiB.J. Response to HER-2 pulsed DC1 vaccines is predicted by both HER-2 and estrogen receptor expression in DCIS.Ann. Surg. Oncol.201320103233323910.1245/s10434‑013‑3119‑y23851609
    [Google Scholar]
  44. KimuraT. McKolanisJ.R. DzubinskiL.A. IslamK. PotterD.M. SalazarA.M. SchoenR.E. FinnO.J. MUC1 vaccine for individuals with advanced adenoma of the colon: A cancer immunoprevention feasibility study.Cancer Prev. Res. (Phila.)201361182610.1158/1940‑6207.CAPR‑12‑027523248097
    [Google Scholar]
  45. FinnO.J. Vaccines for cancer prevention: A practical and feasible approach to the cancer epidemic.Cancer Immunol. Res.20142870871310.1158/2326‑6066.CIR‑14‑011025092812
    [Google Scholar]
  46. SignoriE. CavalloF. The Fourteenth International Conference on Progress in Vaccination Against Cancer (PIVAC-14)September 24–26, 2014Rome, Italy2015
    [Google Scholar]
  47. KantoffP.W. HiganoC.S. ShoreN.D. BergerE.R. SmallE.J. PensonD.F. RedfernC.H. FerrariA.C. DreicerR. SimsR.B. XuY. FrohlichM.W. SchellhammerP.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N. Engl. J. Med.2010363541142210.1056/NEJMoa100129420818862
    [Google Scholar]
  48. LedfordH. Therapeutic cancer vaccine survives biotech bust.Nature20155197541171810.1038/nature.2015.1699025739610
    [Google Scholar]
  49. HuberM.L. HaynesL. ParkerC. IversenP. Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer.J. Natl. Cancer Inst.2012104427327910.1093/jnci/djr51422232132
    [Google Scholar]
  50. GulleyJ.L. LeitmanS.F. DahutW. SchlomJ. Re: Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer.J. Natl. Cancer Inst.201210414110610.1093/jnci/djs28022825555
    [Google Scholar]
  51. KantoffP.W. HiganoC.S. SmallE.J. WhitmoreJ.B. FrohlichM.W. SchellhammerP.F. Re: Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer.J. Natl. Cancer Inst.2012104141107110910.1093/jnci/djs27922825556
    [Google Scholar]
  52. DrakeC.G. Re: Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer.J. Natl. Cancer Inst.201210418142210.1093/jnci/djs34022911668
    [Google Scholar]
  53. WangS. LiuW. LyD. XuH. QuL. ZhangL. Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer.Cell. Mol. Immunol.201916161810.1038/s41423‑018‑0027‑x29628498
    [Google Scholar]
  54. Mollica PoetaV. MassaraM. CapucettiA. BonecchiR. Chemokines and chemokine receptors: New targets for cancer immunotherapy.Front. Immunol.20191037910.3389/fimmu.2019.0037930894861
    [Google Scholar]
  55. BalanS. RadfordK.J. BhardwajN. Unexplored horizons of cDC1 in immunity and tolerance.Adv. Immunol.2020148499110.1016/bs.ai.2020.10.00233190733
    [Google Scholar]
  56. FucikovaJ. KeppO. KasikovaL. PetroniG. YamazakiT. LiuP. ZhaoL. SpisekR. KroemerG. GalluzziL. Detection of immunogenic cell death and its relevance for cancer therapy.Cell Death Dis.20201111101310.1038/s41419‑020‑03221‑233243969
    [Google Scholar]
  57. AlloattiA. KotsiasF. MagalhaesJ.G. AmigorenaS. Dendritic cell maturation and cross-presentation: Timing matters!Immunol. Rev.201627219710810.1111/imr.1243227319345
    [Google Scholar]
  58. Ebrahimi-NikH. CorwinW.L. ShcheglovaT. Das MohapatraA. MandoiuI.I. SrivastavaP.K. CD11c+ MHCIIlo GM-CSF-bone marrow-derived dendritic cells act as antigen donor cells and as antigen presenting cells in neoepitope-elicited tumor immunity against a mouse fibrosarcoma.Cancer Immunol. Immunother.20186791449145910.1007/s00262‑018‑2202‑430030558
