Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Influenza is a global epidemic infectious disease that causes a significant number of illnesses and deaths annually. Influenza exhibits high variability and infectivity, constantly jumping from birds to mammals. Genomic mutations of the influenza virus are a central mechanism leading to viral variation and antigenic evolution. Amino acid substitutions and avoidance of microRNA recognition elements are crucial in facilitating the virus to cross species barriers. This review summarizes the types of genomic mutations in the influenza virus, their roles and mechanisms in crossing species barriers, and analyzes the impact of these mutations on human health.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029316603240926051325
2024-10-11
2025-09-02
Loading full text...

Full text loading...

References

  1. SubbaraoK. The Critical Interspecies Transmission Barrier at the Animal–Human Interface.Trop. Med. Infect. Dis.2019427210.3390/tropicalmed402007231027299
    [Google Scholar]
  2. LillM. KõksS. SoometsU. SchalkwykL.C. FernandesC. LutsarI. TabaP. Peripheral blood RNA gene expression profiling in patients with bacterial meningitis.Front. Neurosci.201373310.3389/fnins.2013.0003323515576
    [Google Scholar]
  3. CheungP.H.H. LeeT.W.T. ChanC.P. JinD.Y. Influenza A virus PB1-F2 protein: An ambivalent innate immune modulator and virulence factor.J. Leukoc. Biol.2020107576377110.1002/JLB.4MR0320‑206R32323899
    [Google Scholar]
  4. VargaZ.T. GrantA. ManicassamyB. PaleseP. Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential.J. Virol.201286168359836610.1128/JVI.01122‑1222674996
    [Google Scholar]
  5. VargaZ.T. RamosI. HaiR. SchmolkeM. García-SastreA. Fernandez-SesmaA. PaleseP. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein.PLoS Pathog.201176e100206710.1371/journal.ppat.100206721695240
    [Google Scholar]
  6. ConenelloG.M. ZamarinD. PerroneL.A. TumpeyT. PaleseP. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence.PLoS Pathog.2007310e14110.1371/journal.ppat.003014117922571
    [Google Scholar]
  7. WebbyR. HoffmannE. WebsterR. Molecular constraints to interspecies transmission of viral pathogens.Nat Med200410S778110.1038/nm1151.
    [Google Scholar]
  8. ConenelloG.M. TisoncikJ.R. RosenzweigE. VargaZ.T. PaleseP. KatzeM.G. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo .J. Virol.201185265266210.1128/JVI.01987‑1021084483
    [Google Scholar]
  9. SuW. HarfootR. SuY.C.F. DeBeauchampJ. JosephU. JayakumarJ. CrumptonJ.C. JeevanT. RubrumA. FranksJ. PascuaP.N.Q. KackosC. ZhangY. ZhangM. JiY. BuiH.T. JonesJ.C. KercherL. KraussS. PleschkaS. ChanM.C.W. WebsterR.G. WuC.Y. Van ReethK. PeirisM. WebbyR.J. SmithG.J.D. YenH.L. Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs.Nat. Microbiol.20216111455146510.1038/s41564‑021‑00976‑y34702977
    [Google Scholar]
  10. SantosL.A. AlmeidaF. GíriaM. Trigueiro-LouroJ. Rebelo-de-AndradeH. Adaptive evolution of PB1 from influenza A(H1N1)pdm09 virus towards an enhanced fitness.Virology20235781610.1016/j.virol.2022.11.00336423573
    [Google Scholar]
  11. LiuD. LiuX. YanJ. LiuW.J. GaoG.F. Interspecies transmission and host restriction of avian H5N1 influenza virus.Sci. China C Life Sci.200952542843810.1007/s11427‑009‑0062‑z19471865
    [Google Scholar]
  12. SunH. LiH. TongQ. HanQ. LiuJ. YuH. SongH. QiJ. LiJ. YangJ. LanR. DengG. ChangH. QuY. PuJ. SunY. LanY. WangD. ShiY. LiuW.J. ChangK.C. GaoG.F. LiuJ. Airborne transmission of human-isolated avian H3N8 influenza virus between ferrets.Cell20231861940744084.e1110.1016/j.cell.2023.08.01137669665
    [Google Scholar]
  13. TaftA.S. OzawaM. FitchA. DepasseJ.V. HalfmannP.J. Hill-BatorskiL. HattaM. FriedrichT.C. LopesT.J.S. MaherE.A. GhedinE. MackenC.A. NeumannG. KawaokaY. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus.Nat. Commun.201561749110.1038/ncomms849126082035
    [Google Scholar]
