Skip to content
2000
Volume 3, Issue 3
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Epilepsy is a persistent neurological disorder distinguished by repetitive episodes of seizures that presents notable complexities for patients and healthcare providers. While pharmacotherapy remains fundamental in its management, the emergence of functional foods and nutraceuticals has garnered attention as adjunctive therapeutic options. This review examines the role of functional foods and nutraceuticals in epilepsy management, examining their mechanisms of action, evidence-based efficacy, and safety profiles. The review delineates various functional foods and nutraceuticals exhibiting promise in epilepsy management, encompassing omega-3 fatty acids, the ketogenic diet, flavonoids, vitamins, and minerals. Mechanically, these substances modulate neuronal excitability, neurotransmitter release, and neuroinflammation, thus exerting anticonvulsant effects. Furthermore, they may augment the efficacy of conventional antiepileptic drugs while mitigating their adverse effects. Clinical investigations assessing the efficacy of functional foods and nutraceuticals in epilepsy management have yielded encouraging findings, albeit necessitating further inquiry to ascertain optimal dosing protocols and long-term safety considerations. Additionally, challenges such as bioavailability, formulation standardization, and patient adherence warrant attention to optimize therapeutic outcomes.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629329853241028081157
2024-12-03
2025-12-09
Loading full text...

Full text loading...

References

  1. WHOEpilepsy.2024Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy#:~:text=Rates%20of%20disease,Epilepsy%20accounts%20for%20a%20significant%20proportion%20of%20the%20world's%20disease,and%2010%20per%201000%20people (accessed on 8-10-2024)
    [Google Scholar]
  2. ZackM. KobauR. Letter re: Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies.Neurology2017896641110.1212/WNL.0000000000004205 28784638
    [Google Scholar]
  3. OgunniyiA. Global evidence generation.Oxford Textbook of Neurologic and Neuropsychiatric Epidemiology.OxfordAcademic2020
    [Google Scholar]
  4. FeiginV.L. VosT. AlahdabF. Burden of neurological disorders across the US from 1990-2017: a global burden of disease study.JAMA Neurol.202178216517610.1001/jamaneurol.2020.4152 33136137
    [Google Scholar]
  5. ChernovD. SornetteD. ChernovD. SornetteD. Specific features of risk management in the industrial and agricultural sectors.critical risks of different economic sectors: based on the analysis of more than 500 incidents, accidents and disasters. Springer202010.1007/978‑3‑030‑25034‑8_2
    [Google Scholar]
  6. Ali ArazeemA. Tahirah AdedolapoI. Joseph AlabiO. Shame, stigma, and social exclusion: The lived experiences of epileptic patients in a health facility in Ilorin, Nigeria.Glob. Public Health202217123839385210.1080/17441692.2022.2092174 35748774
    [Google Scholar]
  7. OgunsuyiO.B. AroP.O. UmarH.I. ObohG. Administration of curcumin plus treadmill exercise modulate some neuronal enzyme activities, redox markers and BDNF mRNA expression in pilocarpine-induced epileptic seizure in rats.Neurochem. J.202317346747610.1134/S1819712423030145
    [Google Scholar]
  8. St LouisE.K. Minimizing AED adverse effects: improving quality of life in the interictal state in epilepsy care.Curr. Neuropharmacol.20097210611410.2174/157015909788848857 19949568
    [Google Scholar]
