Skip to content
2000
Volume 3, Issue 3
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Worldwide, food losses and waste exert a substantial negative environmental impact. The harvesting of Romaine lettuce, for instance, generates significant waste as outer leaves are typically removed from the cores during harvest and left to decompose in the field. Upcycling technologies offer innovative methods to convert these leaves into valuable products, enhancing sustainability in food systems. This approach not only mitigates waste during the Romaine lettuce harvest but also reduces contaminants. Furthermore, Romaine lettuce is rich in nutritional value and its phenolic compounds are known for their antioxidant, anti-inflammatory, antilipemic, antidiabetic, and antihypertensive properties. In this review, we explore opportunities for upcycling Romaine lettuce outer leaves and the environmental benefits with consideration of potential contaminants. Understanding the nutritional value and health benefits of Romaine lettuce underscores the importance of sustainable practices in agriculture and food management.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629332483241021045904
2024-12-02
2025-11-07
Loading full text...

Full text loading...

References

  1. YangX. GilM.I. YangQ. Tomás-BarberánF.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices.Compr. Rev. Food Sci. Food Saf.202221144510.1111/1541‑4337.1287734935264
    [Google Scholar]
  2. Avena-BustillosR.J. KlausnerN. MilczarekR. Terán-CabanillasE. Alemán-HidalgoD.M. McHughT.H. Evaluation of predrying steps, cadmium, and pesticide residues on dried powders from romaine lettuce outer and heart leaves.ACS Food Science & Technology202331414910.1021/acsfoodscitech.2c00234
    [Google Scholar]
  3. KimM.J. MoonY. TouJ.C. MouB. WaterlandN.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.).J. Food Compos. Anal.201649193410.1016/j.jfca.2016.03.004
    [Google Scholar]
  4. Global initiative on food loss and waste reduction.2015Available from: https://www.fao.org/3/i4068e/i4068e.pdf
  5. Food waste index report2021Available from: https://wedocs.unep.org/bitstream/handle/20.500.11822/35280/FoodWaste.pdf
  6. AbiadM.G. MehoL.I. Food loss and food waste research in the Arab world: A systematic review.Food Secur.201810231132210.1007/s12571‑018‑0782‑7
    [Google Scholar]
  7. KoesterU. Food Loss and Waste as an Economic and Policy Problem.Inter Econ.201449634835410.1007/s10272‑014‑0518‑7
    [Google Scholar]
  8. Food loss and food waste.2021Available from: https://www.fao.org/policy-support/policy-themes/food-loss-food-waste/en/accessed August 23, 2021
  9. ReFED Rethink Food Waste2016Available from: https://refed.com/downloads/ReFED_Report_2016.pdf accessed August 23, 2021
  10. HallK.D. GuoJ. DoreM. ChowC.C. The progressive increase of food waste in America and its environmental impact.PLoS One2009411e794010.1371/journal.pone.000794019946359
    [Google Scholar]
  11. Driven to waste: The global impact of food loss and waste on farms.2021Available from: https://wwfint.awsassets.panda.org/downloads/wwf_uk__driven_to_waste___the_global_impact_of_food_loss_and_waste_on_farms.pdf accessed August 29, 2021
  12. TubielloF.N. Greenhouse gas emissions due to agriculture.Encyclopedia of Food Security and SustainabilityElsevierAmsterdam201819620510.1016/B978‑0‑08‑100596‑5.21996‑3
    [Google Scholar]
  13. Emissions due to Agriculture.Global, regional and country trends 2000–20182018Available from: http://www.fao.org/3/cb3808en/cb3808en.pdfaccessed August 29, 2021