    [Google Scholar]
  59. YewdallA.W. DrutmanS.B. JinwalaF. BahjatK.S. BhardwajN. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells.PLoS One201056e1114410.1371/journal.pone.001114420585396
    [Google Scholar]
  60. RuhlandM.K. RobertsE.W. CaiE. MujalA.M. MarchukK. BepplerC. NamD. SerwasN.K. BinnewiesM. KrummelM.F. Visualizing synaptic transfer of tumour antigens among dendritic cells.Cancer Cell2020376786799.e510.1016/j.ccell.2020.05.00232516589
    [Google Scholar]
  61. RobertsE.W. BrozM.L. BinnewiesM. HeadleyM.B. NelsonA.E. WolfD.M. KaishoT. BogunovicD. BhardwajN. KrummelM.F. Critical role for CD103+ /CD141+ dendritic cells bearing CCR7 for tumour antigen trafficking and priming of T- cells immunity in melanoma.Cancer Cell201630232433610.1016/j.ccell.2016.06.00327424807
    [Google Scholar]
  62. GargA.D. AgostinisP. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses.Immunol. Rev.2017280112614810.1111/imr.1257429027218
    [Google Scholar]
  63. VansteenkisteJ.F. ChoB.C. VanakesaT. De PasT. ZielinskiM. KimM.S. JassemJ. YoshimuraM. DahabrehJ. NakayamaH. HavelL. KondoH. MitsudomiT. ZarogoulidisK. GladkovO.A. UdudK. TadaH. HoffmanH. BuggeA. TaylorP. GonzalezE.E. LiaoM.L. HeJ. PujolJ.L. LouahedJ. DeboisM. BrichardV. DebruyneC. TherasseP. AltorkiN. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.201617682283510.1016/S1470‑2045(16)00099‑127132212
    [Google Scholar]
  64. GiacconeG. BazhenovaL.A. NemunaitisJ. TanM. JuhászE. RamlauR. van den HeuvelM.M. LalR. KloeckerG.H. EatonK.D. ChuQ. DunlopD.J. JainM. GaronE.B. DavisC.S. CarrierE. MosesS.C. ShawlerD.L. FakhraiH. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer.Eur. J. Cancer201551162321232910.1016/j.ejca.2015.07.03526283035
    [Google Scholar]
  65. ButtsC. SocinskiM.A. MitchellP.L. ThatcherN. HavelL. KrzakowskiM. NawrockiS. CiuleanuT.E. BosquéeL. TrigoJ.M. SpiraA. TremblayL. NymanJ. RamlauR. Wickart-JohanssonG. EllisP. GladkovO. PereiraJ.R. EberhardtW.E.E. HelwigC. SchröderA. ShepherdF.A. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): A randomised, double-blind, phase 3 trial.Lancet Oncol.2014151596810.1016/S1470‑2045(13)70510‑224331154
    [Google Scholar]
  66. RiniB.I. StenzlA. ZdrojowyR. KoganM. ShkolnikM. OudardS. WeikertS. BracardaS. CrabbS.J. BedkeJ. LudwigJ. MaurerD. MendrzykR. WagnerC. MahrA. FritscheJ. WeinschenkT. WalterS. KirnerA. Singh-JasujaH. ReinhardtC. EisenT. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): A multicentre, open-label, randomised, controlled, phase 3 trial.Lancet Oncol.201617111599161110.1016/S1470‑2045(16)30408‑927720136
    [Google Scholar]
  67. MiddletonG. SilcocksP. CoxT. ValleJ. WadsleyJ. PropperD. CoxonF. RossP. MadhusudanS. RoquesT. CunninghamD. FalkS. WaddN. HarrisonM. CorrieP. IvesonT. RobinsonA. McAdamK. EatockM. EvansJ. ArcherC. HickishT. Garcia-AlonsoA. NicolsonM. StewardW. AnthoneyA. GreenhalfW. ShawV. CostelloE. NaisbittD. RawcliffeC. NansonG. NeoptolemosJ. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial.Lancet Oncol.201415882984010.1016/S1470‑2045(14)70236‑024954781
    [Google Scholar]