  14. AraiY. KawashitaN. IbrahimM.S. ElgendyE.M. DaidojiT. OnoT. TakagiT. NakayaT. MatsumotoK. WatanabeY. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals.PLoS Pathog.2019157e100791910.1371/journal.ppat.100791931265471
    [Google Scholar]
  15. LukG.S.M. LeungC.Y.H. SiaS.F. ChoyK.T. ZhouJ. HoC.C.K. CheungP.P.H. LeeE.F. WaiC.K.L. LiP.C.H. IpS.M. PoonL.L.M. LindsleyW.G. PeirisM. YenH.L. Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets.J. Virol.201589199939995110.1128/JVI.01444‑1526202239
    [Google Scholar]
  16. YangL. ZhuW. LiX. ChenM. WuJ. YuP. QiS. HuangY. ShiW. DongJ. ZhaoX. HuangW. LiZ. ZengX. BoH. ChenT. ChenW. LiuJ. ZhangY. LiangZ. ShiW. ShuY. WangD. Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China.J. Virol.20179123e01277-1710.1128/JVI.01277‑1728956760
    [Google Scholar]
  17. LiB. SuG. XiaoC. ZhangJ. LiH. SunN. LaoG. YuY. RenX. QiW. WangX. LiaoM. The PB2 co-adaptation of H10N8 avian influenza virus increases the pathogenicity to chickens and mice.Transbound. Emerg. Dis.20226941794180310.1111/tbed.1415734008327
    [Google Scholar]
  18. WangY. NiuS. ZhangB. YangC. ZhouZ. WITHDRAWN: The whole genome analysis for the first human infection with H10N3 influenza virus in China.J. Infect.2021S0163-4453(21)00318-210.1016/j.jinf.2021.06.02134192524
    [Google Scholar]
  19. SangX. WangA. DingJ. KongH. GaoX. LiL. ChaiT. LiY. ZhangK. WangC. WanZ. HuangG. WangT. FengN. ZhengX. WangH. ZhaoY. YangS. QianJ. HuG. GaoY. XiaX. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets.Sci. Rep.2015511592810.1038/srep1592826552719
    [Google Scholar]
  20. SiY.J. ParkY.R. BaekY.G. ParkM.J. LeeE.K. LeeK.N. KimH.R. LeeY.J. LeeY.N. Pathogenesis and genetic characteristics of low pathogenic avian influenza H10 viruses isolated from migratory birds in South Korea during 2010–2019.Transbound. Emerg. Dis.20226952588259910.1111/tbed.1440934863022
    [Google Scholar]
  21. AraiY. KawashitaN. DaidojiT. IbrahimM.S. El-GendyE.M. TakagiT. TakahashiK. SuzukiY. IkutaK. NakayaT. ShiodaT. WatanabeY. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.PLoS Pathog.2016124e100558310.1371/journal.ppat.100558327097026
    [Google Scholar]
  22. HayashiT. WillsS. BusseyK.A. TakimotoT. Identification of Influenza A Virus PB2 Residues Involved in Enhanced Polymerase Activity and Virus Growth in Mammalian Cells at Low Temperatures.J. Virol.201589158042804910.1128/JVI.00901‑1526018156
    [Google Scholar]
  23. LiuQ. QiaoC. MarjukiH. BawaB. MaJ. GuillossouS. WebbyR.J. RichtJ.A. MaW. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo .J. Virol.20128621233123710.1128/JVI.05699‑1122072752
    [Google Scholar]
  24. SunX. Pulit-PenalozaJ.A. BelserJ.A. PappasC. PearceM.B. BrockN. ZengH. CreagerH.M. ZandersN. JangY. TumpeyT.M. DavisC.T. MainesT.R. Pathogenesis and Transmission of Genetically Diverse Swine-Origin H3N2 Variant Influenza A Viruses from Multiple Lineages Isolated in the United States, 2011–2016.J. Virol.20189216e00665-1810.1128/JVI.00665‑1829848587
    [Google Scholar]
  25. ZhouW. FongM.Y. MinY. SomloG. LiuL. PalomaresM.R. YuY. ChowA. O’ConnorS.T.F. ChinA.R. YenY. WangY. MarcussonE.G. ChuP. WuJ. WuX. LiA.X. LiZ. GaoH. RenX. BoldinM.P. LinP.C. WangS.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis.Cancer Cell201425450151510.1016/j.ccr.2014.03.00724735924
    [Google Scholar]
  26. WangZ. YangH. ChenY. TaoS. LiuL. KongH. MaS. MengF. SuzukiY. QiaoC. ChenH. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.J. Virol.20179121e00800-1710.1128/JVI.00800‑1728814518
    [Google Scholar]
  27. TumpeyT.M. MainesT.R. Van HoevenN. GlaserL. SolórzanoA. PappasC. CoxN.J. SwayneD.E. PaleseP. KatzJ.M. García-SastreA. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission.Science2007315581265565910.1126/science.113621217272724
    [Google Scholar]
  28. ZhangY. ZhangQ. GaoY. HeX. KongH. JiangY. GuanY. XiaX. ShuY. KawaokaY. BuZ. ChenH. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus.J. Virol.201286189666967410.1128/JVI.00958‑1222740390
    [Google Scholar]