  14. BakerG.A. GrayL.C. HarwoodM.J. OslandT.J. TooleyJ.B.C. On-farm food loss in northern and central California: Results of field survey measurements.Resour. Conserv. Recycling201914954154910.1016/j.resconrec.2019.03.022
    [Google Scholar]
  15. AbeK. ImamakiA. HiranoM. Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga trentepholia aurea.J. Appl. Phycol.200214212913410.1023/A:1019599216554
    [Google Scholar]
  16. AndersonD.M. GlibertP.M. BurkholderJ.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences.Estuaries200225470472610.1007/BF02804901
    [Google Scholar]
  17. BennettE.M. CarpenterS.R. CaracoN.F. Human impact on erodable phosphorus and eutrophication: A global perspective.Bioscience200151322723410.1641/0006‑3568(2001)051[0227:HIOEPA]2.0.CO;2
    [Google Scholar]
  18. Draft general waste discharge requirements for discharges from irrigated lands.2020Available from: https://www.ssjwd.org/_files/ugd/c94e07_48c3c2ff7ade4900b9a086869b06eacb.pdf accessed Sept 2, 2021
  19. StridI. ErikssonM. Losses in the supply chain of swedish lettuce wasted amounts and their carbon footprint at primary production, wholesale and retailer.Presented at Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food)San Francisco, USA. Oct 8-10, 2014
    [Google Scholar]
  20. LópezA. JavierG-A. FenollJ. HellínP. FloresP. Chemical composition and antioxidant capacity of lettuce: Comparative study of regular-sized (Romaine) and baby-sized (little gem and mini romaine) types.J. Food Compos. Anal.2014331394810.1016/j.jfca.2013.10.001
    [Google Scholar]
  21. BaslamM. MoralesF. GarmendiaI. GoicoecheaN. Nutritional quality of outer and inner leaves of green and red pigmented lettuces (Lactuca sativa L.) consumed as salads.Sci. Hortic. (Amsterdam)201315110311110.1016/j.scienta.2012.12.023
    [Google Scholar]
  22. ZhaoX. CareyE.E. YoungJ.E. WangW. IwamotoT. Influences of organic fertilization, high tunnel environment, and postharvest storage on phenolic compounds in lettuce.J. Am. Soc. Hortic. Sci.20074217176
    [Google Scholar]
  23. JohanssonM. JägerstadM. FrølichW. Folates in lettuce: A pilot study.Scandinavian J Food Nut.2007511223010.1080/17482970701284510
    [Google Scholar]
  24. Starska-KowarskaK. Dietary carotenoids in head and neck cancer—molecular and clinical implications.Nutrients202214353110.3390/nu1403053135276890
    [Google Scholar]
  25. GongX. SmithJ. SwansonH. RubinL. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ros-mediated mechanisms.Molecules201823490510.3390/molecules2304090529662002
    [Google Scholar]
  26. RienksJ. BarbareskoJ. NöthlingsU. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies.Nutrients20179441510.3390/nu904041528441720
    [Google Scholar]
  27. MouB. Genetic variation of beta-carotene and lutein contents in lettuce.J. Am. Soc. Hortic. Sci.2005130687087610.21273/JASHS.130.6.870
    [Google Scholar]
  28. FengR. LuY. BowmanL.L. QianY. CastranovaV. DingM. Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid.J. Biol. Chem.200528030278882789510.1074/jbc.M50334720015944151
    [Google Scholar]
  29. Alarcón-FloresM.I. Romero-GonzálezR. Martínez VidalJ.L. Garrido FrenichA. Multiclass determination of phenolic compounds in different varieties of tomato and lettuce by ultra high performance liquid chromatography coupled to tandem mass spectrometry.Int. J. Food Prop.201619349450710.1080/10942912.2014.978010
    [Google Scholar]