  9. OgunsuyiO.B. AdeoyoO. ObohG. Food-drug interaction: new paradigm in therapeutic potentials of functional foods. in: functional foods: Unlocking the medicine in foods.Graceland Prints2017
    [Google Scholar]
  10. ObohG. AdemosunA.O. OgunsuyiO.B. Quercetin and its role in chronic diseases.Adv. Exp. Med. Biol.201692937738710.1007/978‑3‑319‑41342‑6_17 27771934
    [Google Scholar]
  11. KimJ.H. KimD.H. JoS. Immunomodulatory functional foods and their molecular mechanisms.Exp. Mol. Med.202254111110.1038/s12276‑022‑00724‑0 35079119
    [Google Scholar]
  12. VenkatakrishnanK. ChiuH.F. WangC.K. Impact of functional foods and nutraceuticals on high blood pressure with a special focus on meta-analysis: review from a public health perspective.Food Funct.20201142792280410.1039/D0FO00357C 32248209
    [Google Scholar]
  13. AjeeshkumarK.K. AneeshP.A. RajuN. SuseelaM. RavishankarC.N. BenjakulS. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review.Compr. Rev. Food Sci. Food Saf.20212021280130610.1111/1541‑4337.12725 33665991
    [Google Scholar]
  14. NatarajB.H. AliS.A. BehareP.V. YadavH. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods.Microb. Cell Fact.202019116810.1186/s12934‑020‑01426‑w 32819443
    [Google Scholar]
  15. GranatoD. BarbaF.J. Bursać KovačevićD. LorenzoJ.M. CruzA.G. PutnikP. Functional foods: Product development, technological trends, efficacy testing, and safety.Annu. Rev. Food Sci. Technol.202011193118a10.1146/annurev‑food‑032519‑051708 31905019
    [Google Scholar]
  16. SarmastS.T. AbdullahiA.M. JahanN. Current classification of seizures and epilepsies: scope, limitations and recommendations for future action.Cureus2020129e1054910.7759/cureus.10549 33101797
    [Google Scholar]
  17. De Oliveira CostaL.L. BrandãoE.C. SegundoL.M.D.B.M. Update on epilepsy: literature review.Rev. Med. (São Paulo)2020992170181
    [Google Scholar]
  18. RineyK. BogaczA. SomervilleE. HirschE. NabboutR. SchefferI.E. ILAE Classification and definition of epilepsy syndromes with onset at a variable age: position statement by the ILAE task force on nosology and definitions. Currently in review by the ILAE.2021Available from: https://www.ilae.org/guidelines/definition-and-classification/proposed-classificationand-definition-of-epilepsy-syndromes/proposed-classification-syndromeswith-onset-at-variable-ages (accessed on 8-10-2024)
    [Google Scholar]
  19. NascimentoF.A. FriedmanD. PetersJ.M. Focal epilepsies: Update on diagnosis and classification.Epileptic Disord.202325111710.1002/epd2.20045 36938903
    [Google Scholar]
  20. ChowdhuryF.A. SilvaR. WhatleyB. WalkerM.C. Localisation in focal epilepsy: a practical guide.Pract. Neurol.202121648149110.1136/practneurol‑2019‑002341 34404748
    [Google Scholar]
  21. KangJ.Q. Epileptic mechanisms shared by Alzheimer’s disease: Viewed via the unique lens of genetic epilepsy.Int. J. Mol. Sci.20212213713310.3390/ijms22137133 34281185
    [Google Scholar]
  22. SumadewiK.T. HarkitasariS. TjandraD.C. Biomolecular mechanisms of epileptic seizures and epilepsy: a review.Acta Epileptol.2023512810.1186/s42494‑023‑00137‑0
    [Google Scholar]
  23. FisherR.S. AcharyaJ.N. BaumerF.M. Visually sensitive seizures: An updated review by the Epilepsy Foundation.Epilepsia202263473976810.1111/epi.17175 35132632
    [Google Scholar]
  24. PatelP. MoshéS.L. The evolution of the concepts of seizures and epilepsy: What’s in a name?Epilepsia Open202051223510.1002/epi4.12375 32140641
    [Google Scholar]
