Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-4844
  • E-ISSN: 2666-4852

Abstract

Consanguinity marriages pose a serious social issue for civil society, leading to genetic syndromes, depression, and imbalanced ABO blood types and STR frequencies. Analyzing dermatoglyphics in regions with prevalent consanguineous marriages can establish a correlation with ABO frequency. Consanguineous marriages complicate forensic DNA analysis due to reduced genetic diversity. Inbreeding within a closed, small population tends to accelerate the loss of genetic diversity and decrease the heterozygosity of genes, ultimately leading to complete homozygosity, fixation of rare alleles, and potential misidentification in inbred populations. Forensic investigations require careful consideration of population structure. Short Tandem Repeat (STR) profiling is effective but should be complemented with population-specific databases, additional genetic markers, and advanced statistical methods to address the effects of inbreeding. Understanding the genetic nuances in inbred populations can enhance the accuracy and reliability of DNA profiling.

Loading

Article metrics loading...

/content/journals/cfs/10.2174/0126664844350819241231050738
2025-01-14
2025-10-29
Loading full text...

Full text loading...

References

  1. BittlesA.H. BlackM.L. Consanguineous marriage and human evolution.Annu. Rev. Anthropol.201039119320710.1146/annurev.anthro.012809.105051
    [Google Scholar]
  2. CumminsH. MidloC. Palmar and plantar epidermal ridge configurations (dermatoglyphics) in European‐Americans.Am. J. Phys. Anthropol.19269447150210.1002/ajpa.1330090422
    [Google Scholar]
  3. BittlesA.H. Consanguinity and its relevance to clinical genetics.Clin. Genet.2001602899810.1034/j.1399‑0004.2001.600201.x11553039
    [Google Scholar]
  4. Sathyanarayana RaoT.S. ZeccaL. RaoK.J. Tracemetals, neuromelanin and neurodegeneration: An interesting area for research.Indian J. Psychiatry200749315415610.4103/0019‑5545.3731020661375
    [Google Scholar]
  5. BlicherJ.U. NielsenJ.F. Does long-term outcome after intensive inpatient rehabilitation of acquired brain injury depend on etiology?NeuroRehabilitation200823217518310.3233/NRE‑2008‑2320718525139
    [Google Scholar]
  6. KeertiA. NinaveS. DNA fingerprinting: Use of autosomal short tandem repeats in forensic DNA typing.Cureus20221410e3021010.7759/cureus.3021036381887
    [Google Scholar]
  7. LoweA.L. UrquhartA. ForemanL.A. EvettI.W. Inferring ethnic origin by means of an STR profile.Forensic Sci. Int.20011191172210.1016/S0379‑0738(00)00387‑X11348789
    [Google Scholar]
  8. Al-AwadiSJ Genetic variation of 15 autosomal Short Tandem Repeat (STR) Loci in the diyala- Iraqi population.Int J Biol Pharm Res20141113113510.1016/j.legalmed.2009.02.072
    [Google Scholar]
  9. BittlesA.H. MasonW.M. GreeneJ. RaoN.A. Reproductive behavior and health in consanguineous marriages.Science1991252500778979410.1126/science.20282542028254
    [Google Scholar]
  10. AcharyaS. SahooH. Consanguineous marriages in India: Prevalence and determinants.J. Health Manag.202123463164810.1177/09720634211050458
    [Google Scholar]
  11. KhalilA.M. Arabization and islamization of consanguineous marriages: Is it right?Med. J. Islam. World Acad. Sci.202229141410.5505/ias.2022.09735
    [Google Scholar]
  12. GhasemiN. AyatollahiJ. ZadehrahmaniM. NasiriA. AbediA. ShokranehS. Frequency of ABO and Rh blood groups in middle school students of Yazd provinceIran. J. Pediatr. Hematol. Oncol.193912730
