Skip to content
2000
Volume 3, Issue 3
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Introduction

Murici is valued by the local population for its healing, anti-inflammatory, and antioxidant properties, which are attributed to its phenolic compounds and carotenoids, although its quality and properties are not well-known.

Objective

This research aimed to evaluate the quality of murici pulp ( spp.) commercialized in some places of Santarém, Pará, Brazil.

Methods

Murici pulp samples were collected in Santarém and Curuá, PA, between October 2022 and January 2023. The samples were packed in plastic containers and stored in a refrigerated laboratory. Physicochemical analyses included pH, titratable acidity, total soluble solids, ash content, moisture, phenolic compounds, proteins, and sugars, following standard methods. Antioxidant activity was measured using DPPH, ABTS, and FRAP assays.

Results

Murici pulp pH ranged from 3.2 to 3.6, all within legal limits, indicating higher acidity suitable for consumption. Titratable acidity ranged from 15.89 to 63.57 meq kg−1, meeting regulatory standards. Ash content varied from 0.15% to 0.86%, moisture from 75.11% to 83.58%, and phenolic compounds from 2.73 to 3.64 mg GA g−1. Significant statistical differences were observed in all analyses, highlighting the nutritional and antioxidant potential of the pulp.

Conclusion

Murici pulp samples showed low sugar and starch concentrations but high total acidity and antioxidant capacity (DPPH, ABTS, and FRAP). pH levels met legal standards, with significant variations due to ripeness and environmental factors. The study underscores murici's health benefits and quality variations influenced by environmental conditions and processing factors.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629319879240918103950
2024-11-04
2025-09-04
Loading full text...

Full text loading...