  25. BartolomeiF.A. BlumenfeldH. Epilepsy and consciousness.Neurobiology of the Epilepsies: From Epilepsy: A Comprehensive Textbook.Lippincott Williams & Wilkins2022
    [Google Scholar]
  26. Mohammed Mohammed AshryA.A. FarwizH.M. AbdelrasoulR.B. Semiology of epileptic seizures: Assiut University Hospital-based study.J Curr Med Res Pract20216212813310.4103/JCMRP.JCMRP_71_19
    [Google Scholar]
  27. Mantoan RitterL. NilssonC. Seizures and epilepsy in dementia: Diagnosis and management.Management of patients with dementia: The role of the physician.Springer Nature202110.1007/978‑3‑030‑77904‑7_12
    [Google Scholar]
  28. AungT. TenneyJ.R. BagićA.I. Contributions of magnetoencephalography to Understanding mechanisms of generalized epilepsies: Blurring the boundary between focal and generalized epilepsies?Front. Neurol.20221383154610.3389/fneur.2022.831546 35572923
    [Google Scholar]
  29. San-JuanD. Rodríguez-MéndezD.A. Epilepsy as a disease affecting neural networks: a neurophysiological perspective.Neurología (Engl. Ed.)202338211412310.1016/j.nrleng.2020.06.016 36396092
    [Google Scholar]
  30. CarboniM. De StefanoP. VorderwülbeckeB.J. Abnormal directed connectivity of resting state networks in focal epilepsy.Neuroimage Clin.20202710233610.1016/j.nicl.2020.102336 32679553
    [Google Scholar]
  31. SarloG.L. HoltonK.F. Brain concentrations of glutamate and GABA in human epilepsy: A review.Seizure20219121322710.1016/j.seizure.2021.06.028 34233236
    [Google Scholar]
  32. CherubiniE. Di CristoG. AvoliM. Dysregulation of GABAergic signaling in neurodevelomental disorders: targeting cation-chloride co-transporters to re-establish a proper E/I balance.Front. Cell. Neurosci.20221581344110.3389/fncel.2021.813441 35069119
    [Google Scholar]
  33. HallettM. DelRossoL.M. ElbleR. Evaluation of movement and brain activity.Clin. Neurophysiol.2021132102608263810.1016/j.clinph.2021.04.023 34488012
    [Google Scholar]
  34. FreyK. ZöllnerJ.P. KnakeS. Risk incidence of fractures and injuries: a multicenter video-EEG study of 626 generalized convulsive seizures.J. Neurol.2020267123632364210.1007/s00415‑020‑10065‑5 32651672
    [Google Scholar]
  35. KaulS. BabuP.S. Epileptic Seizures.MIMICS of Epileptic Seizures.Jaypee Brothers Medical Publishers2020
    [Google Scholar]
  36. RameshV. Managing Epilepsy in Low Resource Settings.Child Refugee and Migrant Health: A Manual for Health Professionals.ChamSpringer International Publishing202142544010.1007/978‑3‑030‑74906‑4_30
    [Google Scholar]
  37. van der VeenS. CavinessJ.N. DreissenY.E.M. Myoclonus and other jerky movement disorders.Clin. Neurophysiol. Pract.2022728531610.1016/j.cnp.2022.09.003 36324989
    [Google Scholar]
  38. SamiaP. WilmshurstJ.M. Common childhood epilepsy mimics.Clinical Child Neurology.Springer202010.1007/978‑3‑319‑43153‑6_23
    [Google Scholar]
  39. AnwarH. KhanQ.U. NadeemN. PervaizI. AliM. CheemaF.F. Epileptic seizures.Discoveries (Craiova)202082e11010.15190/d.2020.7 32577498
    [Google Scholar]
  40. CrunelliV. LőrinczM.L. McCaffertyC. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures.Brain202014382341236810.1093/brain/awaa072 32437558
    [Google Scholar]
  41. RinaldiV.E. Di CaraG. MencaroniE. VerrottiA. Therapeutic options for childhood absence epilepsy.Pediatr. Rep.202113465866710.3390/pediatric13040078 34941639
    [Google Scholar]
  42. ManoleA. SirbuC. MititeluM. State of the art and challenges in epilepsy—a narrative review.J. Pers. Med.202313462310.3390/jpm13040623 37109008
    [Google Scholar]
