Skip to content
2000
Volume 3, Issue 3
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Diabetes is an enormously understood disorder, having a paramount disease burden globally. Although treatments are available for the management of the disease, there are associated side effects. A deep-rooted need is to have a comprehensive treatment without any ramifications. Ethnomedicine has been practised in various regions and cultures for ages. However, a lack of significant scientific data has been a drawback for such treatment and its formulations. There is increasing empirical evidence for various phytoconstituents showing promising results for addressing the pathophysiology of diabetes. A plethora of phytoconstituents have been reported, and their mechanisms have been understood in detail. In this scenario, bioactive isolates obtained from marine algae offer numerous opportunities for managing the intricate blood-glucose dynamics associated with diabetes. Marine algal phytoconstituents inhibited several diabetes enzymes and improved serum parameters, which have also been shown to have antioxidant, anti-inflammatory, anti-obesity, and other therapeutic actions through and research. Hence, this article reviews the major marine phytoconstituents from macroalgae and their molecular mechanisms for managing diabetes. The results of this review indicate that marine bioactive components have demonstrated high potential to mitigate diabetes, but there have not been many clinical trials done in this area. A principal strategy for the success of any drug discovered belongs to commercialization, including clinical trials and production feasibility. The article also elaborates on the current challenges associated with the supply and consumption of commercial phytoconstituents.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629339331241121111615
2024-12-16
2025-11-07
Loading full text...

Full text loading...

References

  1. MaglianoDJ BoykoEJ IDF Diabetes Atlas.Available from: https://diabetesatlas.org/resources/?gad_source=1&gclid=Cj0KCQjwsoe5BhDiARIsAOXVoUucujx5JBEA3E_VK4MPpNxMS5wZjnJ6nT7EhR7RhQtDwPcQ8o5FnigaAlfOEALw_wcB (accessed on 23-10-2024)
    [Google Scholar]
  2. XieJ WangM LongZ Global burden of type 2 diabetes in adolescents and young adults, 1990-2019: systematic analysis of the Global Burden of Disease Study 2019.BMJ2022379e07238510.1136/bmj‑2022‑072385
    [Google Scholar]
  3. ForbesJ.M. CooperM.E. Mechanisms of diabetic complications.Physiol. Rev.201393113718810.1152/physrev.00045.2011
    [Google Scholar]
  4. DeyB. MitraA. KatakamP. SinglaR.K. Exploration of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays.World J. Diabetes20145220910.4239/wjd.v5.i2.209
    [Google Scholar]
  5. DeaconC.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes.Front. Endocrinol. (Lausanne)201910808010.3389/fendo.2019.00080
    [Google Scholar]
  6. TangW.H. MartinK.A. HwaJ. Aldose reductase, oxidative stress, and diabetic mellitus.Front. Pharmacol.2012310.3389/fphar.2012.00087
    [Google Scholar]
  7. AmannB. TinzmannR. AngelkortB. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1.Diabetes Care20032682421242510.2337/diacare.26.8.2421
    [Google Scholar]
  8. AbdelsalamS.S. KorashyH.M. ZeidanA. AgouniA. The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance.Biomolecules20199728610.3390/biom9070286
    [Google Scholar]
  9. NauckM.A. MeierJ.J. Incretin hormones: Their role in health and disease.Diabetes Obes. Metabol201820S152110.1111/dom.13129
    [Google Scholar]
  10. NongoniermaA.B. FitzGeraldR.J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides.Food Funct.2013412184310.1039/c3fo60262a
    [Google Scholar]
  11. PowerO. NongoniermaA.B. JakemanP. FitzGeraldR.J. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes.Proc. Nutr. Soc.2014731344610.1017/S0029665113003601
    [Google Scholar]
  12. AhrénB. DPP-4 inhibitors.Best Pract. Res. Clin. Endocrinol. Metab.200721451753310.1016/j.beem.2007.07.005
    [Google Scholar]