References

  1. PereiraJ.O.P. FreitasB.M. Study of biology and polination requirements of Byrsonima crassifolia L.Rev. Cienc. Agron.2002332512
    [Google Scholar]
  2. SouzaV.C. LorenziH. Botânica sistemática: Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG IV.2019Available From: https://repositorio.usp.br/item/003104900
    [Google Scholar]
  3. BelisárioC.M. SoaresA.G. ConeglianR.C.C. PlácidoG.R. CastroC.F.S. RodriguesL.A.N. Carotenoids, sugars, ascorbic acid, total phenolics, and antioxidant activity of murici from Brazilian Cerrado during refrigerated storage.Cienc. Rural2020504e2018062010.1590/0103‑8478cr20180620
    [Google Scholar]
  4. Flora e Funga do Brasil (FFB)Jardim. Botânico do Rio de Janeiro.2024Available From: http://floradobrasil.jbrj.gov.br
  5. Centro de Referência em Informação Ambiental (CRIA)Species Link.2024Available From: http://splink.cria.org.br
    [Google Scholar]
  6. AmorimA.M. VasconcelosL.V. Silva JúniorV.S. Flora das cangas da Serra dos Carajás, Pará, Brasil: Malpighiaceae.Rodriguésia20186931221123510.1590/2175‑7860201869324
    [Google Scholar]
  7. SilvaT.E. SilvaT.E. Study of Mozzarella cheese behavior during refrigerated storage.Rev. Inst. Laticínios Cândido Tostes20197413514810.14295/2238‑6416.v74i2.754
    [Google Scholar]
  8. MorzelleM.C. BachiegaP. De SouzaE.C. Vilas BoasE.V.D.B. LamounierM.L. Chemical and physical characterization of fruits from Cerrado: Curriola, gabiroba and murici.Rev. Bras. Frutic.2015379610310.1590/0100‑2945‑036/14
    [Google Scholar]
  9. de AraújoR.R. dos SantosE.D. FariasD.B dos S. de LemosE.E.P. AlvesR.E. Byrsonima crassifolia e B. verbascifolia: Muruci.Espécies nativas da flora brasileira de valor econômico atual ou potencial: Plantas para o futuro: Região Nordeste.Brasília, DFMMA2018137146
    [Google Scholar]
  10. SiguemotoÉS Nutritional composition and functional properties of nance fruit (Byrsonima crassifolia) and drumstick (Moringa oleifera)201310.11606/D.6.2013.tde‑25092013‑083726
    [Google Scholar]
  11. de SouzaV.R. AnicetoA. AbreuJ.P. Fruit-based drink sensory, physicochemical, and antioxidant properties in the Amazon region: Murici (Byrsonima crassifolia (L.) Kunth and verbascifolia (L.) DC) and tapereba (Spondia mombin).Food Sci. Nutr.2020852341234710.1002/fsn3.1520
    [Google Scholar]
  12. de MarinsA.R. de OliveiraA.M. GomesR.L. FeihrmannA.C. GomesR.G. Compostos Bioativos em Frutas Brasileiras: Uma revisão.Dalla Nora, FM Compostos Bioativos e Suas Aplicações.CanoasMérida Publishers202132136010.4322/mp.978‑65‑994457‑7‑4.c15
    [Google Scholar]
  13. NazarenoL.S.Q. da Costa CardosoE.R. AcevedoA.K.D.O.S. SoaresA.G.A. Chemical characterization of fruit pulpes marketed in Southwest of Piauí State.Sci. Agrár. Parana.2019182185189
    [Google Scholar]
  14. SilvaC.E.F. AbudA.K.S. Tropical fruit pulps: Processing, product standardization and main control parameters for quality assurance.Braz. Arch. Biol. Technol.201760011910.1590/1678‑4324‑2017160209
    [Google Scholar]
  15. SantanaM.G. MartinezR.M. TeodoroA.J. Biological Effectsof Muri (Byrsonima spp.).Plant Specialized Metabolites: Phytochemistry, Ecology and Biotechnology Switzerland.ChamSpringer Nature202313110.1007/978‑3‑031‑30037‑0_20‑1
    [Google Scholar]
  16. da SilvaC.J. Silva SousaK.N. Ikeda-CastrillonS.K. Biodiversity and its drivers and pressures of change in the wetlands of the Upper Paraguay–Guaporé Ecotone, Mato Grosso (Brazil).Land Use Policy20154716317810.1016/j.landusepol.2015.04.004
    [Google Scholar]
  17. AlmeidaC.O.R.P. MartinezR.M. SouzaV.R. Effects of Supplementation of Murici (Byrsonima crassifolia) and Taperebá (Spondias mombin) Pulp Extracts on Food Intake, Body Parameters, and Oxidative Stress Markers in Healthy Rats.J. Med. Food2024271475910.1089/jmf.2022.0158
    [Google Scholar]
  18. DidonetA.A. FerrazI.D.K. Fruit trade of tucuma (Astrocaryum aculeatum G. Mey - Arecaceae) at local market-places in Manaus (Amazonas, Brazil).Rev. Bras. Frutic.20143635336210.1590/0100‑2945‑108/13
    [Google Scholar]
