Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Hypothyroidism is characterized by decreased T3 and T4 levels and increased TSH levels. Hypothyroid obesity has been linked to numerous metabolic irregularities, such as slowed-down BMR. Linn. fruit has been utilized historically to decrease appetite and hence weight.

Objective

This work aimed to study the administration of Linnaeus extracts for the treatment of hypothyroidism-induced obesity in mice and related serum biochemical parameters and thyroid histopathology.

Methods

Hypothyroid obesity was brought about by giving the mice methimazole for 21 days consecutively. After that, the mice were given aqueous extract, alcoholic extract, and thyroxine standard for 21 days, and their ability to reverse the disease was examined. Blood samples were taken to estimate the serum biochemical parameters like normal thyroid hormone values, hypothyroidism-induced obesity hormone levels, and their levels after treatment with the test extracts. Lipid profile {Total Triglycerides, Total Cholesterol, Very Low-Density Lipoprotein, and High-Density Lipoprotein}, and physical parameters such as waist circumference, body weight, and water and food and consumption were recorded. Heart and Liver were removed from each group of the mice for oxidative stress measurement estimation of Catalase, MDA, and GSH levels. For histological examination, the thyroid glands of each group of mice were removed and examined.

Results

GSH and Catalase levels of serum were significantly decreased (<0.001); conversely, the MDA levels were increased significantly (<0.001) in hypothyroid obese mice. MDA levels were decreased (<0.0001) in the standard and test groups, while GSH and Catalase levels increased (<0.0001) and moved toward normal values. The thyroid profile, lipid profile, and levels of TSH, TC, TGs, and VLDL were all increased after the introduction of hypothyroid obesity, whereas the levels of T3, T4 hormones, and HDL were dramatically decreased. The TSH (<0.0001), TC (<0.05), TGs (0.0001), and VLDL levels (<0.0001) decreased following the treatment with standard drug and plant extracts, Catalase, and the levels of T3 (<0.0001), T4 (<0.0001), and HDL (<0.0001) increased, moving towards the normal range. When compared to the control group, histological analysis and the thyroid gland of the hypothyroid obese group showed a significant reduction in colloid levels and a size-wise shrinkage of thyroid globules; in contrast, the thyroid globule size of the standard and test groups was shown to move towards the normal state.

Conclusion

The extracts can be applied as a secure herbal remedy for hypothyroid obesity in mice, and clinical trials can be conducted in this field for the exploration of their potential in human subjects.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629286940240606100720
2024-07-04
2025-09-09
Loading full text...

Full text loading...