  30. ShokouhP. JeppesenP.B. HermansenK. LaustsenC. Stødkilde-JørgensenH. Hamilton-DutoitS.J. Søndergaard SchmedesM. QiH. Stokholm NørlingerT. GregersenS. Effects of unfiltered coffee and bioactive coffee compounds on the development of metabolic syndrome components in a high-fat-/high-fructose-fed rat model.Nutrients20181010154710.3390/nu1010154730347674
    [Google Scholar]
  31. LiangN. KittsD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions.Nutrients2015811610.3390/nu801001626712785
    [Google Scholar]
  32. HV Biomechanism of chlorogenic acid complex mediated plasma free acid metabolism in rat liver.BMC Complement Med Ther20161627410.1186/s12906‑016‑1258‑y
    [Google Scholar]
  33. JinS. ChangC. ZhangL. LiuY. HuangX. ChenZ. Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice.PLoS One2015104e012084210.1371/journal.pone.012084225849026
    [Google Scholar]
  34. AgunloyeO.M. ObohG. BelloG.T. OyagbemiA.A. Caffeic and chlorogenic acids modulate altered activity of key enzymes linked to hypertension in cyclosporine-induced hypertensive rats.J. Basic Clin. Physiol. Pharmacol.202132316917710.1515/jbcpp‑2019‑036033001849
    [Google Scholar]
  35. KogaM. NakagawaS. KatoA. KusumiI. Caffeic acid reduces oxidative stress and microglial activation in the mouse hippocampus.Tissue Cell201960142010.1016/j.tice.2019.07.00631582013
    [Google Scholar]
  36. EspíndolaK.M.M. FerreiraR.G. NarvaezL.E.M. Silva RosarioA.C.R. da SilvaA.H.M. SilvaA.G.B. VieiraA.P.O. MonteiroM.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma.Front. Oncol.2019954110.3389/fonc.2019.00541
    [Google Scholar]
  37. SilvaH. LopesN.M.F. Cardiovascular effects of caffeic acid and its derivatives: A comprehensive review.Front. Physiol.20201159551610.3389/fphys.2020.59551633343392
    [Google Scholar]
  38. Medina-LozanoI. BertolínJ.R. DíazA. Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content.Food Chem.202135912986410.1016/j.foodchem.2021.12986433962194
    [Google Scholar]
  39. Martínez-IspizuaE. CalatayudÁ. MarsalJ.I. CannataC. BasileF. AbdelkhalikA. SolerS. ValcárcelJ.V. Martínez-CuencaM.R. The nutritional quality potential of microgreens, baby leaves, and adult lettuce: An underexploited nutraceutical source.Foods202211342310.3390/foods1103042335159573
    [Google Scholar]
  40. LlorachR. Martínez-SánchezA. Tomás-BarberánF.A. GilM.I. FerreresF. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole.Food Chem.200810831028103810.1016/j.foodchem.2007.11.03226065768
    [Google Scholar]
  41. KimM.J. MoonY. KopsellD.A. ParkS. TouJ.C. WaterlandN.L. Nutritional value of crisphead “iceberg” and romaine lettuce (lactuca sativa L.). J. Agric. Sci.2016811
    [Google Scholar]
  42. SzetoY.T. TomlinsonB. BenzieI.F.F. Total antioxidant and ascorbic acid content of fresh fruits and vegetables: Implications for dietary planning and food preservation.Br. J. Nutr.2002871555910.1079/BJN200148311898770
    [Google Scholar]
  43. RoostaH.R. EstajiA. NiknamF. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce.Photosynthetica201856260661510.1007/s11099‑017‑0696‑1
    [Google Scholar]
  44. MampholoB.M. MabokoM.M. SoundyP. SivakumarD. Phytochemicals and overall quality of leafy lettuce ( lactuca sativa L.) varieties grown in closed hydroponic system.J. Food Qual.201639680581510.1111/jfq.12234
    [Google Scholar]
  45. SpaldingA. GoodhueR.E. KieselK. SextonR.J. Economic impacts of food safety incidents in a modern supply chain: E. coli in the romaine lettuce industry.Am. J. Agric. Econ.2023105259762310.1111/ajae.12341
    [Google Scholar]