  19. DantasR.D.L. RochaA.P.T. dos Santos AraújoA. RodriguesM.D.S.A. MaranhãoT.K.L. Profile of the quality of fruit pulp sold in Campina Grande city, Paraiba state, Brazil.Rev. Verde Agroecol. Desenvolv. Sustent.2010556166
    [Google Scholar]
  20. CastroT.M.N. ZamboniP.V. DovadoniS. Cunha NetoA. RodriguesL.J. Parameters of quality of frozen fruit.Rev. Inst. Adolfo Lutz201574442643610.53393/rial.2015.v74.33496
    [Google Scholar]
  21. CarvalhoA.V. do NascimentoW.M.O. Physicochemical and Chemical Characterization of Muruci Fruit Pulp.Belém, PAEmbrapa Amazônia Oriental2016
    [Google Scholar]
  22. DambrosJ.I. StorchT.T. PegoraroC. Physicochemical properties and transcriptional changes underlying the quality of ‘Gala’ apples (Malus × domestica Borkh.) under atmosphere manipulation in long-term storage.J. Sci. Food Agric.2023103257658910.1002/jsfa.12169
    [Google Scholar]
  23. CanutoG.A.B. XavierA.A.O. NevesL.C. BenassiM de T. Physical and chemical characterization of fruit pulps from Amazonia and their correlation to free radical scavenger activity.Rev. Bras. Frutic.2010321196120510.1590/S0100‑29452010005000122
    [Google Scholar]
  24. ZenebonO. PascuetN.S. TigleaP. Métodos físico-químicos para análises de alimentos.4th edSão PauloInstituto Adolfo Lutz2008
    [Google Scholar]
  25. CavalcantiA.L. de OliveiraK.F. PaivaP.S. DiasM.V.R. da CostaS.K.P. VieiraF.F. Determination of total soluble solids contentes (ºBrix) and pH in milk drink and industrialized fruit juices.Pesqui. Bras. Odontopediatria Clin. Integr.200665764
    [Google Scholar]
  26. ThiexN. NovotnyL. CrawfordA. Determination of ash in animal feed: AOAC official method 942.05 revisited.J. AOAC Int.20129551392139710.5740/jaoacint.12‑129
    [Google Scholar]
  27. Sant’AnaL.D.O. SousaJ.P.L.M. SalgueiroF.B. LorenzonM.C.A. CastroR.N. Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity.J. Food Sci.2012771C135C14010.1111/j.1750‑3841.2011.02490.x
    [Google Scholar]
  28. SingletonV.L. OrthoferR. Lamuela-RaventósR.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent.Methods Enzymol19992991527810.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  29. KimH.K. VerpoorteR. Sample preparation for plant metabolomics.Phytochem. Anal.201021141310.1002/pca.1188
    [Google Scholar]
  30. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3
    [Google Scholar]
  31. YemmE.W. WillisA.J. The estimation of carbohydrates in plant extracts by anthrone.Biochem. J.195457350851410.1042/bj0570508
    [Google Scholar]
  32. van HandelE. Direct microdetermination of sucrose.Anal. Biochem.196822228028310.1016/0003‑2697(68)90317‑5
    [Google Scholar]
  33. MillerG.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem.195931342642810.1021/ac60147a030
    [Google Scholar]
  34. AlzahraniH.A. BoukraaL. BellikY. Evaluation of the antioxidant activity of three varieties of honey from different botanical and geographical origins.Glob. J. Health Sci.20124619110.5539/gjhs.v4n6p191
    [Google Scholar]
  35. ZhangD. HamauzuY. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking.Food Chem.200488450350910.1016/j.foodchem.2004.01.065
    [Google Scholar]
  36. DenardinC.C. HirschG.E. da RochaR.F. Antioxidant capacity and bioactive compounds of four Brazilian native fruits.J Food Drug Anal201523338739810.1016/j.jfda.2015.01.006
    [Google Scholar]
  37. LegisWebInstrução Normativa SDA Nº 37 DE 01/10/2018.2015Available From: https://www.legisweb.com.br/legislacao/?id=368178
  38. dos SantosE.F. de OliveiraJ.D.S. da SilvaI.C. GalloC.M. de LemosE.E.P. RezendeL. de P. Physical and physicak-chemical characterization in murici fruit (Byrsonima crassifolia (L.) Rich.) occurrence in the coastal boards of Alagoas.Rev. Cienc. Agric.2018163112010.28998/rca.v16i3.5479
    [Google Scholar]
  39. SantosO.V. CardosoJ.L.S.B. SoaresS.D. MartinsM.G. Do NascimentoF. Influence of convective drying on bioactive compounds, morphological structures and spectroscopic profile of muruci pulp (Byrsonima crassifolia).Scientia Plena2020161111150210.14808/sci.plena.2020.111502
    [Google Scholar]
  40. Agredano-De la GarzaC.S. Balois-MoralesR. Berumen-VarelaG. Physicochemical characterization and dietary fiber of 15 Nance (Byrsonima crassifolia L.) fruits selections from Nayarit.Sci. Hortic. (Amsterdam)202128911046010.1016/j.scienta.2021.110460