References

  1. PalR. BhadadaS.K. Managing common endocrine disorders amid COVID-19 pandemic.Diabetes Metab. Syndr.202014576777110.1016/j.dsx.2020.05.050 32521463
    [Google Scholar]
  2. MadhaviM. MehranL. MadresehE. TohidiM. AziziF. Investigating the prevalence of primary thyroid dysfunction in obese and overweight individuals: Tehran thyroid study.BMC Endocr. Disord.20212189112
    [Google Scholar]
  3. WHOObesity and overweight.2018Available From: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed on 9.10.22).
    [Google Scholar]
  4. DahiyaV. VasudevaN. SharmaS. KumarA. RowleyD. Lead anti-obesity compounds from nature.Endocr. Metab. Immune Disord. Drug Targets202020101637165310.2174/1871530320666200504092012 32364084
    [Google Scholar]
  5. Endocrine changes in obesity.2022Available From: www.endotext.org (Accessed on 9.10.22).
  6. BessesenD. HillJ. WyattH. Hormones and obesity. Patient information page- Hormones and you.J. Clin. Endocrinol. Metab.2004894
    [Google Scholar]
  7. DahiyaV. VasudevaN. SharmaS. KumarA. Role of dietary supplements in thyroid diseases.Endocr. Metab. Immune Disord. Drug Targets2022221098599610.2174/1871530322666220419125131 35440339
    [Google Scholar]
  8. RobertsC.G.P. LadensonP.W. Hypothyroidism.Lancet2004363941179380310.1016/S0140‑6736(04)15696‑1 15016491
    [Google Scholar]
  9. RotondiM. MagriF. ChiovatoL. Thyroid and obesity: Not a one-way interaction.J. Clin. Endocrinol. Metab.201196234434610.1210/jc.2010‑2515 21296993
    [Google Scholar]
  10. HernandoV. AnilzaB. HernanS. Iodine deficiency disorders.Thyroid Disord Ther20154172
    [Google Scholar]
  11. BiondiB. Thyroid and obesity: An intriguing relationship.J. Clin. Endocrinol. Metab.20109583614361710.1210/jc.2010‑1245 20685890
    [Google Scholar]
  12. SantiniF. MarzulloP. RotondiM. Mechanisms in endocrinology: The crosstalk between thyroid gland and adipose tissue: Signal integration in health and disease.Eur. J. Endocrinol.20141714R137R15210.1530/EJE‑14‑0067 25214234
    [Google Scholar]
  13. ShomonM. Leptin, rT3, and weight gain with hypothyroidism.Thyroid disease (weight loss).Available From: https://www.verywellhealth.com/hypothyroidism-leptin-rt3-weight-gain-3233049 (Accessed on 24 March, 2024)
    [Google Scholar]
  14. KarmisholtJ. AndersenS. LaurbergP. Weight loss after therapy of hypothyroidism is mainly caused by excretion of excess body water associated with myxoedema.J. Clin. Endocrinol. Metab.2011961E99E10310.1210/jc.2010‑1521 20926526
    [Google Scholar]
  15. O’MalleyB. HickeyJ. NevensE. Thyroid dysfunction – weight problems and the psyche: The patients’ perspective.J. Hum. Nutr. Diet.200013424324810.1046/j.1365‑277x.2000.00238.x
    [Google Scholar]
  16. PlummerW. Body weight in spontaneous myxedema; in American Association for the Study of Goiter: transactions of the American Association for the Study of Goiter.Rochester West J Surg Obstet Gynecol19408898
    [Google Scholar]
  17. GarberJ.R. CobinR.H. GharibH. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association.Endocr. Pract.2012186988102810.4158/EP12280.GL 23246686
    [Google Scholar]
  18. Abdel-HassanI.A. Abdel-BarryJ.A. Tariq MohammedaS. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits.J. Ethnopharmacol.2000711-232533010.1016/S0378‑8741(99)00215‑9 10904181
    [Google Scholar]
  19. DEADrug Scheduling.2019Available From: https://www.dea.gov/drug-information/drug-scheduling (accessed 9.10.22).
  20. MohamedG.A. IbrahimS.R.M. ElkhayatE.S. El DineR.S. Natural anti-obesity agents.Bull. Fac. Pharm. Cairo Univ.201452226928410.1016/j.bfopcu.2014.05.001
    [Google Scholar]
  21. ChopraA. KaurN. Herbal drugs-A promising approach to obesity management.J Res Pharm Sci2014215
    [Google Scholar]
  22. BarteleneL. MartinoE. Adverse effects of thyroid hormone preparations and antithyroid drugs.Drug Saf.199615536310.2165/00002018‑199615010‑00004 8862963
    [Google Scholar]
  23. TaylorP.N. VaidyaB. Side effects of anti-thyroid drugs and their impact on the choice of treatment for thyrotoxicosis in pregnancy.Eur. Thyroid J.20121317618510.1159/000342920 24783017
    [Google Scholar]
  24. BurchH.B. CooperD.S. Antithyroid drug therapy: 70 years later.Eur. J. Endocrinol.20181795R261R27410.1530/EJE‑18‑0678 30320502
    [Google Scholar]
  25. RainsT.M. AgarwalS. MakiK.C. Antiobesity effects of green tea catechins: A mechanistic review.J. Nutr. Biochem.20112211710.1016/j.jnutbio.2010.06.006 21115335
    [Google Scholar]