  43. BaroneV. van PuttenM.J.A.M. VisserG.H. Absence epilepsy: Characteristics, pathophysiology, attention impairments, and the related risk of accidents. A narrative review.Epilepsy Behav.202011210734210.1016/j.yebeh.2020.107342 32861896
    [Google Scholar]
  44. HowardR. KullmannD. PagetA. SpillaneJ. WaraichM. Disorders of Consciousness and Intensive Care Neurology.Neurology: A Queen Square Textbook.Wiley202410.1002/9781119715672.ch28
    [Google Scholar]
  45. ZawarI. ToribioM.G.G. XuX. Epilepsy with Eyelid myoclonias - A diagnosis concealed in other genetic generalized epilepsies with photoparoxysmal response.Epilepsy Res.202218110688610.1016/j.eplepsyres.2022.106886 35180638
    [Google Scholar]
  46. ZhaoL. SunZ. YangL. CuiR. YangW. LiB. Neuropharmacological effects of aconiti lateralis radix praeparata.Clin. Exp. Pharmacol. Physiol.202047453154210.1111/1440‑1681.13228 31837236
    [Google Scholar]
  47. HermannB.P. StruckA.F. BuschR.M. ReyesA. KaestnerE. McDonaldC.R. Neurobehavioural comorbidities of epilepsy: towards a network-based precision taxonomy.Nat. Rev. Neurol.2021171273174610.1038/s41582‑021‑00555‑z 34552218
    [Google Scholar]
  48. ShlobinN.A. SinghG. NewtonC.R. SanderJ.W. Classifying epilepsy pragmatically: Past, present, and future.J. Neurol. Sci.202142711751510.1016/j.jns.2021.117515 34174531
    [Google Scholar]
  49. WirrellE.C. RineyK. SpecchioN. ZuberiS.M. How have the recent updated epilepsy classifications impacted on diagnosis and treatment?Expert Rev. Neurother.2023231196998010.1080/14737175.2023.2254937 37676056
    [Google Scholar]
  50. ReisF.S. MartinsA. VasconcelosM.H. MoralesP. FerreiraI.C.F.R. Functional foods based on extracts or compounds derived from mushrooms.Trends Food Sci. Technol.201766486210.1016/j.tifs.2017.05.010
    [Google Scholar]
  51. PisaniF. SpagnoliC. What are the considerations when initiating treatment for epilepsy in children?Expert Rev. Neurother.202323121081109610.1080/14737175.2023.2288107 38032395
    [Google Scholar]
  52. FalaceA. VolpedoG. ScalaM. ZaraF. StrianoP. FassioA. V-ATPase dysfunction in the brain: Genetic insights and therapeutic opportunities.Cells20241317144110.3390/cells13171441 39273013
    [Google Scholar]
  53. ChandrasekaraA. Josheph KumarT. Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits.Int. J. Food Sci.2016201611510.1155/2016/3631647 27127779
    [Google Scholar]
  54. NilssonJ. SternerO. Modulation of GABA(A) receptors by natural products and the development of novel synthetic ligands for the benzodiazepine binding site.Curr. Drug Targets201112111674168810.2174/138945011798109509 21561420
    [Google Scholar]
  55. ZhuH.L. WanJ.B. WangY.T. Medicinal compounds with antiepileptic/anticonvulsant activities.Epilepsia201455131610.1111/epi.12463 24299155
    [Google Scholar]
  56. VarzakasT. ZakynthinosG. VerpoortF. Plant food residues as a source of nutraceuticals and functional foods.Foods2016548810.3390/foods5040088 28231183
    [Google Scholar]
  57. OgunsuyiO.B. OgunrukuO.O. UmarH.I. ObohG. Effect of curcumin–donepezil combination on spatial memory, astrocyte activation, and cholinesterase expressions in brain of scopolamine-treated rats.Mol. Biol. Rep.202451186410.1007/s11033‑024‑09712‑1 39073463
    [Google Scholar]
  58. BuenafeO.E. Orellana-PaucarA. MaesJ. Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models.ACS Chem. Neurosci.20134111479148710.1021/cn400140e 23937066
    [Google Scholar]
  59. LinT.Y. LuC.W. HuangS.K. WangS.J. Tanshinone IIA, a constituent of Danshen, inhibits the release of glutamate in rat cerebrocortical nerve terminals.J. Ethnopharmacol.2013147248849610.1016/j.jep.2013.03.045 23542145