  68. LawsonD.H. LeeS. ZhaoF. TarhiniA.A. MargolinK.A. ErnstoffM.S. AtkinsM.B. CohenG.I. WhitesideT.L. ButterfieldL.H. KirkwoodJ.M. Randomized, placebo-controlled, phase III Trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage IV melanoma: A trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E4697).J. Clin. Oncol.201533344066407610.1200/JCO.2015.62.050026351350
    [Google Scholar]
  69. ChenD.S. MellmanI. Elements of cancer immunity and the cancer–immune set point.Nature2017541763732133010.1038/nature2134928102259
    [Google Scholar]
  70. PradoF.B. RossiA.C. FreireA.R. GroppoF.C. De MoraesM. CariaP.H.F. Pharyngeal airway space and frontal and sphenoid sinus changes after maxillomandibular advancement with counterclockwise rotation for class II anterior open bite malocclusions.Dentomaxillofac. Radiol.201241210310910.1259/dmfr/2241925322116128
    [Google Scholar]
  71. AtanackovicD. AltorkiN.K. StockertE. WilliamsonB. JungbluthA.A. RitterE. SantiagoD. FerraraC.A. MatsuoM. SelvakumarA. DupontB. ChenY.T. HoffmanE.W. RitterG. OldL.J. GnjaticS. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients.J. Immunol.200417253289329610.4049/jimmunol.172.5.328914978137
    [Google Scholar]
  72. AbramsS.I. HandP.H. TsangK.Y. SchlomJ. Mutant ras epitopes as targets for cancer vaccines.Semin. Oncol.19962311181348607022
    [Google Scholar]
  73. AndersenR.S. ThrueC.A. JunkerN. LyngaaR. DoniaM. EllebækE. SvaneI.M. SchumacherT.N. thor StratenP. HadrupS.R. Dissection of T-cell antigen specificity in human melanoma.Cancer Res.20127271642165010.1158/0008‑5472.CAN‑11‑261422311675
    [Google Scholar]
  74. BoegelS. LöwerM. SchäferM. BukurT. de GraafJ. BoisguérinV. TüreciÖ. DikenM. CastleJ.C. SahinU. HLA typing from RNA-Seq sequence reads.Genome Med.201241210210.1186/gm40323259685
    [Google Scholar]
  75. BrittenC.M. Singh-JasujaH. FlamionB. HoosA. HuberC. KallenK.J. KhleifS.N. KreiterS. NielsenM. RammenseeH.G. SahinU. HinzT. KalinkeU. The regulatory landscape for actively personalized cancer immunotherapies.Nat. Biotechnol.2013311088088210.1038/nbt.270824104749
    [Google Scholar]
  76. CarboneD.P. CiernikI.F. KelleyM.J. SmithM.C. NadafS. KavanaughD. MaherV.E. StipanovM. ContoisD. JohnsonB.E. PendletonC.D. SeifertB. CarterC. ReadE.J. GreenblattJ. TopL.E. KelseyM.I. MinnaJ.D. BerzofskyJ.A. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: Immune response and clinical outcome.J. Clin. Oncol.200523225099510710.1200/JCO.2005.03.15815983396
    [Google Scholar]
  77. CastleJ.C. BieryM. BouzekH. XieT. ChenR. MisuraK. JacksonS. ArmourC.D. JohnsonJ.M. RohlC.A. RaymondC.K. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.BMC Genomics201011124410.1186/1471‑2164‑11‑24420398377
    [Google Scholar]
  78. CastleJ.C. KreiterS. DiekmannJ. LöwerM. van de RoemerN. de GraafJ. SelmiA. DikenM. BoegelS. ParetC. KoslowskiM. KuhnA.N. BrittenC.M. HuberC. TüreciÖ. SahinU. Exploiting the mutanome for tumor vaccination.Cancer Res.20127251081109110.1158/0008‑5472.CAN‑11‑372222237626
    [Google Scholar]
  79. DiekmannJ. LoewerM. CastleJ.C. KreiterS. TuereciO. SahinU. The T-cells druggable genome.Eur Pharm Rev20121741619
    [Google Scholar]
  80. DikenM. KreiterS. SelmiA. BrittenC.M. HuberC. TüreciÖ. SahinU. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation.Gene Ther.201118770270810.1038/gt.2011.1721368901
    [Google Scholar]