  13. YeZ. LiH. LuH. SuQ. LiL. Long-term effects of sitagliptin in patients with type 2 diabetes mellitus and hypertension: results from the PROLOGUE study.Oncotarget201786711197911199710.18632/oncotarget.22959
    [Google Scholar]
  14. Harnedy-RothwellP.A. McLaughlinC.M. O’KeeffeM.B. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity.Food Res. Int.202013110898910.1016/j.foodres.2020.108989
    [Google Scholar]
  15. McLaughlinC.M. Harnedy-RothwellP.A. LaffertyR.A. Macroalgal protein hydrolysates from Palmaria palmata influence the ‘incretin effect’ in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion.Eur. J. Nutr.20216084439445210.1007/s00394‑021‑02583‑3
    [Google Scholar]
  16. CalderwoodD RaffertyE FitzgeraldC Profiling the activity of edible european macroalgae towards pharmacological targets for Type 2 Diabetes Mellitus.Appl phycol202121102110.1080/26388081.2020.1852519
    [Google Scholar]
  17. PopovA.M. KrivoshapkoO.N. Protective effects of polar lipids and redox-active compounds from marine organisms at modeling of hyperlipidemia and diabetes.J. Biomed. Sci. Eng.20136554355010.4236/jbise.2013.65069
    [Google Scholar]
  18. JasparsM. De PascaleD. AndersenJ.H. ReyesF. CrawfordA.D. IanoraA. The marine biodiscovery pipeline and ocean medicines of tomorrow.J. Mar. Biol. Assoc. U. K.201696115115810.1017/S0025315415002106
    [Google Scholar]
  19. RomanoG. CostantiniM. SansoneC. LauritanoC. RuoccoN. IanoraA. Marine microorganisms as a promising and sustainable source of bioactive molecules.Mar. Environ. Res.2017128586910.1016/j.marenvres.2016.05.002
    [Google Scholar]
  20. DissanayakeIH Upeka Bandaranayake KeerthirathnaL. R. Chamalika Manawadu SilvaR. M. MohamedB. RizwanA. PeirisD. C. Integration of in vitro and In Silico analysis of Caulerpa racemosa against antioxidant.Antidiabetic, and Anticancer Activities202212110.1038/s41598‑022‑24021‑y
    [Google Scholar]
  21. SchöffskiP. DumezH. WolterP. Clinical impact of trabectedin (ecteinascidin-743) in advanced/metastatic soft tissue sarcoma.Expert Opin. Pharmacother.2008991609161810.1517/14656566.9.9.1609
    [Google Scholar]
  22. MenisJ. TwelvesC. Eribulin (Halaven): a new, effective treatment for women with heavily pretreated metastatic breast cancer.Breast Cancer (Dove Med. Press)201110110110.2147/BCTT.S21741
    [Google Scholar]
  23. AhujaA. Dhanalekshmi Unnikrishnan Meenakshi, Gurpreet Kaur Narde, Siddiqui, S. marine bioactive phytoconstituents in autoimmune disorders: Role and mechanism - a review.Antiinflamm. Antiallergy Agents Med. Chem.2023221102910.2174/1871523022666230731104529
    [Google Scholar]
  24. SangerG RarungLK Phytochemical constituents and antidiabetic activity of edible marine red seaweed (Halymenia durvilae).IOP conf ser2019278101206910.1088/1755‑1315/278/1/012069
    [Google Scholar]
  25. TeixeiraV.L. RochaF.D. HoughtonP.J. KaplanM.A.C. PereiraR.C. α-Amylase inhibitors from Brazilian seaweeds and their hypoglycemic potential.Fitoterapia2007781353610.1016/j.fitote.2006.09.017
    [Google Scholar]
  26. EomS.H. LeeS.H. YoonN.Y. α‐Glucosidase‐ and α‐amylase‐inhibitory activities of phlorotannins from Eisenia bicyclis.J. Sci. Food Agric.201292102084209010.1002/jsfa.5585
    [Google Scholar]
  27. LeeS.H. Yong-Li, Karadeniz F, Kim M-M, Kim S-K. α‐Glucosidase and α‐amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava.J. Sci. Food Agric.20098991552155810.1002/jsfa.3623
    [Google Scholar]
  28. WenY. GaoL. ZhouH. Opportunities and challenges of algal fucoidan for diabetes management.Trends Food Sci. Technol.202111162864110.1016/j.tifs.2021.03.028
    [Google Scholar]
  29. JiaoG. YuG. ZhangJ. EwartH.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae.Mar. Drugs20119219622310.3390/md9020196
    [Google Scholar]
  30. YangC. LaiS. ChenY. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota.Food Chem. Toxicol.201913111056210.1016/j.fct.2019.110562
    [Google Scholar]
  31. OhJ.H. KimJ. LeeY. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice.Nutr. Res. Pract.20161014210.4162/nrp.2016.10.1.42
    [Google Scholar]