  46. MinorT. AstillG. SkorbianskyS.R. ThornsburyS. BuzbyJ. HitajC. KantorL. KuchlerF. EllisonB. MishraA. RichardsT. RoeB. WilsonN. Economic drivers of food loss at the farm and pre-retail sectors: A look at the produce supply chain in the United States.2023Available from: https://www.ers.usda.gov/webdocs/publications/95779/eib-216.pdfAccessed July, 31, 2023
  47. AstillG. MinorT. Understanding food loss in romaine lettuce.The Economics of Food Loss in Produce IndustryRoutledgeNew York,20191110.4324/9780429264139
    [Google Scholar]
  48. LunaM.C. Martínez-SánchezA. SelmaM.V. TudelaJ.A. BaixauliC. GilM.I. Influence of nutrient solutions in an open‐field soilless system on the quality characteristics and shelf life of fresh‐cut red and green lettuces ( Lactuca sativa L.) in different seasons.J. Sci. Food Agric.201393241542110.1002/jsfa.577722806347
    [Google Scholar]
  49. HoqueM.M. AjwaH. OthmanM. SmithR. CahnM. Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers.HortScience201045101539154410.21273/HORTSCI.45.10.1539
    [Google Scholar]
  50. SofoA. LundegårdhB. MårtenssonA. ManfraM. PepeG. SommellaE. De NiscoM. TenoreG.C. CampigliaP. ScopaA. Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce.Sci. Hortic. (Amsterdam)201620410611510.1016/j.scienta.2016.04.003
    [Google Scholar]
  51. KhanM. MohammadF. Eutrophication: Challenges and solutions.Eutrophication: Causes, Consequences and ControlSpringerNew York City.201410.1007/978‑94‑007‑7814‑6_1
    [Google Scholar]
  52. MajumdarD. GuptaN. Nitrate pollution of groundwater and associated human health disorders.Indian J. Environ. Health2000422839
    [Google Scholar]
  53. SmithR. Nitrogen management of lettuce: Field scale studies.2021Available from: http://cemonterey.ucanr.edu/files/85501.pdf accessed August 30, 2021
  54. JacksonL.E. StiversL.J. WardenB.T. TanjiK.K. Crop nitrogen utilization and soil nitrate loss in a lettuce field.Fert. Res.19943729310510.1007/BF00748550
    [Google Scholar]
  55. SylvestreT. de B. Lucas-BraosB. Batistella-FilhoF. Pessoa da CruzM. C. FerreiraM. E. Mineral nitrogen fertilization effects on lettuce crop yield and nitrogen leaching.Sci. Hortic.2019255153160
    [Google Scholar]
  56. KumarS. PrasadS. YadavK. K. ShrivastavaM. GuptaN. NagarS. BachQ. V. KamyabH. KhanS. A. YadavS. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches – A review.Environ. Res.2019179Ae108792
    [Google Scholar]
  57. ManzoorJ. SharmaM. WaniK.A. Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review.J. Plant Nutr.201841131744176310.1080/01904167.2018.1462382
    [Google Scholar]
  58. ChaneyR. GreenC. AjwaH. SmithR. Zinc fertilization plus liming to reduce cadmium uptake by romaine lettuce on Cd-mineralized lockwood soil.The Proceedings of the International Plant Nutrition Colloquium XVI, UC Davis: Department of Plant SciencesCalifornia, USA. April 15, 20092021
    [Google Scholar]
  59. LiC. ZhouK. QinW. TianC. QiM. YanX. HanW. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques.Soil Sediment Contam.201928438039410.1080/15320383.2019.1592108
    [Google Scholar]
  60. HejnaM. GottardoD. BaldiA. Dell’OrtoV. CheliF. ZaninelliM. RossiL. Review: Nutritional ecology of heavy metals.Animal201812102156217010.1017/S175173111700355X29306340
    [Google Scholar]
  61. ATSDR’s substance priority list.2019Available from: https://www.atsdr.cdc.gov/spl/ accessed Sept 12, 2021
  62. FuZ. XiS. The effects of heavy metals on human metabolism.Toxicol. Mech. Methods202030316717610.1080/15376516.2019.170159431818169