  81. DikenM. KreiterS. SelmiA. TüreciÖ. SahinU. Antitumor vaccination with synthetic mRNA: Strategies for in vitro and in vivo preclinical studies.Methods Mol. Biol.201396923524610.1007/978‑1‑62703‑260‑5_1523296938
    [Google Scholar]
  82. FidlerI.J. Selection of successive tumour lines for metastasis.Nat. New Biol.197324211814814910.1038/newbio242148a04512654
    [Google Scholar]
  83. GarberK. Melanoma combination therapies ward off tumor resistance.Nat. Biotechnol.201331866666710.1038/nbt0813‑666b23929325
    [Google Scholar]
  84. HaitW.N. HambleyT.W. Targeted cancer therapeutics.Cancer Res.20096941263126710.1158/0008‑5472.CAN‑08‑383619208830
    [Google Scholar]
  85. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  86. KenterG.G. WeltersM.J.P. ValentijnA.R.P.M. LowikM.J.G. Berends-van der MeerD.M.A. VloonA.P.G. EssahsahF. FathersL.M. OffringaR. DrijfhoutJ.W. WafelmanA.R. OostendorpJ. FleurenG.J. van der BurgS.H. MeliefC.J.M. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia.N. Engl. J. Med.2009361191838184710.1056/NEJMoa081009719890126
    [Google Scholar]
  87. KreiterS. DikenM. SelmiA. DiekmannJ. AttigS. HüsemannY. KoslowskiM. HuberC. TüreciÖ. SahinU. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines.Cancer Res.2011a71196132614210.1158/0008‑5472.CAN‑11‑029121816907
    [Google Scholar]
  88. KreiterS. DikenM. SelmiA. TüreciÖ. SahinU. Tumor vaccination using messenger RNA: Prospects of a future therapy.Curr. Opin. Immunol.2011b23339940610.1016/j.coi.2011.03.00721497074
    [Google Scholar]
  89. KreiterS. KonradT. SesterM. HuberC. TüreciÖ. SahinU. Simultaneous ex vivo quantification of antigen-specific CD4+ and CD8+ T cell responses using in vitro transcribed RNA.Cancer Immunol. Immunother.200756101577158710.1007/s00262‑007‑0302‑717361438
    [Google Scholar]
  90. KreiterS. SelmiA. DikenM. KoslowskiM. BrittenC.M. HuberC. TüreciÖ. SahinU. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity.Cancer Res.201070229031904010.1158/0008‑5472.CAN‑10‑069921045153
    [Google Scholar]
  91. CoulieP.G. Van den EyndeB.J. van der BruggenP. BoonT. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy.Nat. Rev. Cancer201414213514610.1038/nrc367024457417
    [Google Scholar]
  92. WeinsteinJ.N. CollissonE.A. MillsG.B. ShawK.R.M. OzenbergerB.A. EllrottK. ShmulevichI. SanderC. StuartJ.M. The Cancer Genome Atlas Pan-Cancer analysis project.Nat. Genet.201345101113112010.1038/ng.276424071849
    [Google Scholar]
  93. SahinU. DerhovanessianE. MillerM. KlokeB.P. SimonP. LöwerM. BukurV. TadmorA.D. LuxemburgerU. SchrörsB. OmokokoT. VormehrM. AlbrechtC. ParuzynskiA. KuhnA.N. BuckJ. HeeschS. SchreebK.H. MüllerF. OrtseiferI. VoglerI. GodehardtE. AttigS. RaeR. BreitkreuzA. TolliverC. SuchanM. MarticG. HohbergerA. SornP. DiekmannJ. CieslaJ. WaksmannO. BrückA.K. WittM. ZillgenM. RothermelA. KasemannB. LangerD. BolteS. DikenM. KreiterS. NemecekR. GebhardtC. GrabbeS. HöllerC. UtikalJ. HuberC. LoquaiC. TüreciÖ. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer.Nature2017547766222222610.1038/nature2300328678784
    [Google Scholar]