  32. TangL. XiaoM. CaiS. MouH. LiD. Potential application of marine fucosyl-polysaccharides in regulating blood glucose and hyperglycemic complications.Foods202312132600010.3390/foods12132600
    [Google Scholar]
  33. ChenY. OuyangY. ChenX. Hypoglycaemic and anti-ageing activities of green alga Ulva lactuca polysaccharide via gut microbiota in ageing-associated diabetic mice.Int. J. Biol. Macromol.20222129711010.1016/j.ijbiomac.2022.05.109
    [Google Scholar]
  34. LiuJ. ZhuX. SunL. GaoY. Characterization and anti-diabetic evaluation of sulfated polysaccharide from Spirulina platensis.J. Funct. Foods20229510515510.1016/j.jff.2022.105155
    [Google Scholar]
  35. ZhuQ. LinL. ZhaoM. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food.Int. J. Biol. Macromol.2020159344510.1016/j.ijbiomac.2020.05.043
    [Google Scholar]
  36. HuS. ChangY. WangJ. Fucosylated chondroitin sulfate from Acaudina molpadioides improves hyperglycemia via activation of PKB/GLUT4 signaling in skeletal muscle of insulin resistant mice.Food Funct.20134111639164610.1039/c3fo60247h
    [Google Scholar]
  37. MakkarF. ChakrabortyK. Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia.Int. J. Food Prop.20172061326133710.1080/10942912.2016.1209216
    [Google Scholar]
  38. Loayza-GutiérrezL.T. Apumayta-SuárezE.V. AbdalaR. Aguilar-MendozaL.Á. Chávez-PérezJ.A. DecaraJ. Anti-hyperglycemic and antioxidant effect of fucoidan extract from Lessonia trabeculata in alloxan-induced diabetes rats.J. Appl. Phycol.20223463247326110.1007/s10811‑022‑02839‑3
    [Google Scholar]
  39. KohH.S.A. LuJ. ZhouW. Structural dependence of sulfated polysaccharide for diabetes management: fucoidan from Undaria pinnatifida inhibiting α-glucosidase More strongly than α-amylase and amyloglucosidase.Front. Pharmacol.20201183110.3389/fphar.2020.00831
    [Google Scholar]
  40. LiF. ZhangY. ZhongZ. Antihyperglycemic Effect of Ganoderma lucidum Polysaccharides on Streptozotocin-Induced Diabetic Mice.Int. J. Mol. Sci.20111296135614510.3390/ijms12096135
    [Google Scholar]
  41. WijesekaraI. PangestutiR. KimS.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae.Carbohydr. Polym.2011841142110.1016/j.carbpol.2010.10.062
    [Google Scholar]
  42. HuangL. WenK. GaoX. LiuY. Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats.Pharm. Biol.201048442242610.3109/13880200903150435
    [Google Scholar]
  43. Al-AzzawieH.F. AlhamdaniM.S.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits.Life Sci.200678121371137710.1016/j.lfs.2005.07.029
    [Google Scholar]
  44. YoonJ.S. Kasin YadunandamA. KimS-J. WooH-C. KimH-R. KimG-D. Dieckol, isolated from Ecklonia stolonifera, induces apoptosis in human hepatocellular carcinoma Hep3B cells.J. Nat. Med.201367351952710.1007/s11418‑012‑0709‑0
    [Google Scholar]
  45. ZhaoC. YangC. LiuB. Bioactive compounds from marine macroalgae and their hypoglycemic benefits.Trends Food Sci. Technol.20187211210.1016/j.tifs.2017.12.001
    [Google Scholar]
  46. Abo-ShadyA.M. GhedaS.F. IsmailG.A. João Cotas; Pereira, L.; Omnia hamdy abdel-karim. Antioxidant and antidiabetic activity of algae.Life2023132460010.3390/life13020460
    [Google Scholar]
  47. YuanY. ZhengY. ZhouJ. Polyphenol-rich extracts from brown macroalgae Lessonia trabeculate attenuate hyperglycemia and modulate gut microbiota in high-fat diet and streptozotocin-induced diabetic rats.J. Agric. Food Chem.20196745124721248010.1021/acs.jafc.9b05118
    [Google Scholar]
  48. DerosaG. CiceroA.F.G. D’AngeloA. MaffioliP. Ascophyllum nodosum and Fucus vesiculosus on glycemic status and on endothelial damage markers in dysglicemic patients.Phytother. Res.201933379179710.1002/ptr.6272
    [Google Scholar]
  49. AlmutairiM.G. AldubayanK. MollaH. Effect of seaweed (Ecklonia cava extract) on blood glucose and insulin level on prediabetic patients: A double‐blind randomized controlled trial.Food Sci. Nutr.202311298399010.1002/fsn3.3133
    [Google Scholar]
  50. XiaoJ.B. HoggerP. Dietary Polyphenols and type 2 diabetes: current insights and future perspectives.Curr. Med. Chem.2014221233810.2174/0929867321666140706130807
    [Google Scholar]