  29. LakdawalaS.S. JayaramanA. HalpinR.A. LamirandeE.W. ShihA.R. StockwellT.B. LinX. SimenauerA. HansonC.T. VogelL. PaskelM. MinaiM. MooreI. OrandleM. DasS.R. WentworthD.E. SasisekharanR. SubbaraoK. The soft palate is an important site of adaptation for transmissible influenza viruses.Nature2015526757112212510.1038/nature1537926416728
    [Google Scholar]
  30. TundupS. KandasamyM. PerezJ.T. MenaN. SteelJ. NagyT. AlbrechtR.A. ManicassamyB. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species.PLoS Pathog.2017133e100627010.1371/journal.ppat.100627028282445
    [Google Scholar]
  31. WangD. ZhuW. YangL. ShuY. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses.Cold Spring Harb. Perspect. Med.2021114a03862010.1101/cshperspect.a03862031964651
    [Google Scholar]
  32. LinsterM. van BoheemenS. de GraafM. SchrauwenE.J.A. LexmondP. MänzB. BestebroerT.M. BaumannJ. van RielD. RimmelzwaanG.F. OsterhausA.D.M.E. MatrosovichM. FouchierR.A.M. HerfstS. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus.Cell2014157232933910.1016/j.cell.2014.02.04024725402
    [Google Scholar]
  33. RussellC.J. HuM. OkdaF.A. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk.Trends Microbiol.2018261084185310.1016/j.tim.2018.03.00529681430
    [Google Scholar]
  34. RussierM. YangG. BriardB. MeliopoulosV. CherryS. KannegantiT.D. Schultz-CherryS. VogelP. RussellC.J. Hemagglutinin Stability Regulates H1N1 Influenza Virus Replication and Pathogenicity in Mice by Modulating Type I Interferon Responses in Dendritic Cells.J. Virol.2020943e01423-1910.1128/JVI.01423‑1931694942
    [Google Scholar]
  35. ChangP. SealyJ.E. SadeyenJ.R. BhatS. LukosaityteD. SunY. IqbalM. Immune Escape Adaptive Mutations in the H7N9 Avian Influenza Hemagglutinin Protein Increase Virus Replication Fitness and Decrease Pandemic Potential.J. Virol.20209419e00216-2010.1128/JVI.00216‑2032699084
    [Google Scholar]
  36. MaN. LiX. JiangH. DaiY. XuG. ZhangZ. Influenza Virus Neuraminidase Engages CD83 and Promotes Pulmonary Injury.J. Virol.2021953e017532010.1128/JVI.01753‑20.
    [Google Scholar]
  37. DiederichS. BerhaneY. Embury-HyattC. HisanagaT. HandelK. Cottam-BirtC. RanadheeraC. KobasaD. PasickJ. Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HAo Cleavage Site.J. Virol.20158921107241073410.1128/JVI.01238‑1526246579
    [Google Scholar]
  38. MitnaulL.J. MatrosovichM.N. CastrucciM.R. TuzikovA.B. BovinN.V. KobasaD. KawaokaY. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus.J. Virol.200074136015602010.1128/JVI.74.13.6015‑6020.200010846083
    [Google Scholar]
  39. AraiY. ElgendyE.M. DaidojiT. IbrahimM.S. OnoT. SriwilaijaroenN. SuzukiY. NakayaT. MatsumotoK. WatanabeY. H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity.J. Virol.20209418e01210-2010.1128/JVI.01210‑2032641475
    [Google Scholar]
  40. LaiJ.C.C. KarunarathnaH.M.T.K. WongH.H. PeirisJ.S.M. NichollsJ.M. Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding.Emerg. Microbes Infect.20198132733810.1080/22221751.2019.158103430866786
    [Google Scholar]
  41. TakadaK. KawakamiC. FanS. ChibaS. ZhongG. GuC. ShimizuK. TakasakiS. Sakai-TagawaY. LopesT.J.S. DuttaJ. KhanZ. KritiD. van BakelH. YamadaS. WatanabeT. ImaiM. KawaokaY. A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses.Nat. Microbiol.2019481268127310.1038/s41564‑019‑0433‑631036910
    [Google Scholar]
  42. FeldmannF. KobasaD. Embury-HyattC. GrollaA. TaylorT. KisoM. KakugawaS. GrenJ. JonesS.M. KawaokaY. FeldmannH. Oseltamivir Is Effective against 1918 Influenza Virus Infection of Macaques but Vulnerable to Escape.MBio2019105e02059-1910.1128/mBio.02059‑1931641086
    [Google Scholar]
  43. DasS.R. HensleyS.E. InceW.L. BrookeC.B. SubbaA. DelboyM.G. RussG. GibbsJ.S. BenninkJ.R. YewdellJ.W. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection.Cell Host Microbe201313331432310.1016/j.chom.2013.02.00823498956
    [Google Scholar]
  44. WangF. WanZ. WangY. WuJ. FuH. GaoW. ShaoH. QianK. YeJ. QinA. Identification of Hemagglutinin Mutations Caused by Neuraminidase Antibody Pressure.Microbiol Spectr202193e014392110.1128/spectrum.01439‑21.