    [Google Scholar]
  60. TanX. ChengX. YangY. Tanshinone II-A sodium sulfonate (DS-201) enhances human BKCa channel activity by selectively targeting the pore-forming α subunit.Acta Pharmacol. Sin.201435111351136310.1038/aps.2014.85 25345746
    [Google Scholar]
  61. HeX.Q. HuangJ.M. LiuG.J. LiJ. FuX.P. Effect of pueraria flavone on NF-kB mrna and il-10mrna expression in hippocampus of epileptic rats.Chin Foreign Med Res2019171315
    [Google Scholar]
  62. ShengF. ChenM. TanY. Protective effects of otophylloside N on pentylenetetrazol-induced neuronal injury in vitro and in vivo.Front. Pharmacol.2016722410.3389/fphar.2016.00224 27504096
    [Google Scholar]
  63. TambeR. PatilA. JainP. SanchetiJ. SomaniG. SathayeS. Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy.Pharm. Biol.201755126426810.1080/13880209.2016.1260597 27927066
    [Google Scholar]
  64. PanX. LiZ. ZhouQ. Structure of the human voltage-gated sodium channel Na v 1.4 in complex with β1.Science20183626412eaau248610.1126/science.aau2486 30190309
    [Google Scholar]
  65. KimS.R. Control of granule cell dispersion by natural materials such as eugenol and naringin: a potential therapeutic strategy against temporal lobe epilepsy.J. Med. Food201619873073610.1089/jmf.2016.3712 27404051
    [Google Scholar]
  66. ShaoH. YangY. MiZ. Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy.Neuroscience201633733735536910.1016/j.neuroscience.2016.09.029 27670903
    [Google Scholar]
  67. VanellaR. 2015
  68. XieW. ChenW.J. MengC.X. Effect of Bupleuronin A on p-glycoprotein expression in multidrug resistant epileptic rats.Chin J E Formulol2013192299903
    [Google Scholar]
  69. LeeJ.M. HongJ. MoonG.J. JungU.J. WonS.Y. KimS.R. Morin prevents granule cell dispersion and neurotoxicity via suppression of mTORC1 in a kainic acid-induced seizure model.Exp. Neurobiol.201827322623710.5607/en.2018.27.3.226 30022874
    [Google Scholar]
  70. YuanS.Y. LiuJ.M. Advances in the pharmacology of α-asarum.J Integrat Chin West Med Cardio Cerebrovascul Dis2020186769
    [Google Scholar]
  71. ParkG.Y. KimY.S. KimY.H. Omega-3 Oxidation State of Fish and Algae Oil Supplements in South Korea.Hangug. Sigpum Wisaeng Anjeonseong Haghoeji201934548048810.13103/JFHS.2019.34.5.480
    [Google Scholar]
  72. SchlangerS. ShinitzkyM. YamD. Diet enriched with omega-3 fatty acids alleviates convulsion symptoms in epilepsy patients.Epilepsia200243110310410.1046/j.1528‑1157.2002.13601.x 11879394
    [Google Scholar]
  73. YuenA.W.C. FlugelD. PoepelA. BellG.S. PeacockJ.L. SanderJ.W. Non-randomized open trial of eicosapentaenoic acid (EPA), an omega-3 fatty acid, in ten people with chronic epilepsy.Epilepsy Behav.201223337037210.1016/j.yebeh.2011.11.030 22342198
    [Google Scholar]
  74. DahlinM. HjelteL. NilssonS. ÅmarkP. Plasma phospholipid fatty acids are influenced by a ketogenic diet enriched with n-3 fatty acids in children with epilepsy.Epilepsy Res.200773219920710.1016/j.eplepsyres.2006.10.005 17150333
    [Google Scholar]
  75. KimJ.E. ChoK.O. Functional Nutrients for Epilepsy.Nutrients2019116130910.3390/nu11061309 31185666
    [Google Scholar]
  76. HollóA. ClemensZ. KamondiA. LakatosP. SzűcsA. Correction of vitamin D deficiency improves seizure control in epilepsy: A pilot study.Epilepsy Behav.201224113113310.1016/j.yebeh.2012.03.011 22503468
    [Google Scholar]
  77. ZakharovaI. SokolovaT. VlasovaY. BayunovaL. RychkovaM. AvrovaN. Alpha-tocopherol at nanomolar concentration protects cortical neurons against oxidative stress.Int. J. Mol. Sci.201718121610.3390/ijms18010216 28117722