  51. HakimM.M. PatelI.C. A review on phytoconstituents of marine brown algae.Future J. Pharm. Sci.20206112910.1186/s43094‑020‑00147‑6
    [Google Scholar]
  52. CatarinoM.D. Silva-ReisR. ChouhA. Applications of Antioxidant Secondary Metabolites of Sargassum spp.Mar. Drugs2023213172210.3390/md21030172
    [Google Scholar]
  53. DominguesM.R. CaladoR. Lipids of marine algae-biomolecules with high nutritional value and important bioactive properties.Biomolecules202212113410.3390/biom12010134
    [Google Scholar]
  54. ImchenT. SinghK.S. Marine Algae Colorants: Antioxidant, Anti-Diabetic Properties and Applications in Food Industry.Algal Res.202210289810.1016/j.algal.2022.102898
    [Google Scholar]
  55. GunathilakaT.L. KeertihirathnaL.R. Advanced pharmacological uses of marine algae as an anti-diabetic therapy.IntechOpen202210.5772/intechopen.96807
    [Google Scholar]
  56. JubaidiF.F. ZainalabidinS. TaibI.S. The role of PKC-MAPK signalling pathways in the development of hyperglycemia-induced cardiovascular complications.Int. J. Mol. Sci.20222315858210.3390/ijms23158582
    [Google Scholar]
  57. WaiC FuF Effects of phenolic antioxidants extraction from four selected seaweeds obtained from sabah.preprints1249v1201510.7287/peerj.preprints.1249v1
    [Google Scholar]
  58. ArguellesE. In vitro antioxidant, alpha-glucosidase inhibition and antibacterial properties of Turbinaria decurrens bory (Sargassaceae, ochrophyta).Asia Pac J Sci Technol202025APST-25
    [Google Scholar]
  59. RajauriaG. FoleyB. Abu-GhannamN. Identification and characterization of phenolic antioxidant compounds from brown Irish seaweed Himanthalia elongata using LC-DAD–ESI-MS/MS.Innov. Food Sci. Emerg. Technol.20163726126810.1016/j.ifset.2016.02.005
    [Google Scholar]
  60. RyuY. FernandoP. KangK. Marine compound 3-bromo-4,5-dihydroxybenzaldehyde protects skin cells against oxidative damage via the Nrf2/HO-1 pathway.Mar. Drugs201917423410.3390/md17040234
    [Google Scholar]
  61. OzakiK. AwazuM. TamiyaM. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20163108E643E65110.1152/ajpendo.00445.2015
    [Google Scholar]
  62. Shafay. Antioxidant, antidiabetic, anti-inflammatory and anticancer potential of some seaweed extracts.Food Sci Technol202242159010.1590/fst.20521
    [Google Scholar]
  63. ArguellesE.D. Preliminary Studies on the Potential Antioxidant and Antidiabetic Activities of Sargassum polycystum C. Agardh (Phaeophyceae, Ochrophyta).Jordan J. Biol. Sci.202215344945610.54319/jjbs/150314
    [Google Scholar]
  64. LiK. LiX.M. GloerJ.B. WangB.G. Isolation, characterization, and antioxidant activity of bromophenols of the marine red alga Rhodomela confervoides.J. Agric. Food Chem.201159189916992110.1021/jf2022447
    [Google Scholar]
  65. LeeJ.H. LeeT.K. KangR.S. ShinH.J. LeeH.S. The in vitro antioxidant activities of the bromophenols from the red alga Tichocarpus crinitus and phenolic derivatives.J Korean Magn Reson Soc2007115663
    [Google Scholar]
  66. ParkH.J. KimH.R. ChoiJ.S. Antioxidant effect of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) from the red alga, Symphyocladia latiuscula.Fish. Aquatic Sci.2009122868910.5657/fas.2009.12.2.086
    [Google Scholar]
  67. TsalamandrisS. AntonopoulosA.S. OikonomouE. The role of inflammation in diabetes: Current concepts and future perspectives.Eur. Cardiol.2019141505910.15420/ecr.2018.33.1
    [Google Scholar]
  68. BealeE.G. Insulin signaling and insulin resistance.J. Investig. Med.2013611111410.2310/JIM.0b013e3182746f95
    [Google Scholar]
  69. Luevano-ContrerasC. Chapman-NovakofskiK. Dietary advanced glycation end products and aging.Nutrients20102121247126510.3390/nu2121247
    [Google Scholar]
  70. XueM. LiangH. JiX. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology.Nutr. Metab. (Lond.)20191618710.1186/s12986‑019‑0392‑1
    [Google Scholar]
  71. NattoZ.S. YaghmoorW. AlshaeriH.K. Van DykeT.E. Omega-3 fatty acids effects on inflammatory biomarkers and lipid profiles among diabetic and cardiovascular disease patients: A systematic review and meta-analysis.Sci. Rep.2019911886710.1038/s41598‑019‑54535‑x