    [Google Scholar]
  45. KodeS.S. PawarS.D. TareD.S. KengS.S. HurtA.C. MullickJ. A novel I117T substitution in neuraminidase of highly pathogenic avian influenza H5N1 virus conferring reduced susceptibility to oseltamivir and zanamivir.Vet. Microbiol.2019235212410.1016/j.vetmic.2019.06.00531282375
    [Google Scholar]
  46. BlaurockC. BlohmU. LuttermannC. HolzerlandJ. ScheibnerD. SchäferA. GrosethA. MettenleiterT.C. AbdelwhabE.M. The C-terminus of non-structural protein 1 (NS1) in H5N8 clade 2.3.4.4 avian influenza virus affects virus fitness in human cells and virulence in mice.Emerg. Microbes Infect.20211011760177610.1080/22221751.2021.197156834420477
    [Google Scholar]
  47. LiZ. JiangY. JiaoP. WangA. ZhaoF. TianG. WangX. YuK. BuZ. ChenH. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses.J. Virol.20068022111151112310.1128/JVI.00993‑0616971424
    [Google Scholar]
  48. JiaoP. TianG. LiY. DengG. JiangY. LiuC. LiuW. BuZ. KawaokaY. ChenH. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice.J. Virol.20088231146115410.1128/JVI.01698‑0718032512
    [Google Scholar]
  49. FloresR.A. Cammayo-FletcherP.L.T. NguyenB.T. VillavicencioA.G.M. LeeS.Y. SonY. KimJ.H. ParkK.I. YooW.G. JinY.B. MinW. KimW.H. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea.Viruses202416228510.3390/v1602028538400060
    [Google Scholar]
  50. NaguibM.M. ErikssonP. JaxE. WilleM. LindskogC. BröjerC. KrambrichJ. WaldenströmJ. KrausR.H.S. LarsonG. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks.Microbiol. Spectr.2023114e025862210.1128/spectrum.02586‑22.
    [Google Scholar]
  51. GabrielG. DauberB. WolffT. PlanzO. KlenkH.D. StechJ. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host.Proc. Natl. Acad. Sci. USA200510251185901859510.1073/pnas.050741510216339318
    [Google Scholar]
  52. LazniewskiM. DawsonW.K. SzczepinskaT. PlewczynskiD. The structural variability of the influenza A hemagglutinin receptor-binding site.Brief. Funct. Genomics201817641542729253080
    [Google Scholar]
  53. BradleyK.C. GallowayS.E. LasanajakY. SongX. Heimburg-MolinaroJ. YuH. ChenX. TalekarG.R. SmithD.F. CummingsR.D. SteinhauerD.A. Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics.J. Virol.20118523123871239810.1128/JVI.05570‑1121917953
    [Google Scholar]
  54. WasilenkoJ.L. SarmentoL. Pantin-JackwoodM.J. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens.Arch. Virol.2009154696997910.1007/s00705‑009‑0399‑419475480
    [Google Scholar]
  55. TadaT. SuzukiK. SakuraiY. KuboM. OkadaH. ItohT. TsukamotoK. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens.J. Virol.20118541834184610.1128/JVI.01648‑1021123376
    [Google Scholar]
  56. FanS. DengG. SongJ. TianG. SuoY. JiangY. GuanY. BuZ. KawaokaY. ChenH. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice.Virology20093841283210.1016/j.virol.2008.11.04419117585
    [Google Scholar]
  57. SouzaC.K. KimbleJ.B. AndersonT.K. ArendseeZ.W. HufnagelD.E. YoungK.M. GaugerP.C. LewisN.S. DavisC.T. ThorS. Vincent BakerA.L. Swine-to-Ferret Transmission of Antigenically Drifted Contemporary Swine H3N2 Influenza A Virus Is an Indicator of Zoonotic Risk to Humans.Viruses202315233110.3390/v1502033136851547
    [Google Scholar]
  58. ShiY. WuY. ZhangW. QiJ. GaoG.F. Enabling the ‘host jump’: Structural determinants of receptor-binding specificity in influenza A viruses.Nat. Rev. Microbiol.2014121282283110.1038/nrmicro336225383601