  26. Abdel-WahhabK.G. MannaaF.A. El-SahraD.G. MorsyF.A. GomaaH.F. Effect of oral administration of methanolic root extract of Saussurea costus to rats after propylthiouracil-induced hypothyroid obesity.Comp. Clin. Pathol.202231337739010.1007/s00580‑022‑03337‑1
    [Google Scholar]
  27. Abdel-WahhabK.G. MouradH.H. MannaaF.A. MorsyF.A. HassanL.K. TaherR.F. Role of ashwagandha methanolic extract in the regulation of thyroid profile in hypothyroidism modeled rats.Mol. Biol. Rep.20194643637364910.1007/s11033‑019‑04721‑x 31203475
    [Google Scholar]
  28. PareD. HilouA. OuedraogoN. GuenneS. Ethnobotanical study of medicinal plants used as anti-obesity remedies in the nomad and hunter communities of burkina faso.Medicines201632910.3390/medicines3020009 28930119
    [Google Scholar]
  29. MeybodiMSK A review on pharmacological activities of Citrullus colocynthis (L.) Schrad.Asian J Adv Res Rep endocrinology2020312534
    [Google Scholar]
  30. KapoorM. KaurN. SharmaC. Citrullus colocynthis an important plant in Indian traditional system of medicine.Pharmacogn. Rev.20211427222710.5530/phrev.2020.14.4
    [Google Scholar]
  31. BeloinN. Ethnomedicinal uses of Citrullus colocynthis (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity.J. Ethnopharmacol.200596495510.1016/j.jep.2004.08.009 15588650
    [Google Scholar]
  32. BatanounyK.H. Wild medicinal plants in Egypt-an inventory to sup-port conservation and sustainable use.EgyptThe Palm Press199942
    [Google Scholar]
  33. BaquarS.R. TasnifM. Medicinal plants of Southern West Pakistan, Periodical Vivek Vihar.DelhiExpert Book Agency1984
    [Google Scholar]
  34. KirtikarK.R. BasuB.D. Indian medicinal plants.DehradunBishen Singh Mahendra Pal Singh1984
    [Google Scholar]
  35. QureshiR. Raza BhattiG. Ethnobotany of plants used by the Thari people of Nara Desert, Pakistan.Fitoterapia200879646847310.1016/j.fitote.2008.03.010 18538950
    [Google Scholar]
  36. AbbasD. SimonG. KosariA.R. Flavone c- glycosides and cucurbitacin glycosides from citrullus colocynthis.Daru2006143109114
    [Google Scholar]
  37. GoelA. GargA. KumarA. Effect of Capparis spinose Linn extract on lipopolysaccharide- induced cognitive impairment in rats.IndiaNISCAIR- CSIR2016
    [Google Scholar]
  38. AgarwalS.S. Antifertility activity of methanolic bark extract of Aegle marmelos (L.) in male wistar rats.Daru2012201110 23226110
    [Google Scholar]
  39. González-CastejónM. Rodriguez-CasadoA. Dietary phytochemicals and their potential effects on obesity: A review.Pharmacol. Res.201164543845510.1016/j.phrs.2011.07.004
    [Google Scholar]
  40. DahiyaV VasudevaN SharmaS KumarA Pharmacognostical, phytochemical, in vitro anti-obesity investigation of Citrullus colocynthis Linn. fruits from western Haryana.Current Functional Foods202312
    [Google Scholar]
  41. DahiyaV. VasudevaN. SharmaS. KumarA. Linnaeus extracts for treatment of hypothyroidism induced obesity in mice and study of related biochemical parameters and thyroid histology.Current Funct Foods2023
    [Google Scholar]
  42. DahiyaV. VasudevaN. SharmaS. KumarA. Reversing the weight gained by hypothyroid mice using Citrullus colocynthis aqueous extract.Azerbaijan Med J202262950855092
    [Google Scholar]
  43. DahiyaV. VasudevaN. SharmaS. KumarA. Recording the body weight alterations in hypothyroid obese mice following treatment with alcoholic extract of Citrullus colocynthis.J. Pharm. Negat. Results202213924052411
    [Google Scholar]
  44. DahiyaV. VasudevaN. SharmaS. KumarA. Pharmacognostical, phytochemical, in vitro anti-obesity studies and toxicity analysis of Momordica charantia Linnaeus fruits from Haryana.Current Functional Foods202312e17022321373910.2174/2666862901666230217091237
    [Google Scholar]
  45. HerwigA. CampbellG. MayerC.D. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis.Thyroid201424111575159310.1089/thy.2014.0169 25087834
    [Google Scholar]
  46. ZhouX-L. HanY. MailW.J. Different doses and routes of administration of methimazole affect thyroid status in methimazole-induced hypothyroidism in rats.West Indian Med. J.2015651939710.7727/wimj.2014.241 26901601
    [Google Scholar]
  47. PandaS. KarA. Excess use of Citrullus colocynthis extract may not be safe with respect to thyroid function and lipid peroxidation.Curr. Sci.2000792222224
    [Google Scholar]
  48. TrinderP. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen.J. Clin. Pathol.196922215816110.1136/jcp.22.2.158 5776547
    [Google Scholar]
  49. FriedewaldW.T. LevyR.I. FredricksonD.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.Clin. Chem.197218649950210.1093/clinchem/18.6.499 4337382
    [Google Scholar]