    [Google Scholar]
  72. SalsinhaA.S. SocodatoR. RodriguesA. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients.Biochim. Biophys. Acta Mol. Cell Biol. Lipids202318687159331110.1016/j.bbalip.2023.159331
    [Google Scholar]
  73. PradhanB. NayakR. PatraS. JitB.P. RagusaA. JenaM. Bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review.Molecules20202613710.3390/molecules26010037
    [Google Scholar]
  74. LordanS. RossR.P. StantonC. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases.Mar. Drugs2011961056110010.3390/md9061056
    [Google Scholar]
  75. ShihC.M. ChengS.N. WongC.S. KuoY.L. ChouT.C. Antiinflammatory and antihyperalgesic activity of c-phycocyanin.Anesth. Analg.200910841303131010.1213/ane.0b013e318193e919
    [Google Scholar]
  76. MounnissamyV.M. KavimaniS. BaluV. QuineS.D. Evaluation of anti-inflammatory and membrane stabilizing property of ethanol extract of Cansjera rheedii J. Gmelin (Opiliaceae).Iranian Journal of Pharmacology & Therapeutics20076235237
    [Google Scholar]
  77. El GamalA.A. Biological importance of marine algae.Saudi Pharm. J.201018112510.1016/j.jsps.2009.12.001
    [Google Scholar]
  78. LeeD.S. ParkW.S. HeoS-J. Polyopes affinis alleviates airway inflammation in a murine model of allergic asthma.J. Biosci.201136586987710.1007/s12038‑011‑9152‑8
    [Google Scholar]
  79. Asanka SanjeewaK.K. JayawardenaT.U. Sargassum Horneri (turner) inhibit urban particulate matter-induced inflammation in MH-S lung macrophages via blocking TLRs Mediated NF-KB and MAPK activation.J. Ethnopharmacol.202024911236310.1016/j.jep.2019.112363
    [Google Scholar]
  80. HerathM ChoJ-H KimA KimH Eui Jeong Han; Kim JH; Kim SM, Ahn, G. Jeon, Y. Jee, Y. Differential modulation of immune response and cytokine profiles of Sargassum Horneri ethanol extract in murine spleen with or without concanavalin a stimulation.biomed pharmacother20191109304210.1016/j.biopha.2018.12.001
    [Google Scholar]
  81. JiaR.B. WuJ. LiZ.R. Comparison of physicochemical properties and antidiabetic effects of polysaccharides extracted from three seaweed species.Int. J. Biol. Macromol.2020149819210.1016/j.ijbiomac.2020.01.111
    [Google Scholar]
  82. UnnikrishnanP.S. SuthindhiranK. JayasriM.A. Antidiabetic potential of marine algae by inhibiting key metabolic enzymes.Front. Life Sci.20158214815910.1080/21553769.2015.1005244
    [Google Scholar]
  83. GongL. FengD. WangT. RenY. LiuY. WangJ. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia.Food Sci. Nutr.20208126320633710.1002/fsn3.1987
    [Google Scholar]
  84. MoonH.E. IslamM.N. AhnB.R. Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Phlorotannins from Edible Brown Algae, Ecklonia stolonifera and Eisenia bicyclis.Biosci. Biotechnol. Biochem.20117581472148010.1271/bbb.110137
    [Google Scholar]
  85. NwosuF. MorrisJ. LundV.A. StewartD. RossH.A. McDougallG.J. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae.Food Chem.201112631006101210.1016/j.foodchem.2010.11.111
    [Google Scholar]
  86. GauerJ.S. TumovaS. LippiatJ.D. KerimiA. WilliamsonG. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids.Biochem. Pharmacol.2018152112010.1016/j.bcp.2018.03.011
    [Google Scholar]
  87. Maeda. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model.Mol. Med. Rep.20092610.3892/mmr_00000189
    [Google Scholar]
  88. HosokawaM. MiyashitaT. NishikawaS. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-A mice.Arch. Biochem. Biophys.20105041172510.1016/j.abb.2010.05.031
    [Google Scholar]
  89. JungH.A. YoonN.Y. WooM.H. ChoiJ.S. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase.Fish. Sci.20087461363136510.1111/j.1444‑2906.2008.01670.x
    [Google Scholar]
  90. SelivanovaO.N. ZhigadlovaG.G. HansenG.I. Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the Far-Eastern Seas of Russia on the basis of molecular-phylogenetic data.Russ. J. Mar. Biol.200733527828910.1134/S1063074007050021
    [Google Scholar]
  91. JungH.A. IslamM.N. LeeC.M. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera.Chem. Biol. Interact.20132061556210.1016/j.cbi.2013.08.013