    [Google Scholar]
  41. LadoJ. GambettaG. ZacariasL. Key determinants of citrus fruit quality: Metabolites and main changes during maturation.Sci. Hortic. (Amsterdam)201823323824810.1016/j.scienta.2018.01.055
    [Google Scholar]
  42. GomesN.R. PierreB.S. MorgadoC.M.A. CamposA.J. Postharvest quality of fresh murici fruits as a function of storage and packing.Pesqui. Agropecu. Trop.202151e6718510.1590/1983‑40632021v5167185
    [Google Scholar]
  43. DamianiC. Vilas BoasE.V.D.B. PintoD.M. RodriguesL.J. Influence of different temperatures in maintenance of quality of fresh-cut Pequi.Cienc. Agrotec.20083220321210.1590/S1413‑70542008000100030
    [Google Scholar]
  44. AlzahraniH.R. KumakliH. AmpiahE. Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values.Arab. J. Chem.201710790691310.1016/j.arabjc.2016.09.012
    [Google Scholar]
  45. AbbasiH. ShahM.H. MohiuddinM. Quantification of heavy metals and health risk assessment in processed fruits’ products.Arab. J. Chem.202013128965897810.1016/j.arabjc.2020.10.020
    [Google Scholar]
  46. GuimarãesM.M. SilvaM.S. Nutritional value and chemical and physical chacacteristics of dried murici fruits (Byrsonima verbascifolia).Food Sci. Technol. (Campinas)20082881782110.1590/S0101‑20612008000400009
    [Google Scholar]
  47. SilvaM.R. LacerdaD.B.C.L. SantosG.G. MartinsD.M.D.O. Chemical characterization of native species of fruits from savanna ecosystem.Cienc. Rural2008381790179310.1590/S0103‑84782008000600051
    [Google Scholar]
  48. CarvalhoA.V. PintoN.E.N. MattiettoR.D.A. Do NascimentoW.M.O. GomesR.A. Junior, De Resende MDV. Nutritional Evaluation of Fruit Pulp From Murici Clones.2020Available From: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/219236/1/BPD144.pdf
    [Google Scholar]
  49. PereiraA.C. FilhoM. ViníciusM. Evaluation of different solvents for extraction of total phenolic compounds in flour of Byrsonima coccolobifolia Kunth. Fruit.Brazilian J Sci20221311510.14295/bjs.v1i3.115
    [Google Scholar]
  50. HenzK. FragaS. DoblerG.H. SilvaR.G. PlattG. MouraN.F. Influence of pretratment of juçaras’ fruit (Euterpe edulis Martius) on the evaluation of bioactives compounds.Rev. Univ. Vale Rio Verde2022211111
    [Google Scholar]
  51. MontenegroJ. AnicetoA. Pimentel De AbreuJ. TeodoroA.J. Características físico-químicas e atividade antioxidante de frutas da região amazônica.2017Available From: http://www.sbpcnet.org.br/livro/69ra/resumos/resumos/1835_14e4a9130af4b18104dd7098c4880cbc5.pdf
    [Google Scholar]
  52. Sanchez-MorenoC. Review: Methods Used to evaluate the free radical scavenging activity in foods and biological systems.Food Sci. Technol. Int.20028312113710.1177/1082013202008003770
    [Google Scholar]
  53. PratesM.F.O. CamposR.P. SilvaM.M.B. MacedoM.L.R. HianeP.A. Ramos FilhoM.M. Nutritional and antioxidant potential of canjiqueira fruits affected by maturity stage and thermal processing.Cienc. Rural201545339940410.1590/0103‑8478cr20131272
    [Google Scholar]
  54. RufinoM.S.M. AlvesR.E. de BritoE.S. Pérez-JiménezJ. Saura-CalixtoF. Mancini-FilhoJ. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil.Food Chem.20101214996100210.1016/j.foodchem.2010.01.037
    [Google Scholar]
  55. Abadio FincoF.D.B. KammererD.R. CarleR. TsengW.H. BöserS. GraeveL. Antioxidant Activity and Characterization of Phenolic Compounds from Bacaba (Oenocarpus bacaba Mart.) Fruit by HPLC-DAD-MSn.J. Agric. Food Chem.201260317665767310.1021/jf3007689
    [Google Scholar]
  56. Dos SantosM. MamedeR. RufinoM. De BritoE. AlvesR. Amazonian native palm fruits as sources of antioxidant bioactive compounds.Antioxidants20154359160210.3390/antiox4030591
    [Google Scholar]
  57. VieiraL.M. SousaM.S.B. Mancini-FilhoJ. LimaA.D. Total phenolics and antioxidant capacity “in vitro” of tropical fruit pulps.Rev. Bras. Frutic.20113388889710.1590/S0100‑29452011005000099
    [Google Scholar]
  58. CarlosN. LossR.A. SilvaS. GuedesS. CarvalhoJ.W. Physical-chemistry evaluation and antimicrobial activity of peel, pulp and seed of murici (Byrsonima crassifolia).Encicl. Biosf.2017142523224310.18677/EnciBio_2017A22