    [Google Scholar]
  63. RusyniakD.E. ArroyoA. AccianiJ. FrobergB. KaoL. FurbeeB. Heavy metal poisoning: Management of intoxication and antidotes.EXS201010036539610.1007/978‑3‑7643‑8338‑1_11
    [Google Scholar]
  64. AroraM. KiranB. RaniS. RaniA. KaurB. MittalN. Heavy metal accumulation in vegetables irrigated with water from different sources.Food Chem.2008111481181510.1016/j.foodchem.2008.04.049
    [Google Scholar]
  65. Prieto-MéndezJ. González-RamírezC.A. Román-GutiérrezA.D. Prieto-GarcíaF. Plant contamination and phytotoxicity due to heavy metals from soil and water.Trop. Subtrop. Agroecosystems20091012944
    [Google Scholar]
  66. RaiP.K. LeeS.S. ZhangM. TsangY.F. KimK.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management.Environ. Int.201912536538510.1016/j.envint.2019.01.06730743144
    [Google Scholar]
  67. AntisariL.V. OrsiniF. MarchettiL. VianelloG. GianquintoG. Heavy metal accumulation in vegetables grown in urban gardens.Agron. Sustain. Dev.20153531139114710.1007/s13593‑015‑0308‑z
    [Google Scholar]
  68. GaddG.M. Metals, minerals and microbes: geomicrobiology and bioremediation.Microbiology (Reading)2010156360964310.1099/mic.0.037143‑020019082
    [Google Scholar]
  69. GallJ.E. BoydR.S. RajakarunaN. Transfer of heavy metals through terrestrial food webs: A review.Environ. Monit. Assess.2015187420110.1007/s10661‑015‑4436‑325800370
    [Google Scholar]
  70. GherardiM. PontaltiF. VianelloG. Vittori-AntisariL. Heavy metals in the soil-plant system: Monitoring urban and extra-urban parks in the emilia romagna region (Italy).Agrochimica2009533196208
    [Google Scholar]
  71. KuboiT. NoguchiA. YazakiJ. Family-dependent cadmium accumulation characteristics in higher plants.Plant Soil198692340541510.1007/BF02372488
    [Google Scholar]
  72. YangJ. GuoH. MaY. WangL. WeiD. HuaL. Genotypic variations in the accumulation of Cd exhibited by different vegetables.J. Environ. Sci. (China)20102281246125210.1016/S1001‑0742(09)60245‑X21179965
    [Google Scholar]
  73. Final review of scientific information on cadmium2021Available from: https://wedocs.unep.org/bitstream/handle/20.500.11822/27636/Cadmium_Review.pdf?sequence=1&isAllowed=yc accessed Sept 24, 2021
  74. HaiderF.U. LiqunC. CoulterJ.A. CheemaS.A. WuJ. ZhangR. WenjunM. FarooqM. Cadmium toxicity in plants: Impacts and remediation strategies.Ecotoxicol. Environ. Saf.202121111188710.1016/j.ecoenv.2020.11188733450535
    [Google Scholar]
  75. NorvellW.A. WuJ. HopkinsD.G. WelchR.M. Association of cadmium in durum wheat grain with soil chloride and chelate‐extractable soil cadmium.Soil Sci. Soc. Am. J.20006462162216810.2136/sssaj2000.6462162x
    [Google Scholar]
  76. SatarugS. VeseyD. A. GobeG. C. Current health risk assessment practice for dietary cadmium: Data from different countries.Food Chem. Toxicol.2017106A430445
    [Google Scholar]
  77. PintoE. AlmeidaA.A. AguiarA.A.R.M. FerreiraI.M.P.L.V.O. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition.Food Chem.201415260361110.1016/j.foodchem.2013.12.02324444982
    [Google Scholar]
  78. JallowM. AwadhD. AlbahoM. DeviV. AhmadN. Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait.Int. J. Environ. Res. Public Health201714883310.3390/ijerph1408083328757570
    [Google Scholar]
  79. Pesticides use, pesticides trade and pesticides indicators 1990-20192021Available from: http://www.fao.org/3/cb6034en/cb6034en.pdfaccessed Sept 29, 2021
  80. Vegetable crops highlights.2021Available from: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/2020_Vegetables/ChemHighlights-Veg.pdf accessed Sept 29, 2021