    [Google Scholar]
  92. WangW. OkadaY. ShiH. WangY. OkuyamaT. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia l atiuscula.J. Nat. Prod.200568462062210.1021/np040199j
    [Google Scholar]
  93. LeeS.H. JeonY.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms.Fitoterapia20138612913610.1016/j.fitote.2013.02.013
    [Google Scholar]
  94. DaiN. WangQ. XuB. ChenH. Remarkable natural biological resource of algae for medical applications.Front. Mar. Sci.2022991292410.3389/fmars.2022.912924
    [Google Scholar]
  95. AlvesM.F.A. BarretoF.K.A. VasconcelosM.A. Antihyperglycemic and antioxidant activities of a lectin from the marine red algae, Bryothamnion seaforthii, in rats with streptozotocin-induced diabetes.Int. J. Biol. Macromol.202015877378010.1016/j.ijbiomac.2020.04.238
    [Google Scholar]
  96. ChengY. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in Mice.Int. J. Biol. Macromol.20191311162117010.1016/j.ijbiomac.2019.04.040
    [Google Scholar]
  97. ZhangY. ZuoJ. YanL. Sargassum fusiforme fucoidan alleviates high-fat diet-induced obesity and insulin resistance associated with the improvement of hepatic oxidative stress and gut microbiota profile.J. Agric. Food Chem.20206839106261063810.1021/acs.jafc.0c02555
    [Google Scholar]
  98. Hernández-CoronaD.M. Martínez-AbundisE. González-OrtizM. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults.J. Med. Food201417783083210.1089/jmf.2013.0053
    [Google Scholar]
  99. SakaiC. AbeS. KouzukiM. A randomized placebo-controlled trial of an oral preparation of high molecular weight fucoidan in patients with type 2 diabetes with evaluation of taste sensitivity.Yonago Acta Medica2019621142310.33160/yam.2019.03.003
    [Google Scholar]
  100. StengelD.B. ConnanS. PopperZ.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application.Biotechnol. Adv.201129548350110.1016/j.biotechadv.2011.05.016
    [Google Scholar]
  101. Alzhiemer’s drug discovery foundation2019Available from: https://www.prnewswire.com/news-releases/alzheimers-drug-discovery-foundation-launches-new-cognitive-vitality-site-to-meet-critical-need-in-alzheimers-prevention-and-education-256342341.html (accessed on 23-10-2024)
  102. The state of world fisheries and aquaculture 2018— meeting the sustainable development goals.2018Available from: https://openknowledge.fao.org/server/api/core/bitstreams/6fb91ab9-6cb2-4d43-8a34-a680f65e82bd/content (accessed on 23-10-2024)
  103. LindequistU. Marine-derived pharmaceuticals - challenges and opportunities.Biomol. Ther. (Seoul)201624656157110.4062/biomolther.2016.181
    [Google Scholar]
  104. MarmannA. AlyA. LinW. WangB. ProkschP. Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms.Mar. Drugs20141221043106510.3390/md12021043
    [Google Scholar]
  105. SenthilkumarP. SudhaS. Antioxidant and antibacterial properties of methanolic extract of green seaweed Chaetomorpha linum from Gulf of Mannar: southeast coast of India.Jundishapur J. Microbiol.20125241141510.5812/jjm.3400
    [Google Scholar]
  106. WuQ. LiuL. MironA. KlímováB. WanD. KučaK. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview.Arch. Toxicol.20169081817184010.1007/s00204‑016‑1744‑5
    [Google Scholar]
  107. WuL. HoJ.A. ShiehM.C. LuI.W. Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts.J. Agric. Food Chem.200553104207421210.1021/jf0479517
    [Google Scholar]
  108. ChenT. YangF. WongK-H. Purification and in vitro antioxidant activities of tellurium-containing phycobiliproteins from tellurium-enriched Spirulina platensis.Drug Des. Devel. Ther.20142014178910.2147/DDDT.S62530
    [Google Scholar]
  109. SudharsanS. SubhapradhaN. SeedeviP. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal).Int. J. Biol. Macromol.2015811031103810.1016/j.ijbiomac.2015.09.046
    [Google Scholar]
  110. SunK.L. GaoM. WangY.Z. LiX.R. WangP. WangB. Antioxidant peptides from protein hydrolysate of marine red algae Eucheuma cottonii: preparation, identification, and cytoprotective mechanisms on H2O2 oxidative damaged HUVECs.Front. Microbiol.20221379124810.3389/fmicb.2022.791248
