Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Objective

This study uses adult zebrafish as a model organism to explore the possible cognitive-boosting properties of Shilajit, a traditional Ayurvedic herbal resin. Shilajit is known for its potential cognitive benefits, and the study focuses on its impact on memory and cognitive function.

Methods

The study employs a T-maze apparatus to assess cognitive performance in zebrafish, particularly memory, and uses Hyoscine, a memory-deficit-inducing compound, in the experiments. Various doses of Shilajit (0.1, 0.2, 0.4, 0.8, 1.6 mg/ml) were administered to zebrafish water immersion, and lipid peroxidation and reduced glutathione was checked to measure oxidative stress.

Results

The results reveal that Shilajit positively affects memory in zebrafish with Hyoscine-induced amnesia. Zebrafish treated with Shilajit exhibited improved memory performance, as indicated by increased entries into the reward arm (yellow) (<0.05) and reduced latency time (<0.0001). Different doses of Shilajit demonstrated varying effects, with higher doses leading to more pronounced memory improvements. Furthermore, the study examined biochemical parameters in the zebrafish brains, with a specific focus on markers of oxidative stress. Shilajit treatment was associated with a decrease in lipid peroxidation and an increase in reduced glutathione levels, signalling a reduction in oxidative stress (<0.0001).

Discussion

Finally, these findings suggest that Shilajit not only alleviates memory deficits in the zebrafish model but also possesses potential antioxidative properties in lowering reactive oxygen species (ROS) levels in the brain.

Conclusion

Our result suggests that Shilajit counteracted the damage caused to cholinergic neurons in zebrafish brains by reducing ROS levels and improving learning and memory.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629303505240528055414
2024-06-25
2025-09-05
Loading full text...

Full text loading...