    [Google Scholar]
  13. StorryJ.R. CastilhoL. ChenQ. DanielsG. DenommeG. FlegelW.A. GassnerC. de HaasM. HylandC. KellerM. Lomas-FrancisC. MouldsJ.M. NoguesN. OlssonM.L. PeyrardT. van der SchootC.E. TaniY. ThorntonN. WagnerF. WendelS. WesthoffC. YahalomV. International society of blood transfusion working party on red cell immunogenetics and terminology: Report of the Seoul and London meetings.ISBT Sci. Ser.201611211812210.1111/voxs.1228029093749
    [Google Scholar]
  14. ChandraT. Prevalence of ABO and Rhesus blood groups in northern India.J. Blood Disord. Transfus.20133510.4172/2155‑9864.1000132
    [Google Scholar]
  15. ShakirM. KhanS.A. GhaniE. Frequency of ABO and Rh (D) blood groups among blood donors in Rawalpindi/Islamabad area.Pak. Armed Forces Med. J.201262304306
    [Google Scholar]
  16. AndalibiM. DehnaviZ. AfshariA. TayefiM. EsmaeiliH. AzarpazhoohM. MouhebatiM. NematyM. Heidari-BakavoliA. ShokriM. FernsG. Ghayour-MobarhanM. TayyebiM. Prevalence of ABO and Rh blood groups and their association with demographic and anthropometric factors in an Iranian population: Mashad study.East. Mediterr. Health J.202026891692210.26719/emhj.20.04832896886
    [Google Scholar]
  17. GarrattyG. DzikW. IssittP.D. LublinD.M. ReidM.E. ZelinskiT. Terminology for blood group antigens and genes—historical origins and guidelines in the new millennium.Transfusion200040447748910.1046/j.1537‑2995.2000.40040477.x10773062
    [Google Scholar]
  18. MollisonP.L. The genetic basis of the Rh blood group system.Transfusion199434653954110.1046/j.1537‑2995.1994.34694295073.x8023398
    [Google Scholar]
  19. TalibZ.M.A. Al-NuaimL.A. El-HazmiM.A.F. WarsyA.S. Blood groups in Saudi obstetrics patients.Saudi Med. J.199819326026427701538
    [Google Scholar]
  20. AneesM. JawadA. HashmiI. HospitalD. BahauddinM. Distribution of Abo and Rh blood group alleles in Mandi Bahauddin District of Punjab, Pakistan 1.Proc Pakistan Acad Sci200744289294
    [Google Scholar]
  21. LykoJ. GaertnerH. KavitiJ.N. KariithiM.W. AkotoB. Blood-group systems ABO and RH in the Kenyan population.Folia Med. Cracov.1992331-485921343005
    [Google Scholar]
  22. TauszikT. Heterogeneity in the distribution of ABO blood groups in Hungary.Gene Geogr.1995921691768634218
    [Google Scholar]
  23. PeriyavanS. SangeethaS.K. MarimuthuP. ManjunathB.K. SeemaD.N. Distribution of ABO and Rhesus-D blood groups in and around Bangalore.Asian J. Transfus. Sci.2010414110.4103/0973‑6247.5939120376267
    [Google Scholar]
  24. ShahidA.B. TahirH. FaizM. YounusA. LaraybH. AslamS. GillS. ABO and Rh blood group phenotype frequency in healthy blood donors.Asian J. Transfus. Sci.202200010.4103/ajts.ajts_141_21
    [Google Scholar]
  25. AjayiD.O. OmonE.A. OrekoyaA. OluwayomiO. Haemoglobin genotype, ABO and rhesus blood group pattern among students of Bamidele Olumilua University of Education, Science and Technology Ikere, Ekitis state, Nigeria.Int. J. Res. Med. Sci.20221012275010.18203/2320‑6012.ijrms20223076
    [Google Scholar]
  26. BernhardW. Distribution of ABO blood groups and incidence of Rh factor (D) in various ethnic groups in the Hindu Kush region (Kafirs, Kalash Chitrali).Anthropol. Anz.19803742512656773468
    [Google Scholar]
  27. HussainR. FareedM. ShahA. AfzalM. Prevalence and gene frequencies of A1A2BO and Rh(D) blood group alleles among some Muslim populations of North India.Egypt. J. Med. Hum. Genet.2013141697610.1016/j.ejmhg.2012.06.001
    [Google Scholar]