    [Google Scholar]
  111. HmaniI. KtariL. IsmailA. M’dallelC. El BourM. Assessment of the antioxidant and antibacterial properties of red algae (Rhodophyta) from the North coast of Tunisia.EuroMediterr. J. Environ. Integr.2021611310.1007/s41207‑020‑00222‑7
    [Google Scholar]
  112. MoreiraB.R. VegaJ. SisaA.D.A. Antioxidant and anti-photoaging properties of red marine macroalgae: Screening of bioactive molecules for cosmeceutical applications.Algal Res.20226810289310.1016/j.algal.2022.102893
    [Google Scholar]
  113. BanskotaA.H. SperkerS. StefanovaR. McGinnP.J. O’LearyS.J.B. Antioxidant properties and lipid composition of selected microalgae.J. Appl. Phycol.201931130931810.1007/s10811‑018‑1523‑1
    [Google Scholar]
  114. DeviG.K. ManivannanK. ThirumaranG. RajathiF.A.A. AnantharamanP. In vitro antioxidant activities of selected seaweeds from Southeast coast of India.Asian Pac. J. Trop. Med.20114320521110.1016/S1995‑7645(11)60070‑9
    [Google Scholar]
  115. VoT.S. RyuB. KimS.K. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima.J. Funct. Foods2013531336134610.1016/j.jff.2013.05.001
    [Google Scholar]
  116. MargretR.J. KumaresanS. RavikumarS. A preliminary study on the anti-inflammatory activity of methanol extract of Ulva lactuca in rat.J. Environ. Biol.2009305899902
    [Google Scholar]
  117. RabeccaR. DossA. PoleR.P.P. SatheeshS. Phytochemical and anti-inflammatory properties of green macroalga Codium tomentosum.Biocatal. Agric. Biotechnol.20224510249210.1016/j.bcab.2022.102492
    [Google Scholar]
  118. RenjuG.L. Muraleedhara KurupG. Saritha KumariC.H. Anti-inflammatory activity of lycopene isolated from Chlorella marina on Type II Collagen induced arthritis in Sprague Dawley rats.Immunopharmacol. Immunotoxicol.201335228229110.3109/08923973.2012.742534
    [Google Scholar]
  119. PradhanB. PatraS. BeheraC. Preliminary investigation of the antioxidant, anti-diabetic, and anti-inflammatory activity of Enteromorpha intestinalis extracts.Molecules2021264117110.3390/molecules26041171
    [Google Scholar]
  120. AlkhalafM.I. Chemical composition, antioxidant, anti-inflammatory and cytotoxic effects of Chondrus crispus species of red algae collected from the Red Sea along the shores of Jeddah city.J. King Saud Univ. Sci.202133110121010.1016/j.jksus.2020.10.007
    [Google Scholar]
  121. SalhiG. ZbakhH. MoussaH. Antitumoral and anti-inflammatory activities of the red alga Sphaerococcus coronopifolius.Eur. J. Integr. Med.201818667410.1016/j.eujim.2018.02.001
    [Google Scholar]
  122. RobertsonR. GuihéneufF. BaharB. The anti-inflammatory effect of algae-derived lipid extracts on lipopolysaccharide (LPS)-stimulated human THP-1 macrophages.Mar. Drugs20151385402542410.3390/md13085402
    [Google Scholar]
  123. LeeJ.C. HouM.F. HuangH.W. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties.Cancer Cell Int.20131315510.1186/1475‑2867‑13‑55
    [Google Scholar]
  124. FernandoI.P.S. KimH.S. SanjeewaK.K.A. OhJ.Y. JeonY.J. LeeW.W. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae.Algae201732326127310.4490/algae.2017.32.8.14
    [Google Scholar]
  125. JungH.A. JinS.E. AhnB.R. LeeC.M. ChoiJ.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages.Food Chem. Toxicol.20135919920610.1016/j.fct.2013.05.061
    [Google Scholar]
  126. TanP.X. ThiyagarasaiyarK. TanC.Y. Algae-derived anti-inflammatory compounds against particulate matters-induced respiratory diseases: a systematic review.Mar. Drugs202119631710.3390/md19060317
    [Google Scholar]
  127. Vinoth KumarT. LakshmanasenthilS. GeetharamaniD. MarudhupandiT. SujaG. SuganyaP. Fucoidan – A α-d-glucosidase inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy.Int. J. Biol. Macromol.2015721044104710.1016/j.ijbiomac.2014.10.013
    [Google Scholar]
  128. DaubC.D. MabateB. MalgasS. PletschkeB.I. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, α-glucosidase.Int. J. Biol. Macromol.202015141242010.1016/j.ijbiomac.2020.02.161
    [Google Scholar]
  129. KimK.T. RiouxL.E. TurgeonS.L. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum.Phytochemistry201498273310.1016/j.phytochem.2013.12.003