    [Google Scholar]
  59. SunW. ZhaoM. YuZ. LiY. ZhangX. FengN. WangT. WangH. HeH. ZhaoY. YangS. XiaX. GaoY. Cross-species infection potential of avian influenza H13 viruses isolated from wild aquatic birds to poultry and mammals.Emerg. Microbes Infect.2023121e218417710.1080/22221751.2023.218417736877121
    [Google Scholar]
  60. BrookesS.M. NúñezA. ChoudhuryB. MatrosovichM. EssenS.C. CliffordD. SlomkaM.J. Kuntz-SimonG. GarconF. NashB. HannaA. HeegaardP.M.H. QuéguinerS. ChiapponiC. BublotM. GarciaJ.M. GardnerR. FoniE. LoeffenW. LarsenL. Van ReethK. BanksJ. IrvineR.M. BrownI.H. Replication, pathogenesis and transmission of pandemic (H1N1) 2009 virus in non-immune pigs.PLoS One201052e906810.1371/journal.pone.000906820140096
    [Google Scholar]
  61. JankeB.H. Influenza A virus infections in swine: pathogenesis and diagnosis.Vet. Pathol.201451241042610.1177/030098581351304324363301
    [Google Scholar]
  62. EverettH.E. NashB. LondtB.Z. KellyM.D. CowardV. NunezA. van DiemenP.M. BrownI.H. BrookesS.M. Interspecies Transmission of Reassortant Swine Influenza A Virus Containing Genes from Swine Influenza A(H1N1)pdm09 and A(H1N2) Viruses.Emerg Infect Dis202026227328110.3201/eid2602.190486.
    [Google Scholar]
  63. ImaiM. WatanabeT. HattaM. DasS.C. OzawaM. ShinyaK. ZhongG. HansonA. KatsuraH. WatanabeS. LiC. KawakamiE. YamadaS. KisoM. SuzukiY. MaherE.A. NeumannG. KawaokaY. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.Nature2012486740342042810.1038/nature1083122722205
    [Google Scholar]
  64. XieR. EdwardsK.M. WilleM. WeiX. WongS.S. ZaninM. El-SheshenyR. DucatezM. PoonL.L.M. KayaliG. WebbyR.J. DhanasekaranV. The episodic resurgence of highly pathogenic avian influenza H5 virus.Nature2023622798481081710.1038/s41586‑023‑06631‑237853121
    [Google Scholar]
  65. CaiJ. RuanJ. LinQ. RenT. ChenL. China faces the challenge of influenza A virus, including H3N8, in the post- COVID-19 era.J. Infect.2023872e39e4110.1016/j.jinf.2023.06.00437295511
    [Google Scholar]
  66. YangR. SunH. GaoF. LuoK. HuangZ. TongQ. SongH. HanQ. LiuJ. LanY. QiJ. LiH. ChenS. XuM. QiuJ. ZengG. ZhangX. HuangC. PeiR. ZhanZ. YeB. GuoY. ZhouY. YeW. YaoD. RenM. LiB. YangJ. WangY. PuJ. SunY. ShiY. LiuW.J. OuX. GaoG.F. GaoL. LiuJ. Human infection of avian influenza A H3N8 virus and the viral origins: A descriptive study.Lancet Microbe2022311e824e83410.1016/S2666‑5247(22)00192‑636115379
    [Google Scholar]
  67. AndersonT.K. ChangJ. ArendseeZ.W. VenkateshD. SouzaC.K. KimbleJ.B. LewisN.S. DavisC.T. VincentA.L. Swine Influenza A Viruses and the Tangled Relationship with Humans.Cold Spring Harb. Perspect. Med.2021113a03873710.1101/cshperspect.a03873731988203
    [Google Scholar]
  68. MarkinA. Ciacci ZanellaG. ArendseeZ.W. ZhangJ. KruegerK.M. GaugerP.C. Vincent BakerA.L. AndersonT.K. Reverse-zoonoses of 2009 H1N1 pandemic influenza A viruses and evolution in United States swine results in viruses with zoonotic potential.PLoS Pathog.2023197e101147610.1371/journal.ppat.101147637498825
    [Google Scholar]
  69. GuanM. HallJ.S. ZhangX. DusekR.J. OliverA.K. LiuL. LiL. KraussS. DannerA. LiT. Aerosol Transmission of Gull-Origin Iceland Subtype H10N7 Influenza A Virus in Ferrets.J. Virol.20199313e002821910.1128/JVI.00282‑19.