    [Google Scholar]
  78. AkomolafeS.F. AkinyemiA.J. OgunsuyiO.B. Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain—In vitro.Neurotoxicology20176261310.1016/j.neuro.2017.04.008 28465162
    [Google Scholar]
  79. AkinyemiA.J. ObohG. OyeleyeS.I. OgunsuyiO. Anti-amnestic effect of curcumin in combination with donepezil, an anticholinesterase drug: Involvement of cholinergic system.Neurotox. Res.201731456056910.1007/s12640‑017‑9701‑5 28102474
    [Google Scholar]
  80. PrakashC. TyagiJ. RabidasS.S. KumarV. SharmaD. Therapeutic potential of quercetin and its derivatives in epilepsy: evidence from preclinical studies.Neuromolecular Med.202325216317810.1007/s12017‑022‑08724‑z 35951285
    [Google Scholar]
  81. OgunsuyiO.B. AdemiluyiA.O. ObohG. OyeleyeS.I. DadaA.F. Green leafy vegetables from two Solanum spp. (Solanum nigrum L and Solanum macrocarpon L) ameliorate scopolamine‐induced cognitive and neurochemical impairments in rats.Food Sci. Nutr.20186486087010.1002/fsn3.628 29983948
    [Google Scholar]
  82. RodriguezE.B. FlavierM.E. Rodriguez-AmayaD.B. Amaya-FarfánJ. Phytochemicals and functional foods. Current situation and prospect for developing countries.Segur. Aliment. Nutr.201513112210.20396/san.v13i1.1841
    [Google Scholar]
  83. KennedyD. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review.Nutrients2016826810.3390/nu8020068 26828517
    [Google Scholar]
  84. OjewoleJ.A.O. AmabeokuG.J. Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice.Phytother. Res.200620869670010.1002/ptr.1940 16775810
    [Google Scholar]
  85. KirklandA.E. SarloG.L. HoltonK.F. The role of magnesium in neurological disorders.Nutrients201810673010.3390/nu10060730 29882776
    [Google Scholar]
  86. NehligA. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance.Br. J. Clin. Pharmacol.201375371672710.1111/j.1365‑2125.2012.04378.x 22775434
    [Google Scholar]
  87. KhalidW. MaqboolZ. ArshadM.S. Plant-derived functional components: prevent from various disorders by regulating the endocrine glands.Int. J. Food Prop.202225197699510.1080/10942912.2022.2070643
    [Google Scholar]
  88. LeeD.G. LeeY. ShinH. Seizures related to vitamin B6 Deficiency in adults.J. Epilepsy Res.201551232410.14581/jer.15006 26157671
    [Google Scholar]
  89. IsmailS. EljazzarS. GanjiV. Intended and unintended benefits of folic acid fortification-a narrative review.Foods2023128161210.3390/foods12081612 37107407
    [Google Scholar]
  90. SilvestroS. MammanaS. CavalliE. BramantiP. MazzonE. Use of cannabidiol in the treatment of epilepsy: efficacy and security in clinical trials.Molecules2019248145910.3390/molecules24081459 31013866
    [Google Scholar]
  91. TordjmanS. ChokronS. DelormeR. Melatonin: Pharmacology, functions and therapeutic benefits.Curr. Neuropharmacol.201715343444310.2174/1570159X14666161228122115 28503116
    [Google Scholar]
  92. Gómez-PinillaF. Brain foods: the effects of nutrients on brain function.Nat. Rev. Neurosci.20089756857810.1038/nrn2421 18568016
    [Google Scholar]
  93. WalA. SrivastavaA. VermaN. PandeyS.S. TyagiS. The role of nutraceutical supplements in the treatment of irritable bowel syndrome: A mini review.Curr. Pediatr. Rev.2024201667510.2174/1573396319666230102121953 36593535
    [Google Scholar]
  94. AkyuzE. PaudelY.N. PolatA.K. DundarH.E. AngelopoulouE. Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities.Epilepsy Behav.202111510770110.1016/j.yebeh.2020.107701 33412369