    [Google Scholar]
  130. AliM. KimD. SeongS. KimH.R. JungH. ChoiJ. α-Glucosidase and protein tyrosine phosphatase 1B inhibitory activity of plastoquinones from marine brown alga Sargassum serratifolium.Mar. Drugs2017151236810.3390/md15120368
    [Google Scholar]
  131. ShanX. LiuX. HaoJ. In vitro and in vivo hypoglycemic effects of brown algal fucoidans.Int. J. Biol. Macromol.20168224925510.1016/j.ijbiomac.2015.11.036
    [Google Scholar]
  132. HwangP.A. HungY.L. TsaiY.K. ChienS.Y. KongZ.L. The brown seaweed Sargassum hemiphyllum exhibits α-amylase and α-glucosidase inhibitory activity and enhances insulin release in vitro.Cytotechnology201567465366010.1007/s10616‑014‑9745‑9
    [Google Scholar]
  133. WangY. NieM. LuY. Fucoidan exerts protective effects against diabetic nephropathy related to spontaneous diabetes through the NF-κB signaling pathway in vivo and in vitro.Int. J. Mol. Med.20153541067107310.3892/ijmm.2015.2095
    [Google Scholar]
  134. MinK.H. KimH.J. JeonY.J. HanJ.S. Ishige okamurae ameliorates hyperglycemia and insulin resistance in C57BL/KsJ-db/db mice.Diabetes Res. Clin. Pract.2011931707610.1016/j.diabres.2011.03.018
    [Google Scholar]
  135. LeeS.H. MinK.H. HanJ.S. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus.Food Chem. Toxicol.2012503-457558210.1016/j.fct.2011.12.032
    [Google Scholar]
  136. HeoS.J. HwangJ.Y. ChoiJ.I. HanJ.S. KimH.J. JeonY.J. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice.Eur. J. Pharmacol.20096151-325225610.1016/j.ejphar.2009.05.017
    [Google Scholar]
  137. KelloggJ. GraceM. LilaM. Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity.Mar. Drugs201412105277529410.3390/md12105277
    [Google Scholar]
  138. CeliklerS. TasS. VatanO. Ziyanok-AyvalikS. YildizG. BilalogluR. Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus.Food Chem. Toxicol.20094781837184010.1016/j.fct.2009.04.039
    [Google Scholar]
  139. SunZ. PengX. LiuJ. FanK.W. WangM. ChenF. Inhibitory effects of microalgal extracts on the formation of advanced glycation endproducts (AGEs).Food Chem.2010120126126710.1016/j.foodchem.2009.10.018
    [Google Scholar]
  140. YanX. YangC. LinG. Antidiabetic potential of green seaweed Enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in Type 2 diabetic mice.J. Food Sci.201984116517310.1111/1750‑3841.14415
    [Google Scholar]
  141. LeeH.J. KimY.A. AhnJ.W. NaH.J. KimH.M. SeoY. Screening of Korean marine plants for their inhibitory effect on histamine release from RPMC in vitro.Biotechnol. Bioprocess Eng.; BBE2006111808310.1007/BF02931873
    [Google Scholar]
  142. ShiD. GuoS. JiangB. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice.Mar. Drugs201311235036210.3390/md11020350
    [Google Scholar]
  143. KimK.Y. NamK.A. KuriharaH. KimS.M. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica.Phytochemistry200869162820282510.1016/j.phytochem.2008.09.007
    [Google Scholar]
  144. KuriharaH. MitaniT. KawabataJ. TakahashiK. Inhibitory potencies of bromophenols from Rhodomelaceae algae against α-Glucosidase activity.Fish. Sci.199965230030310.2331/fishsci.65.300
    [Google Scholar]
  145. NguyenT. NguyenT. NguyenV. Antidiabetic and antioxidant activities of red seaweed Laurencia dendroidea.Asian Pac. J. Trop. Biomed.201991250150910.4103/2221‑1691.271723
    [Google Scholar]
  146. YoshizawaY. TsunehiroJ. NomuraK. In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa).Biosci. Biotechnol. Biochem.199660101667167110.1271/bbb.60.1667
    [Google Scholar]
  147. RekaP. A TB, Seethalakshmi M. Alpha amylase and alpha glucosidase inhibition activity of selected edible seaweeds from South coast area of India.Int. J. Pharm. Pharm. Sci.2017966410.22159/ijpps.2017v9i6.17684
    [Google Scholar]
/content/journals/cff/10.2174/0126668629339331241121111615
Loading
/content/journals/cff/10.2174/0126668629339331241121111615
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidants; Diabetes; drug targets; enzymes; marine algae; mechanisms; phytoconstituents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test