  81. SumiY. OodeY. TanakaH. Chinese dumpling scare hits Japan - a case of methamidophos food poisoning.J. Toxicol. Sci.200833448548610.2131/jts.33.48518827448
    [Google Scholar]
  82. CecchiA. RovedattiM.G. SabinoG. MagnarelliG.G. Environmental exposure to organophosphate pesticides: Assessment of endocrine disruption and hepatotoxicity in pregnant women.Ecotoxicol. Environ. Saf.20128028028710.1016/j.ecoenv.2012.03.00822494479
    [Google Scholar]
  83. AlavanjaM.C.R. RossM.K. BonnerM.R. Increased cancer burden among pesticide applicators and others due to pesticide exposure.CA Cancer J. Clin.201363212014210.3322/caac.2117023322675
    [Google Scholar]
  84. Pesticides residues in food.2021Available from: https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-foodaccessed October 2, 2021
  85. KeikotlahaileM. Pesticide residues in fruits and vegetables.Pesticides- Formulations, Effects, Fate.InTechLondon2011243252
    [Google Scholar]
  86. SantarelliG.A. MiglioratiG. PomilioF. MarfogliaC. CentorameP. D’AgostinoA. D’AurelioR. ScarponeR. BattistelliN. Di SimoneF. ApreaG. IannettiL. Assessment of pesticide residues and microbial contamination in raw leafy green vegetables marketed in Italy.Food Control20188535035810.1016/j.foodcont.2017.09.035
    [Google Scholar]
  87. ArienzoM. CataldoD. FerraraL. Pesticide residues in fresh-cut vegetables from integrated pest management by ultra performance liquid chromatography coupled to tandem mass spectrometry.Food Control201331110811510.1016/j.foodcont.2012.09.021
    [Google Scholar]
  88. GonzálezrodríguezR. RialoteroR. CanchograndeB. SimalgándaraJ. Occurrence of fungicide and insecticide residues in trade samples of leafy vegetables.Food Chem.200810731342134710.1016/j.foodchem.2007.09.045
    [Google Scholar]
  89. EsturkO. YakarY. AyhanZ. Pesticide residue analysis in parsley, lettuce and spinach by LC-MS/MS.J. Food Sci. Technol.201451345846610.1007/s13197‑011‑0531‑924587520
    [Google Scholar]
  90. ElguetaS. MoyanoS. SepúlvedaP. QuirozC. CorreaA. Pesticide residues in leafy vegetables and human health risk assessment in north central agricultural areas of Chile.Food Addit. Contam. Part B Surveill.201710210511210.1080/19393210.2017.128054028090975
    [Google Scholar]
  91. SkovgaardM. Renjel EncinasS. JensenO.C. AndersenJ.H. CondarcoG. JørsE. Pesticide residues in commercial lettuce, onion, and potato samples from bolivia—a threat to public health?Environ. Health Insights20171110.1177/117863021770419428469451
    [Google Scholar]
  92. SlaytonR.B. TurabelidzeG. BennettS.D. SchwensohnC.A. YaffeeA.Q. KhanF. ButlerC. TreesE. AyersT.L. DavisM.L. LauferA.S. GladbachS. WilliamsI. GieraltowskiL.B. Outbreak of shiga toxin-producing Escherichia coli (STEC) O157:H7 associated with romaine lettuce consumption, 2011.PLoS One201382e5530010.1371/journal.pone.005530023390525
    [Google Scholar]
  93. JeamsripongS. ChaseJ.A. Jay-RussellM.T. BuchananR.L. AtwillE.R. experimental in-field transfer and survival of escherichia coli from animal feces to romaine lettuce in salinas valley, California.Microorganisms201971040810.3390/microorganisms710040831569566
    [Google Scholar]
  94. Lettuce, other leafy greens, and food safety.2023Available from: https://www.cdc.gov/foodsafety/communication/leafy-greens.htmlaccessed Jan. 29, 2023