  50. WillsE.D. Mechanisms of lipid peroxide formation in tissues Role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids.Biochimica et Biophysica Acta (BBA)1965982238251
    [Google Scholar]
  51. JollowD.J. MitchellJ.R. ZampaglioneN. GilletteJ.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite.Pharmacology197411315116910.1159/000136485 4831804
    [Google Scholar]
  52. ClaiborneA. GreenwaldR. Catalase activity Handbook of methods for oxygen radical research.Boca RatonCRC Press1985
    [Google Scholar]
  53. DruryR. WallingtonE. Carleton’s Histological Technique.New YorkOxford University Press2022
    [Google Scholar]
  54. Gómez-ZamudioJ.H. Mendoza-ZubietaV. Ferreira-HermosilloA. High thyroid-stimulating hormone levels increase proinflammatory and cardiovascular markers in patients with extreme obesity.Arch. Med. Res.201647647648210.1016/j.arcmed.2016.10.007 27986128
    [Google Scholar]
  55. GajdaS.N. KuryłowiczA. ŻachM. BednarczukT. WyleżołM. Diagnosis and treatment of thyroid disorders in obese patients -what do we know?Endokrynol. Pol.201970327127610.5603/EP.a2018.0089 31290558
    [Google Scholar]
  56. VirdiJ. SivakamiS. ShahaniS. SutharA.C. BanavalikarM.M. BiyaniM.K. Antihyperglycemic effects of three extracts from Momordica charantia.J. Ethnopharmacol.200388110711110.1016/S0378‑8741(03)00184‑3 12902059
    [Google Scholar]
  57. SurS. RayR.B. Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy.Cancers2020128206410.3390/cancers12082064 32726914
    [Google Scholar]
  58. KarimiA. MajlesiM. Rafieian-KopaeiM. Herbal versus synthetic drugs; beliefs and facts.J. Nephropharmacol.2015412730 28197471
    [Google Scholar]
  59. BaskolG. AtmacaH. TanrıverdiF. BaskolM. KocerD. BayramF. Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment.Exp. Clin. Endocrinol. Diabetes2007115852252610.1055/s‑2007‑981457 17853336
    [Google Scholar]
  60. GutteridgeJ.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage.Clin. Chem.199541121819182810.1093/clinchem/41.12.1819 7497639
    [Google Scholar]
  61. LorenziM. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient.Exp. Diabetes Res.2007200711010.1155/2007/61038 18224243
    [Google Scholar]
  62. TownsendD.M. TewK.D. The role of glutathione-S-transferase in anti-cancer drug resistance.Oncogene200322477369737510.1038/sj.onc.1206940 14576844
    [Google Scholar]
  63. FrancoR. SchoneveldO.J. PappaA. PanayiotidisM.I. The central role of glutathione in the pathophysiology of human diseases.Arch. Physiol. Biochem.20071134-523425810.1080/13813450701661198 18158646
    [Google Scholar]
  64. JialalI. DevarajS. Antioxidants and atherosclerosis: Don’t throw out the baby with the bath water.Circulation200310792692810.1161/01.CIR.0000048966.26216.4C
    [Google Scholar]
  65. TorunA.N. KulaksizogluS. KulaksizogluM. PamukB.O. IsbilenE. TutuncuN.B. Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism.Clin. Endocrinol.200970346947410.1111/j.1365‑2265.2008.03348.x 18727709
    [Google Scholar]
  66. García-SolísP. GarcíaO.P. Hernández-PugaG. Thyroid hormones and obesity: A known but poorly understood relationship.Endokrynol. Pol.201869329230310.5603/EP.2018.0032 29952420
    [Google Scholar]
  67. BétryC. Challan-BelvalM.A. BernardA. CharriéA. DraiJ. LavilleM. Increased TSH in obesity: Evidence for a BMI-independent association with leptin.Diabetes Metab.201541324825110.1016/j.diabet.2014.11.009
    [Google Scholar]
  68. KimB. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate.Thyroid200818214114410.1089/thy.2007.0266
    [Google Scholar]
  69. PucciE. ChiovatoL. PincheraA. Thyroid and lipid metabolism.Int. J. Obes.200024S2Suppl. 2S109S11210.1038/sj.ijo.0801292 10997623
    [Google Scholar]
  70. EshitaP. PriyaB.D. SudhakarG. PaddaiahG. Impact of adipocytokines-leptin and adiponectin on thyroid stimulating hormone among hypothyroid patients.Asian J. Med. Sci.201352677210.3126/ajms.v5i2.8789
    [Google Scholar]
  71. MullurR. LiuY.Y. BrentG.A. Thyroid hormone regulation of metabolism.Physiol. Rev.201494235538210.1152/physrev.00030.2013 24692351
    [Google Scholar]
  72. UmezuM. KagabuS. JiangJ. SatoE. Evaluation and characterization of congenital hypothyroidism in rdw dwarf rats.Lab. Anim. Sci.1998485496501 10090064
    [Google Scholar]
/content/journals/cff/10.2174/0126668629286940240606100720
Loading
/content/journals/cff/10.2174/0126668629286940240606100720
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Citrullus colocynthis; histology; Hypothyroidism; mice; obesity; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test