  94. OttP.A. HuZ. KeskinD.B. ShuklaS.A. SunJ. BozymD.J. ZhangW. LuomaA. Giobbie-HurderA. PeterL. ChenC. OliveO. CarterT.A. LiS. LiebD.J. EisenhaureT. GjiniE. StevensJ. LaneW.J. JaveriI. NellaiappanK. SalazarA.M. DaleyH. SeamanM. BuchbinderE.I. YoonC.H. HardenM. LennonN. GabrielS. RodigS.J. BarouchD.H. AsterJ.C. GetzG. WucherpfennigK. NeubergD. RitzJ. LanderE.S. FritschE.F. HacohenN. WuC.J. An immunogenic personal neoantigen vaccine for patients with melanoma.Nature2017547766221722110.1038/nature2299128678778
    [Google Scholar]
  95. CarrenoB.M. MagriniV. Becker-HapakM. KaabinejadianS. HundalJ. PettiA.A. LyA. LieW.R. HildebrandW.H. MardisE.R. LinetteG.P. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.Science2015348623680380810.1126/science.aaa382825837513
    [Google Scholar]
  96. KreiterS. VormehrM. van de RoemerN. DikenM. LöwerM. DiekmannJ. BoegelS. SchrörsB. VascottoF. CastleJ.C. TadmorA.D. SchoenbergerS.P. HuberC. TüreciÖ. SahinU. Mutant MHC class II epitopes drive therapeutic immune responses to cancer.Nature2015520754969269610.1038/nature1442625901682
    [Google Scholar]
  97. MelssenM. SlingluffC.L.Jr Vaccines targeting helper T cells for cancer immunotherapy.Curr. Opin. Immunol.201747859210.1016/j.coi.2017.07.00428755541
    [Google Scholar]
  98. PaluckaA.K. CoussensL.M. The basis of oncoimmunology.Cell201616461233124710.1016/j.cell.2016.01.04926967289
    [Google Scholar]
  99. WeideB. MartensA. ZelbaH. StutzC. DerhovanessianE. Di GiacomoA.M. MaioM. SuckerA. SchillingB. SchadendorfD. BüttnerP. GarbeC. PawelecG. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: Comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells.Clin. Cancer Res.20142061601160910.1158/1078‑0432.CCR‑13‑250824323899
    [Google Scholar]
  100. TarhiniA.A. ButterfieldL.H. ShuaiY. GoodingW.E. KalinskiP. KirkwoodJ.M. Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-α or TLR-9 agonist and GM-CSF with peptide vaccination.J. Immunother.201235970271010.1097/CJI.0b013e318272569b23090079
    [Google Scholar]
  101. TarhiniA.A. EdingtonH. ButterfieldL.H. LinY. ShuaiY. TawbiH. SanderC. YinY. HoltzmanM. JohnsonJ. RaoU.N.M. KirkwoodJ.M. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab.PLoS One201492e8770510.1371/journal.pone.008770524498358
    [Google Scholar]
  102. ButterfieldL. VujanovicL. PardeeA. Approaches to immunologic monitoring of clinical trials.The tumour immunoenvironment.ChamSpringer201366369410.1007/978‑94‑007‑6217‑6_29
    [Google Scholar]
  103. NagatoT. LeeY.R. HarabuchiY. CelisE. Combinatorial immunotherapy of polyinosinic-polycytidylic acid and blockade of programmed death-ligand 1 induce effective CD8 T-cell responses against established tumors.Clin. Cancer Res.20142051223123410.1158/1078‑0432.CCR‑13‑278124389326
    [Google Scholar]
  104. LinM.J. Svensson-ArvelundJ. LubitzG.S. MarabelleA. MeleroI. BrownB.D. BrodyJ.D. Cancer vaccines: The next immunotherapy frontier.Nat. Can.20223891192610.1038/s43018‑022‑00418‑635999309
    [Google Scholar]
  105. RamirezA. WagesN. SmolkinM.E. SlingluffC.L. Defining the effects of age and gender on clinical immune response to cancer vaccination.J. Immunother. Cancer20142S3P5910.1186/2051‑1426‑2‑S3‑P59
    [Google Scholar]
/content/journals/cg/10.2174/0113892029319505240821063238
Loading
/content/journals/cg/10.2174/0113892029319505240821063238
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; cancerous cells; immunotherapy; precision therapy; therapeutics; vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test