  95. Factors potentially contributing to the contamination of packaged leafy greens implicated in the outbreak of salmonella typhimurium during the summer of 2021.2021Available from: https://www.fda.gov/food/outbreaks-foodborne-illness/factors-potentially-contributing-contamination-packaged-leafy-greens-implicated-outbreak-salmonellaaccessed Jan. 29, 2023
  96. Outbreak of E. coli infections linked to romaine lettuce.2023Available from: https://www.cdc.gov/ecoli/2019/o157h7-11-19/index.html#:~:text=CDC%2C%20public%20health%20and%20regulatory%20officials%20in%20several,15%2C%202020%2C%20this%20outbreak%20appears%20to%20be%20overaccessed Jan. 29, 2023
  97. National outbreak reporting system (NORS)2023Available from: https://wwwn.cdc.gov/norsdashboard/ accessed Jan. 29, 2023
  98. OlaimatA.N. HolleyR.A. Factors influencing the microbial safety of fresh produce: A review.Food Microbiol.201232111910.1016/j.fm.2012.04.01622850369
    [Google Scholar]
  99. XuA. BuchananR.L. MicallefS.A. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.Int. J. Food Microbiol.2016224283910.1016/j.ijfoodmicro.2016.02.01326938806
    [Google Scholar]
  100. CoulombeG. CatfordA. Martinez-PerezA. BuenaventuraE. Outbreaks of Escherichia coli O157: H7 infections linked to Romaine lettuce in Canada from 2008 to 2018: An analysis of food safety context.J. Food Prot.20208381444146210.4315/JFP‑20‑02932297933
    [Google Scholar]
  101. KyereE.O. PalmerJ. WargentJ.J. FletcherG.C. FlintS. Colonisation of lettuce by Listeria Monocytogenes.Int. J. Food Sci. Technol.2019541142410.1111/ijfs.13905
    [Google Scholar]
  102. ZarkaniA.A. SchikoraA. Mechanisms adopted by Salmonella to colonize plant hosts.Food Microbiol.20219910383310.1016/j.fm.2021.10383334119117
    [Google Scholar]
  103. BrandlM.T. AmundsonR. Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica. Appl. Environ. Microbiol.20087482298230610.1128/AEM.02459‑0718310433
    [Google Scholar]
  104. AtwillE.R. ChaseJ.A. OryangD. BondR.F. KoikeS.T. CahnM.D. AndersonM. MokhtariA. DennisS. Transfer of Escherichia coli O157:H7 from simulated wildlife scat onto romaine lettuce during foliar irrigation.J. Food Prot.201578224024710.4315/0362‑028X.JFP‑14‑27725710137
    [Google Scholar]
  105. ChiozziV. AgriopoulouS. VarzakasT. Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing.Appl. Sci. (Basel)2022124220210.3390/app12042202
    [Google Scholar]
  106. Avena-BustillosR.J. KlausnerN. MilczarekR. Alemán-HidalgoD.M. Terán-CabanillasE. WangH. WangL. McHughT.H. HaffR.P. Upcycling Romaine lettuce outer leaves by infrared blanching and hot air drying.J. Food Sci.20248941988200010.1111/1750‑3841.1697738372192
    [Google Scholar]
  107. DeesM.W. LysøeE. NordskogB. BrurbergM.B. Bacterial communities associated with surfaces of leafy greens: shift in composition and decrease in richness over time.Appl. Environ. Microbiol.20158141530153910.1128/AEM.03470‑1425527554
    [Google Scholar]
  108. BejenaruL.E. RaduA. SegneanuA.E. BiţăA. MandaC.V. MogoşanuG.D. BejenaruC. Innovative strategies for upcycling agricultural residues and their various pharmaceutical applications.Plants20241315213310.3390/plants1315213339124251
    [Google Scholar]
  109. Punia BangarS. ChaudharyV. KajlaP. BalakrishnanG. PhimolsiripolY. Strategies for upcycling food waste in the food production and supply chain.Trends Food Sci. Technol.202414310431410.1016/j.tifs.2023.104314
    [Google Scholar]
  110. Castro-MuñozR. FílaV. Membrane-based technologies as an emerging tool for separating high-added-value compounds from natural products.Trends Food Sci. Technol.20188282010.1016/j.tifs.2018.09.017
    [Google Scholar]