    [Google Scholar]
  70. HerfstS. ZhangJ. RichardM. McBrideR. LexmondP. BestebroerT.M. SpronkenM.I.J. de MeulderD. van den BrandJ.M. RosuM.E. MartinS.R. GamblinS.J. XiongX. PengW. BodewesR. van der VriesE. OsterhausA.D.M.E. PaulsonJ.C. SkehelJ.J. FouchierR.A.M. Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals.Cell Host Microbe2020284602613.e710.1016/j.chom.2020.08.01133031770
    [Google Scholar]
  71. KimE.H. KimY. KimS.M. YuK.M. CaselM.A.B. JangS.G. PascuaP.N.Q. WebbyR.J. ChoiY.K. Pathogenic assessment of avian influenza viruses in migratory birds.Emerg. Microbes Infect.202110156557710.1080/22221751.2021.189976933666526
    [Google Scholar]
  72. ChambersT.M. Equine Influenza.Cold Spring Harb. Perspect. Med.2022121a03833110.1101/cshperspect.a03833132152243
    [Google Scholar]
  73. LiuM. HuangL.Z.X. SmitsA.A. BüllC. NarimatsuY. van KuppeveldF.J.M. ClausenH. de HaanC.A.M. de VriesE. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions.Nat. Commun.2022131405410.1038/s41467‑022‑31840‑035831293
    [Google Scholar]
  74. BoschF.X. GartenW. KlenkH.D. RottR. Proteolytic cleavage of influenza virus hemagglutinins: Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses.Virology1981113272573510.1016/0042‑6822(81)90201‑47023022
    [Google Scholar]
  75. WebsterR.G. RottR. Influenza virus a pathogenicity: The pivotal role of hemagglutinin.Cell198750566566610.1016/0092‑8674(87)90321‑73304656
    [Google Scholar]
  76. KrammerF. Schultz-CherryS. We need to keep an eye on avian influenza.Nat. Rev. Immunol.202323526726810.1038/s41577‑023‑00868‑836944755
    [Google Scholar]
  77. SongJ. SunH. SunH. JiangZ. ZhuJ. WangC. GaoW. WangT. PuJ. SunY. YuanH-Y. LiuJ. Swine MicroRNAs ssc-miR-221-3p and ssc-miR-222 Restrict the Cross-Species Infection of Avian Influenza Virus.J. Virol.20209423e01700-2010.1128/JVI.01700‑20
    [Google Scholar]
  78. SongL. LiuH. GaoS. JiangW. HuangW. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells.J. Virol.201084178849886010.1128/JVI.00456‑1020554777
    [Google Scholar]
  79. KumarA. KumarA. IngleH. KumarS. MishraR. VermaM.K. BiswasD. KumarN.S. MishraA. RautA.A. TakaokaA. KumarH. MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2.J. Virol.20189219e01057-1810.1128/JVI.01057‑1830045983
    [Google Scholar]
  80. WangR. ZhangY.Y. LuJ.S. XiaB.H. YangZ.X. ZhuX.D. ZhouX.W. HuangP.T. The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome.J. Cell. Mol. Med.201721113076308610.1111/jcmm.1321928609011
    [Google Scholar]
  81. ChenY. WangS.X. MuR. LuoX. LiuZ.S. LiangB. ZhuoH.L. HaoX.P. WangQ. FangD.F. BaiZ.F. WangQ.Y. WangH.M. JinB.F. GongW.L. ZhouT. ZhangX.M. XiaQ. LiT. Dysregulation of the miR-324-5p-CUEDC2 axis leads to macrophage dysfunction and is associated with colon cancer.Cell Rep.2014761982199310.1016/j.celrep.2014.05.00724882011
    [Google Scholar]
  82. RosenbergerC.M. PodyminoginR.L. DiercksA.H. TreutingP.M. PeschonJ.J. RodriguezD. GundapuneniM. WeissM.J. AderemA. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis.PLoS Pathog.2017134e100630510.1371/journal.ppat.100630528380049
    [Google Scholar]
  83. ZhangZ. HuS. LiZ. WangX. LiuM. GuoZ. LiS. XiaoY. BiD. JinH. Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice.Infect. Genet. Evol.20111171790179710.1016/j.meegid.2011.07.02521896338
    [Google Scholar]
  84. IngleH. KumarS. RautA.A. MishraA. KulkarniD.D. KameyamaT. TakaokaA. AkiraS. KumarH. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication.Sci. Signal.20158406ra12610.1126/scisignal.aab3183.