References

  1. Carrasco-GallardoC. GuzmánL. MaccioniR.B. Shilajit: A natural phytocomplex with potential procognitive activity.Int. J. Alzheimers Dis.201220121410.1155/2012/674142 22482077
    [Google Scholar]
  2. CornejoA. JiménezJ.M. CaballeroL. MeloF. MaccioniR.B. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease.J. Alzheimers Dis.201127114315310.3233/JAD‑2011‑110623 21785188
    [Google Scholar]
  3. AgarwalS.P. KhannaR. KarmarkarR. AnwerM.K. KharR.K. Shilajit: A review.Phytother. Res.200721540140510.1002/ptr.2100 17295385
    [Google Scholar]
  4. GhosalS. ReddyJ.P. LalV.K. ShilajitI. Chemical constituents.J. Pharm. Sci.197665577277310.1002/jps.2600650545 932958
    [Google Scholar]
  5. ChaudharySP SinghAK DwivediKN Medicinal properties of Shilajit a review.Research gate20162
    [Google Scholar]
  6. GhosalS. Chemistry of Shilajit, an immunomodulatory Ayurvedic rasayan.Pure Appl. Chem.19906271285128810.1351/pac199062071285
    [Google Scholar]
  7. KhaksariM. MahmmodiR. ShahrokhiN. ShabaniM. JoukarS. AqapourM. The effects of Shilajit on brain edema, intracranial pressure and neurologic outcomes following the traumatic brain injury in rat.Iran. J. Basic Med. Sci.2013167858864 23997917
    [Google Scholar]
  8. MalíkM. TlustošP. Nootropic herbs, shrubs, and trees as potential cognitive enhancers.Plants2023126136410.3390/plants12061364 36987052
    [Google Scholar]
  9. StewartA.M. KalueffA.V. The developing utility of zebrafish models for cognitive enhancers research.Curr. Neuropharmacol.201210326327110.2174/157015912803217323 23449968
    [Google Scholar]
  10. TanJ.K. NazarF.H. MakpolS. TeohS.L. Zebrafish: A pharmacological model for learning and memory research.Molecules20222721737410.3390/molecules27217374 36364200
    [Google Scholar]
  11. AdamsM.M. KafaligonulH. Zebrafish—A model organism for studying the neurobiological mechanisms underlying cognitive brain aging and use of potential interventions.Front. Cell Dev. Biol.2018613510.3389/fcell.2018.00135
    [Google Scholar]
  12. HoweK. ClarkM.D. TorrojaC.F. The zebrafish reference genome sequence and its relationship to the human genome.Nature2013496744649850310.1038/nature12111 23594743
    [Google Scholar]
  13. ChoiT.Y. ChoiT.I. LeeY.R. ChoeS.K. KimC.H. Zebrafish as an animal model for biomedical research.Exp. Mol. Med.202153331031710.1038/s12276‑021‑00571‑5 33649498
    [Google Scholar]
  14. AdhishM. ManjubalaI. Effectiveness of zebrafish models in understanding human diseases—A review of models.Heliyon202393e1455710.1016/j.heliyon.2023.e14557 36950605
    [Google Scholar]
  15. HorzmannK. FreemanJ. Zebrafish get connected: Investigating neurotransmission targets and alterations in chemical toxicity.Toxics2016431910.3390/toxics4030019 28730152
    [Google Scholar]
  16. ChengR.K. JesuthasanS.J. PenneyT.B. Zebrafish forebrain and temporal conditioning.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916372012046210.1098/rstb.2012.0462 24446496
    [Google Scholar]
  17. PerathonerS. Cordero-MaldonadoM.L. CrawfordA.D. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior.J. Neurosci. Res.201694644546210.1002/jnr.23712 26833658
    [Google Scholar]
  18. von TrothaJ.W. VernierP. Bally-CuifL. Emotions and motivated behavior converge on an amygdala‐like structure in the zebrafish.Eur. J. Neurosci.20144093302331510.1111/ejn.12692 25145867
    [Google Scholar]
  19. GanzJ. KroehneV. FreudenreichD. MachateA. GeffarthM. BraaschI. Subdivisions of the adult zebrafish pallium based on molecular marker analysis.2015Available from: https://f1000research.com/articles/3-308
  20. PortavellaM. TorresB. SalasC. PapiniM.R. Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus).Neurosci. Lett.20043622757810.1016/j.neulet.2004.01.083 15193757
    [Google Scholar]
  21. SinglemanC. HoltzmanN.G. Growth and maturation in the zebrafish, Danio rerio: A staging tool for teaching and research.Zebrafish201411439640610.1089/zeb.2014.0976 24979389
    [Google Scholar]
  22. AudiraG. SiregarP. StrungaruS.A. HuangJ.C. HsiaoC.D. Which zebrafish strains are more suitable to perform behavioral studies? A comprehensive comparison by phenomic approach.Biology20209820010.3390/biology9080200 32752218
    [Google Scholar]
  23. ColwillR.M. RaymondM.P. FerreiraL. EscuderoH. Visual discrimination learning in zebrafish (Danio rerio).Behav. Processes2005701193110.1016/j.beproc.2005.03.001 15967284
    [Google Scholar]
  24. AvdeshA. Martin-IversonM.T. MondalA. Evaluation of color preference in zebrafish for learning and memory.J. Alzheimers Dis.201228245946910.3233/JAD‑2011‑110704 22008261
    [Google Scholar]
  25. d’IsaR. ComiG. LeocaniL. Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze.Sci. Rep.20211112117710.1038/s41598‑021‑00402‑7 34707108
    [Google Scholar]
  26. SharmaS. RakoczyS. Brown-BorgH. Assessment of spatial memory in mice.Life Sci.20108717-1852153610.1016/j.lfs.2010.09.004 20837032
    [Google Scholar]
  27. DePasqualeC. FranklinK. JiaZ. JhaveriK. The effects of exploratory behavior on physical activity in a common animal model of human disease, zebrafish (Danio rerio).Front. Behav. Neurosci.202216
    [Google Scholar]
  28. KimY.H. LeeK.S. ParkA.R. MinT.J. Adding preferred color to a conventional reward method improves the memory of zebrafish in the T-maze behavior model.Anim. Cells Syst.201721637438110.1080/19768354.2017.1383938
    [Google Scholar]
  29. BonanC.D. AltenhofenS. Zebrafish as a tool in the study of sleep and memory-related disorders.Curr. Neuropharmacol.202220354054910.2174/1570159X19666210712141041 34254919
    [Google Scholar]
  30. BrinzaI. Abd-AlkhalekA.M. El-RaeyM.A. BoiangiuR.S. EldahshanO.A. HritcuL. Ameliorative effects of rhoifolin in scopolamine-induced amnesic zebrafish (Danio rerio) model.Antioxidants20209758010.3390/antiox9070580 32635149
    [Google Scholar]
  31. GrossmanL. StewartA. GaikwadS. Effects of piracetam on behavior and memory in adult zebrafish.Brain Res. Bull.2011851-2586310.1016/j.brainresbull.2011.02.008 21371538
    [Google Scholar]
  32. KaurK. NarangR.K. SinghS. AlCl3 induced learning and memory deficit in zebrafish.Neurotoxicology202292677610.1016/j.neuro.2022.07.004 35843305
    [Google Scholar]
  33. SedlakJ. LindsayR.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent.Anal. Biochem.196825119220510.1016/0003‑2697(68)90092‑4 4973948
    [Google Scholar]
  34. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  35. BrinzaI. RaeyM.A.E. El-KashakW. EldahshanO.A. HritcuL. Sweroside ameliorated memory deficits in scopolamine-induced zebrafish (Danio rerio) model: Involvement of cholinergic system and brain oxidative stress.Molecules202227185901110.3390/molecules27185901 36144637
    [Google Scholar]
  36. BarrosT.P. AldertonW.K. ReynoldsH.M. RoachA.G. BerghmansS. Zebrafish: An emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery.Br. J. Pharmacol.200815471400141310.1038/bjp.2008.249 18552866
    [Google Scholar]
  37. Lucon-XiccatoT MontalbanoG GattoE FrigatoE D’AnielloS BertolucciC Individual differences and knockout in zebrafish reveal similar cognitive effects of BDNF between teleosts and mammals.Proc R Soc B1989289198920222036
    [Google Scholar]
  38. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  39. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. Giuffrida StellaA.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  40. CalabreseV. RenisM. CalderoneA. RussoA. BarcellonaM.L. RizzaV. Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat.Free Radic. Biol. Med.199620339139710.1016/0891‑5849(95)02095‑0 8720910
    [Google Scholar]
/content/journals/cff/10.2174/0126668629303505240528055414
Loading
/content/journals/cff/10.2174/0126668629303505240528055414
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cognitive enhancer; learning and memory; ROS; Shilajit; T-maze; zebrafish
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test