    [Google Scholar]
  95. PasinettiG.M. WangJ. HoL. ZhaoW. DubnerL. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment.Biochim. Biophys. Acta Mol. Basis Dis.2015185261202120810.1016/j.bbadis.2014.10.006 25315300
    [Google Scholar]
  96. ThalkariA.B. KarwaP.N. ThoratV.M. JadhavS.K. Overview of neutraceuticals.Res J Pharmacol Pharmacodyn202012313010.5958/2321‑5836.2020.00023.3
    [Google Scholar]
  97. AqilM. BatraA. Cosmeceuticals and cosme-neutraceuticals: new paradigms in cosmetology; A letter.J Skin & Stem Cell20206110.5812/jssc.99298
    [Google Scholar]
  98. SeoEY HaAW KimWK α-Lipoic acid reduced weight gain and improved the lipid profile in rats fed with high fat diet.Nutr. Res. Pract.20126319520010.4162/nrp.2012.6.3.195 22808342
    [Google Scholar]
  99. ShaheenH.M. AlsenosyA.A. Nuclear factor kappa B inhibition as a therapeutic target of nutraceuticals in arthritis, osteoarthritis, and related inflammation. Bioactive Food as dietary interventions for arthritis and related inflammatory diseases.Elsevier201943745310.1016/B978‑0‑12‑813820‑5.00025‑8
    [Google Scholar]
  100. MuscoloA. MariateresaO. GiulioT. MariateresaR. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases.Int. J. Mol. Sci.2024256326410.3390/ijms25063264 38542238
    [Google Scholar]
  101. BegaD. MalkaniR. Alternative treatment of restless legs syndrome: an overview of the evidence for mind–body interventions, lifestyle interventions, and neutraceuticals.Sleep Med.2016179910510.1016/j.sleep.2015.09.009 26847981
    [Google Scholar]
  102. GeorgeJ. KulkarniC. SarmaG.R.K. Antiepileptic drugs and quality of life in patients with epilepsy: A tertiary care hospital-based study.Value Health Reg. Issues201561610.1016/j.vhri.2014.07.009 29698179
    [Google Scholar]
  103. GharibnaseriZ. KebriaeezadehA. NikfarS. ZamaniG. AbdollahiaslA. Cost-effectiveness of adding-on new antiepileptic drugs to conventional regimens in controlling intractable seizures in children.Daru20122011710.1186/2008‑2231‑20‑17 23351726
    [Google Scholar]
  104. MovahedpourA. TaghvaeefarR. Asadi-PooyaA.A. Nano‐delivery systems as a promising therapeutic potential for epilepsy: Current status and future perspectives.CNS Neurosci. Ther.202329113150315910.1111/cns.14355 37452477
    [Google Scholar]
  105. NasopoulouC. KarantonisH.C. DetopoulouM. DemopoulosC.A. ZabetakisI. Exploiting the anti-inflammatory properties of olive (Olea europaea) in the sustainable production of functional food and neutraceuticals.Phytochem. Rev.201413244545810.1007/s11101‑014‑9350‑8
    [Google Scholar]
  106. WanjariA.S. DesaiP.R. Standardization of some herbal and neutraceuticals product.Research J Pharmacog. Phytochem.a20157313310.5958/0975‑4385.2015.00023.0
    [Google Scholar]
  107. ThambiA. ChakrabortyK. Brown and red marine macroalgae as novel bioresources of promising medicinal properties.J. Aquat. Food Prod. Technol.202231322724110.1080/10498850.2022.2035877
    [Google Scholar]
  108. TamangJ.P. ShinD.H. JungS.J. ChaeS.W. Functional Properties of Microorganisms in Fermented Foods.Front. Microbiol.2016757810.3389/fmicb.2016.00578 27199913
    [Google Scholar]
  109. MitsuokaT. Development of functional foods.Biosci. Microbiota Food Health201433311712810.12938/bmfh.33.117 25032085
    [Google Scholar]
  110. BüyükkaragözA. BasM. SağlamD. CengizŞ.E. Consumers’ awareness, acceptance and attitudes towards functional foods in T urkey.Int. J. Consum. Stud.201438662863510.1111/ijcs.12134
    [Google Scholar]