    [Google Scholar]
  85. OjhaC.R. RodriguezM. DeverS.M. MukhopadhyayR. El-HageN. Mammalian microRNA: An important modulator of host-pathogen interactions in human viral infections.J. Biomed. Sci.20162317410.1186/s12929‑016‑0292‑x27784307
    [Google Scholar]
  86. ManD.K.W. ChowM.Y.T. CasettariL. Gonzalez-JuarreroM. LamJ.K.W. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis.Adv. Drug Deliv. Rev.2016102213210.1016/j.addr.2016.04.01327108702
    [Google Scholar]
  87. DattaN. JohnsonC. KaoD. GurnaniP. AlexanderC. PolytarchouC. MonaghanT.M. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis.Pharmacol. Res.202319410687010.1016/j.phrs.2023.10687037499702
    [Google Scholar]
  88. TengY. RenY. SayedM. HuX. LeiC. KumarA. HutchinsE. MuJ. DengZ. LuoC. SundaramK. SriwastvaM.K. ZhangL. HsiehM. ReimanR. HaribabuB. YanJ. JalaV.R. MillerD.M. Van Keuren-JensenK. MerchantM.L. McClainC.J. ParkJ.W. EgilmezN.K. ZhangH.G. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota.Cell Host Microbe2018245637652.e810.1016/j.chom.2018.10.00130449315
    [Google Scholar]
  89. ShenQ. HuangZ. MaL. YaoJ. LuoT. ZhaoY. XiaoY. JinY. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis.Gut Microbes2022141212860410.1080/19490976.2022.212860436176029
    [Google Scholar]
  90. IchinoheT. PangI.K. KumamotoY. PeaperD.R. HoJ.H. MurrayT.S. IwasakiA. Microbiota regulates immune defense against respiratory tract influenza A virus infection.Proc. Natl. Acad. Sci. USA2011108135354535910.1073/pnas.101937810821402903
    [Google Scholar]
  91. AllesJ. FehlmannT. FischerU. BackesC. GalataV. MinetM. HartM. Abu-HalimaM. GrässerF.A. LenhofH.P. KellerA. MeeseE. An estimate of the total number of true human miRNAs.Nucleic Acids Res.20194773353336410.1093/nar/gkz09730820533
    [Google Scholar]
  92. DuarteI. CarracoG. de AzevedoN.T.D. BenesV. AndradeR.P. gga-miRNOME, a microRNA-sequencing dataset from chick embryonic tissues.Sci. Data2022912910.1038/s41597‑022‑01126‑735102184
    [Google Scholar]
  93. TangwangvivatR. ChaiyawongS. NonthabenjawanN. CharoenkulK. JanethanakitT. UdomK. KesdangsakonwutS. TantilertcharoenR. ThontiravongA. AmonsinA. Transmission and pathogenicity of canine H3N2 influenza virus in dog and guinea pig models.Virol. J.202219116210.1186/s12985‑022‑01888‑x36224594
    [Google Scholar]
  94. BorlandS. GracieuxP. JonesM. MalletF. Yugueros-MarcosJ. Influenza A Virus Infection in Cats and Dogs: A Literature Review in the Light of the “One Health” Concept.Front. Public Health202088310.3389/fpubh.2020.0008332266198
    [Google Scholar]
  95. de SeixasM.M.M. de AraújoJ. KraussS. FabrizioT. WalkerD. OmettoT. Matsumiya ThomazelliL. VanstreelsR.E.T. HurtadoR.F. KrügerL. PiucoR. PetryM.V. WebsterR.G. WebbyR.J. LeeD.H. ChungD.H. FerreiraH.L. DurigonE.L. H6N8 avian influenza virus in Antarctic seabirds demonstrates connectivity between South America and Antarctica.Transbound. Emerg. Dis.2022696e3436e344610.1111/tbed.1472836217218
    [Google Scholar]
  96. McCormickK. JiangZ. ZhuL. LawsonS.R. LangenhorstR. RansburghR. BrunickC. TracyM.C. HurtigH.R. MabeeL.M. MingoM. LiY. WebbyR.J. HuberV.C. FangY. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.PLoS One2015106e012764910.1371/journal.pone.012764926061265
    [Google Scholar]
  97. LiZ. ZaiserS.A. ShangP. HeidenD.L. HajovskyH. KatwalP. DeVriesB. BakerJ. RichtJ.A. LiY. HeB. FangY. HuberV.C. A chimeric influenza hemagglutinin delivered by parainfluenza virus 5 vector induces broadly protective immunity against genetically divergent influenza a H1 viruses in swine.Vet. Microbiol.202025010885910.1016/j.vetmic.2020.10885933039727
    [Google Scholar]
  98. HolzerB. RijalP. McNeeA. PaudyalB. MartiniV. ClarkB. ManjegowdaT. SalgueroF.J. BessellE. SchwartzJ.C. MoffatK. PedreraM. GrahamS.P. NobleA. Bonnet-Di PlacidoM. La RagioneR.M. MwangiW. BeverleyP. McCauleyJ.W. DanielsR.S. HammondJ.A. TownsendA.R. TchilianE. Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans.PLoS Pathog.2021173e100933010.1371/journal.ppat.100933033662023
    [Google Scholar]
  99. OrtizL. GeigerG. FerreriL. MoranD. AlvarezD. Gonzalez-ReicheA.S. MendezD. RajaoD. Cordon-RosalesC. PerezD.R. Evolution and Introductions of Influenza A Virus H1N1 in a Farrow-to-Finish Farm in Guatemala.Microbiol Spectr.2023111e028782210.1128/spectrum.02878‑22.