  111. MahishP.K. VermaD.K. GhritlahareA. AroraC. OteroP. Microbial bioconversion of food waste to bio-fertilizers.Sustainable Food Technol.20242368970810.1039/D3FB00041A
    [Google Scholar]
  112. IdrishiR. AggarwalD. SharmaV. SehgalS. SinghB. SharmaV. Upcycling technologies in the food industrySmart Sustainable Food Technol.Springer NatureSingapore202236739210.1007/978‑981‑19‑1746‑2_13
    [Google Scholar]
  113. GalanakisC.M. Sustainable applications for the valorization of cereal processing by-products.Foods202211224110.3390/foods1102024135053973
    [Google Scholar]
  114. Ananey-ObiriD. MatthewsL.G. GalanakisC.M. Tahergorabi. Proteins from Fish Processing By-Products.Proteins: Sustainable Source, Processing and Applications.Academic Press201916319110.1016/B978‑0‑12‑816695‑6.00006‑4
    [Google Scholar]
  115. RaoM. BastA. de BoerA. Valorized food processing by-products in the EU: Finding the balance between safety, nutrition, and sustainability.Sustainability (Basel)2021138442810.3390/su13084428
    [Google Scholar]
  116. AhlbornJ. StephanA. MeckelT. MaheshwariG. RühlM. ZornH. Upcycling of food industry side streams by basidiomycetes for production of a vegan protein source.Int. J. Recycl. Org. Waste Agric.20198S1Suppl. 144745510.1007/s40093‑019‑00317‑4
    [Google Scholar]
  117. Linares-MoralesJ.R. Salmerón-OchoaI. Rivera-ChaviraB.E. Gutiérrez-MéndezN. Pérez-VegaS.B. Nevárez-MoorillónG.V. Influence of culture media formulated with agroindustrial wastes on the antimicrobial activity of lactic acid bacteria.J. Microbiol. Biotechnol.2022321647110.4014/jmb.2107.0703034675139
    [Google Scholar]
  118. PelleraF.M. RegkouzasP. ManolikakiI. DiamadopoulosE. Biochar production from waste biomass: Characterization and evaluation for agronomic and environmental applications.Detritus20211717152910.31025/2611‑4135/2021.15146
    [Google Scholar]
  119. GhazanfarS. AbdullahM. UmmarR. ShabbirR. SaqibS. Effect of sustainability claim on willingness to pay for upcycled food in digital era: Differential effect of sustainability claim between virtue and vice product category.Front. Environ. Sci.20221087040110.3389/fenvs.2022.870401
    [Google Scholar]
  120. Velasco-MuñozJ.F. MendozaJ.M.F. Aznar-SánchezJ.A. Gallego-SchmidA. Circular economy implementation in the agricultural sector: Definition, strategies and indicators.Resour. Conserv. Recycling202117010561810.1016/j.resconrec.2021.105618
    [Google Scholar]
  121. Transforming our world: The 2030 agenda for sustainable development.2023Available from: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf accessed August 15, 2023
  122. RastogiN.K. Recent trends and developments in infrared heating in food processing.Crit. Rev. Food Sci. Nutr.201252973776010.1080/10408398.2010.50813822698266
    [Google Scholar]
  123. ZhuY. PanZ. McHughT.H. Effect of dipping treatments on color stabilization and texture of apple cubes for infrared dry-blanching process.J. Food Process. Preserv.200731563264810.1111/j.1745‑4549.2007.00154.x
    [Google Scholar]
  124. García-RochaK. Capaceta-OsunaA. Ochoa-AcostaA. Avena-BustillosR. J. Osuna-MartínezU. Cárdenas-TorresF. I. YokoyamaW. H. McHughT. H. Terán-CabanillasE. Upcycled romaine lettuce powder as dietary supplement for control of metabolic syndrome.ACS Food Sci. Technol.20233810.1021/acsfoodscitech.3c00204
    [Google Scholar]
/content/journals/cff/10.2174/0126668629332483241021045904
Loading
/content/journals/cff/10.2174/0126668629332483241021045904
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test