  28. WasilM. HartiansyahF.R. AlifiaI. Algebraic structures in heredity human blood group system.J. Fundam. Math. Appl. (JFMA)2024718710210.14710/jfma.v7i1.20552
    [Google Scholar]
  29. PatidarG.K. DhimanY. Distribution of ABO and Rh (D) Blood groups in India: A systematic review.ISBT Sci. Ser.2021161374810.1111/voxs.12576
    [Google Scholar]
  30. WiggintonJ.E. CutlerD.J. AbecasisG.R. A note on exact tests of Hardy-Weinberg equilibrium.Am. J. Hum. Genet.200576588789310.1086/42986415789306
    [Google Scholar]
  31. KhayatA.M. AlshareefB.G. AlharbiS.F. AlZahraniM.M. AlshangityB.A. TashkandiN.F. Consanguineous marriage and its association with genetic disorders in Saudi Arabia: A review.Cureus2024162e5388810.7759/cureus.5388838465157
    [Google Scholar]
  32. NietlisbachP. KellerL.F. PostmaE. Genetic variance components and heritability of multiallelic heterozygosity under inbreeding.Heredity2016116111110.1038/hdy.2015.5926174022
    [Google Scholar]
  33. BosseM. MegensH.J. DerksM.F.L. de CaraÁ.M.R. GroenenM.A.M. Deleterious alleles in the context of domestication, inbreeding, and selection.Evol. Appl.201912161710.1111/eva.1269130622631
    [Google Scholar]
  34. KanakaK.K. SukhijaN. GoliR.C. SinghS. GangulyI. DixitS.P. DashA. MalikA.A. On the concepts and measures of diversity in the genomics era.Curr. Plant Biol.20233310027810.1016/j.cpb.2023.100278
    [Google Scholar]
  35. CharlesworthD. MorganM.T. CharlesworthB. Mutation accumulation in finite outbreeding and inbreeding populations.Genet. Res.1993611395610.1017/S0016672300031086
    [Google Scholar]
  36. RudanI. RudanD. CampbellH. CarothersA. WrightA. Smolej-NarancicN. JanicijevicB. JinL. ChakrabortyR. DekaR. RudanP. Inbreeding and risk of late onset complex disease.J. Med. Genet.2003401292593210.1136/jmg.40.12.92514684692
    [Google Scholar]
  37. AlvarezG. QuinteiroC. InbreedingC.F. Inbreeding and genetic disorder.Adv. Study Genet. Disord.201110.5772/18373
    [Google Scholar]
  38. ChakrabortyR. KiddK.K. The utility of DNA typing in forensic work.Science199125450391735173910.1126/science.17633231763323
    [Google Scholar]
  39. KimJ. RosenbergN.A. Record-matching of STR profiles with fragmentary genomic SNP data.Eur. J. Hum. Genet.202331111283129010.1038/s41431‑023‑01430‑937567955
    [Google Scholar]
  40. WeirB.S. The rarity of DNA profiles.Ann. Appl. Stat.20071235837010.1214/07‑AOAS12819030117
    [Google Scholar]
  41. UllahM.A. HusseniA.M. MahmoodS.U. Consanguineous marriages and their detrimental outcomes in Pakistan: An urgent need for appropriate measures.Int. J. Community Med. Public Health201751110.18203/2394‑6040.ijcmph20175757
    [Google Scholar]
  42. PontesL. SousaJ.C. MedeirosR. SNPs and STRs in forensic medicine. A strategy for kinship evaluation.Arch. Med. Sadowej Kryminol.201767322624010.5114/amsik.2017.7319429460612
    [Google Scholar]
  43. MerhebM. MatarR. HodeifyR. SiddiquiS.S. VazhappillyC.G. MartonJ. AzharuddinS. AL ZouabiH. Mitochondrial DNA, a powerful tool to decipher ancient human civilization from domestication to music, and to uncover historical murder cases.Cells20198543310.3390/cells805043331075917
    [Google Scholar]
  44. BudowleB. The effects of inbreeding on DNA profile frequency estimates using PCR-based loci.Genetica1995961-2212510.1007/BF014411487607455
    [Google Scholar]
/content/journals/cfs/10.2174/0126664844350819241231050738
Loading
/content/journals/cfs/10.2174/0126664844350819241231050738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test