    [Google Scholar]
  100. SuA. Yan M. PavasutthipaisitS. WickeK.D. GrasslG.A. BeinekeA. FelmyF. SchmidtS. EsserK.H. BecherP. HerrlerG. Infection Studies with Airway Organoids from Carollia perspicillata Indicate That the Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruses.Microbiol Spectr2023112e030982210.1128/spectrum.03098‑22.
    [Google Scholar]
  101. DewhurstR.E. HeinrichT. WattP. OstergaardP. MarimonJ.M. MoreiraM. HouldsworthP.E. RudrumJ.D. WoodD. KõksS. Validation of a rapid, saliva-based, and ultra-sensitive SARS-CoV-2 screening system for pandemic-scale infection surveillance.Sci. Rep.2022121593610.1038/s41598‑022‑08263‑435395856
    [Google Scholar]
  102. LeeY.N. LeeD.H. ShinJ.I. SiY.J. LeeJ.H. BaekY.G. HongS.Y. BunnaryS. TumS. ParkM. KyeS.J. LeeM.H. LeeY.J. Pathogenesis and genetic characteristics of a novel reassortant low pathogenic avian influenza A(H7N6) virus isolated in Cambodia in 2019.Transbound. Emerg. Dis.20216863180318610.1111/tbed.1425634347386
    [Google Scholar]
  103. ChangP. SadeyenJ.R. BhatS. DainesR. HussainA. YilmazH. IqbalM. Risk assessment of the newly emerged H7N9 avian influenza viruses.Emerg. Microbes Infect.2023121217296510.1080/22221751.2023.217296536714929
    [Google Scholar]
  104. van DiemenP.M. ByrneA.M.P. RamsayA.M. WatsonS. NunezA. v MorenoA. ChiapponiC. FoniE. BrownI.H. BrookesS.M. EverettH.E. Interspecies Transmission of Swine Influenza A Viruses and Human Seasonal Vaccine-Mediated Protection Investigated in Ferret Model.Emerg. Infect. Dis.20232991798180710.3201/eid2909.23006637610158
    [Google Scholar]
  105. HillN.J. BishopM.A. TrovãoN.S. InesonK.M. SchaeferA.L. PuryearW.B. ZhouK. FossA.D. ClarkD.E. MacKenzieK.G. GassJ.D.Jr BorkenhagenL.K. HallJ.S. RunstadlerJ.A. Ecological divergence of wild birds drives avian influenza spillover and global spread.PLoS Pathog.2022185e101006210.1371/journal.ppat.101006235588106
    [Google Scholar]
  106. Lopez-MorenoG. DaviesP. YangM. CulhaneM.R. CorzoC.A. LiC. RendahlA. TorremorellM. Evidence of influenza A infection and risk of transmission between pigs and farmworkers.Zoonoses Public Health202269556057110.1111/zph.1294835445551
    [Google Scholar]
  107. TianJ. SunJ. LiD. WangN. WangL. ZhangC. MengX. JiX. SuchardM.A. ZhangX. LaiA. SuS. VeitM. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats.Cell Rep.2022391111096910.1016/j.celrep.2022.11096935679864
    [Google Scholar]
/content/journals/cg/10.2174/0113892029316603240926051325
Loading
/content/journals/cg/10.2174/0113892029316603240926051325
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test