  111. AsliE. Consumption of functional foods in Europe; a systematic review.Nutr. Hosp.2014293470478
    [Google Scholar]
  112. BrečićR. GortonM. BarjolleD. Understanding variations in the consumption of functional foods – evidence from Croatia.Br. Food J.2014116466267510.1108/BFJ‑05‑2012‑0133
    [Google Scholar]
  113. BradleeM.L. MustafaJ. SingerM.R. MooreL.L. High-protein foods and physical activity protect against age-related muscle loss and functional decline.J Gerontol Ser A201873889410.1093/gerona/glx070
    [Google Scholar]
  114. ZengY. YangJ. DuJ. Strategies of functional foods promote sleep in human being.Curr. Signal Transduct. Ther.20159314815510.2174/1574362410666150205165504 26005400
    [Google Scholar]
  115. Al-SherajiS.H. IsmailA. ManapM.Y. MustafaS. YusofR.M. HassanF.A. Prebiotics as functional foods: A review.J. Funct. Foods2013541542155310.1016/j.jff.2013.08.009
    [Google Scholar]
  116. ShibyV.K. MishraH.N. Fermented milks and milk products as functional foods-a review.Crit. Rev. Food Sci. Nutr.201353548249610.1080/10408398.2010.547398 23391015
    [Google Scholar]
  117. HouY. JiangJ.G. Origin and concept of medicine food homology and its application in modern functional foods.Food Funct.20134121727174110.1039/c3fo60295h 24100549
    [Google Scholar]
  118. GalvanD. EfftingL. CremascoH. Conte-JuniorC.A. Recent applications of mixture designs in beverages, foods, and pharmaceutical health: A systematic review and meta-analysis.Foods2021108194110.3390/foods10081941 34441717
    [Google Scholar]
  119. TselaeseleN. BultosaG. MolapisiM. Plant-based traditional foods and beverages of Gumare Village, Botswana. Food Production.Processing and Nutrition2023512810.1186/s43014‑023‑00142‑3
    [Google Scholar]
  120. DolgopolovaI. TeuberR. BruschiV. Consumers’ perceptions of functional foods: trust and food‐neophobia in a cross‐cultural context.Int. J. Consum. Stud.201539670871510.1111/ijcs.12184
    [Google Scholar]
  121. ThakurG. BagM. SanodiyaB. Chlorophytum borivilianum: a white gold for biopharmaceuticals and neutraceuticals.Curr. Pharm. Biotechnol.200910765066610.2174/138920109789542084 19751181
    [Google Scholar]
  122. MukherjeeA.K. KalitaP. UnniB.G. WannS.B. SaikiaD. MukhopadhyayP.K. Fatty acid composition of four potential aquatic weeds and their possible use as fish-feed neutraceuticals.Food Chem.201012341252125410.1016/j.foodchem.2010.05.057
    [Google Scholar]
  123. BaraniM. SangiovanniE. AngaranoM. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature.Int. J. Nanomedicine2021166983702210.2147/IJN.S318416 34703224
    [Google Scholar]
  124. Cetin-KaracaH. NewmanM.C. Antimicrobial efficacy of natural phenolic compounds against gram positive foodborne pathogens.J. Food Res.2015461410.5539/jfr.v4n6p14
    [Google Scholar]
  125. BlochM.H. MulqueenJ. Nutritional supplements for the treatment of ADHD.Child Adolesc. Psychiatr. Clin. N. Am.201423488389710.1016/j.chc.2014.05.002 25220092
    [Google Scholar]
  126. ErnstE. Functional foods, neutraceuticals, designer foods: Innocent fad or counterproductive marketing ploy?Eur. J. Clin. Pharmacol.200157535335510.1007/s002280100327 11599652
    [Google Scholar]
  127. OrtegaM.A. Fraile-MartínezÓ. García-MonteroC. Nutrition, epigenetics, and major depressive disorder: Understanding the connection.Front. Nutr.20229867150b10.3389/fnut.2022.867150 35662945
    [Google Scholar]
/content/journals/cff/10.2174/0126668629329853241028081157
Loading
/content/journals/cff/10.2174/0126668629329853241028081157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test