    [Google Scholar]
  59. MonteiroDCB PiresCRF Evaluation of the physical-chemical stability of murici jellies stored under different conditions of temperature and light.Desafios - Revista Interdisciplinar da Universidade Federal do Tocantins20173879810.20873/uft.2359‑3652.2016v3nespp87
    [Google Scholar]
  60. FranklinB. NascimentoF. Plants for the future: Data compilation of nutritional composition of guava-boi, burity, cupuaçu, murici and peach palm.Brazilian J Devel202063101741018910.34117/bjdv6n3‑046
    [Google Scholar]
  61. Maldonado-CelisM.E. YahiaE.M. BedoyaR. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds.Front Plant Sci201910107310.3389/fpls.2019.01073
    [Google Scholar]
  62. MartínezC. ValenzuelaJ.L. JamilenaM. Genetic and pre-and postharvest factors influencing the content of antioxidants in cucurbit crops.Antioxidants202110689410.3390/antiox10060894
    [Google Scholar]
  63. NawazR. KhanM.A. HafizI.A. KhanM.F. KhalidA. Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions.Sci. Rep.20211111817710.1038/s41598‑021‑97653‑1
    [Google Scholar]
  64. NetoHN Adequacy of methodology for determining the respiratory rate and characterizing the post-harvest physiology of Murici [Byrsonima verbascifolia (L) Rich]2013
    [Google Scholar]
  65. da SilvaR.J. Augusto de SouzaP. Lopes da CostaB. Cesar CarneiroL. Fernandes de Araújo faustino, E., Fernanda de Araújo Faustino, C. Evaluation of biodegradable coatings during storage of pink magoes in the region of Currais Novos-RN.Revista Científica Multidisciplinar202342e42276810.47820/recima21.v4i2.2768
    [Google Scholar]
  66. HamacekF.R. MartinoH.S. Pinheiro-Sant’AnaH.M. Murici, fruit from the Cerrado of Minas Gerais, Brazil: Physical and physicochemical characteristics, and occurrence and concentration of carotenoids and vitamins.Fruits201469645947210.1051/fruits/2014032
    [Google Scholar]
  67. ForneyC.F. KaltW. JordanM.A. Vinqvist-TymchukM.R. FillmoreS.A.E. Blueberry and cranberry fruit composition during development.J. Berry Res.20122316917710.3233/JBR‑2012‑034
    [Google Scholar]
  68. GhahremaniA. Ganji MoghaddamE. MarjaniA. Growth, yield, and biochemical behaviors of important stone fruits affected by plant genotype and environmental conditions.Sci. Hortic. (Amsterdam)202332111221110.1016/j.scienta.2023.112211
    [Google Scholar]
  69. SantosH.C.A. GemaqueJ.J de S. de CarvalhoJ.E.U. GurgelF de L. do NascimentoW.M.O. Produção inicial de clones de murucizeiro no município de Igarapé-Açu - PA.2019Available From: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1113253
    [Google Scholar]
  70. MoraisM.L. SilvaA.C.R. AraújoC.R.R. EstevesE.A. Dessimoni-PintoN.A.V. Determination of antioxidant potential in vitro of brazilian Cerrado fruits.Rev. Bras. Frutic.20133535536010.1590/S0100‑29452013000200004
    [Google Scholar]
  71. SiqueiraE.M.A. RosaF.R. FustinoniA.M. de Sant’AnaL.P. ArrudaS.F. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.PLoS One201388e7282610.1371/journal.pone.0072826
    [Google Scholar]
  72. RodriguesL.A.N. BelisárioC.M. CastroC.F de S. RodriguesT.G.C. FerreiraA.A.R. Total phenolics and antioxidant capacity of bark, leaf and fruit extracts from the muricizeiro.Cienc. Tecnol. Agropecu.20181254752
    [Google Scholar]
  73. MuscoloA. MariateresaO. GiulioT. MariateresaR. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases.Int. J. Mol. Sci.2024256326410.3390/ijms25063264
    [Google Scholar]
  74. PizzinoG. IrreraN. CucinottaM. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/8416763
    [Google Scholar]
  75. SadiqI.Z. Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation.Curr. Mol. Med.2023231133510.2174/1566524022666211222161637
    [Google Scholar]
/content/journals/cff/10.2174/0126668629319879240918103950
Loading
/content/journals/cff/10.2174/0126668629319879240918103950
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ABTS; DPPH; FRAP; Muruci; Phenolic compounds; physicochemical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test