Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-948X
  • E-ISSN: 2666-9498

Abstract

Non-conjugated luminescent materials (NCLMs) have attracted much attention in the fields of bioimaging, optoelectronic devices and sensing technologies due to their unique photophysical properties, excellent biocompatibility and environmental sustainability. However, NCLMs molecules usually lack conventional luminescent groups and exhibit aggregation-induced luminescence only at high concentrations or in the solid state, which is attributed to changes in molecular conformation and intermolecular stacking, resulting in luminescent phenomena such as aggregation-induced luminescence (AIE), concentration-enhanced luminescence, excitation-dependent luminescence, and generalized phosphorescence. It has been shown that electron-rich groups, aggregation of electron leaving domains and through spatial conjugation (TSC)-induced molecular conformational rigidity in NCLMs play a crucial role in luminescence. The aim of this review is to systematically investigate the photoluminescence mechanisms of NCLMs and to study the relationship of these mechanisms with molecular structures, aggregation states and environmental factors, with special focus on AIE, cluster-triggered emission (CTE), and crosslink-enhanced emission (CEE). This review establishes a theoretical foundation for the rational design and development of NCLMs, offers novel insights into their luminescence mechanisms, and broadens the scope of their potential practical applications.

Loading

Article metrics loading...

/content/journals/celt/10.2174/012666948X375153250412165436
2025-01-01
2025-09-04
Loading full text...

Full text loading...

References

  1. R. Hellyn, M.D. Bruyne, R. de Moor, M. Meire. Shedding northern lights on endodontics.Int Endod J20245736110.1111/iej.14004
    [Google Scholar]
  2. EbbensgaardC.L. Urban lighting, light pollution and society.Eur. Plann. Stud.20152371437144010.1080/09654313.2015.1046613
    [Google Scholar]
  3. JinY. JiangB. SongH. MeiC. LiuZ. ZhangX. LiuJ. GongY. Monophenyl luminescent material with dual-state emission and pH sensitivity for cell imaging.RSC Advances20241416109421095210.1039/D4RA01422G38577426
    [Google Scholar]
  4. PengH. ZhangD. HuJ. Synthesis of a novel magnetic–luminescent bifunctional imaging materials by introducing WO3–x interlayer.Appl. Phys., A Mater. Sci. Process.20191251282710.1007/s00339‑019‑3107‑6
    [Google Scholar]
  5. LiJ. XiaD. GaoM. JiangL. ZhaoS. LiG. Invisible luminescent inks and luminescent films based on lanthanides for anti-counterfeiting.Inorg. Chim. Acta202152612054110.1016/j.ica.2021.120541
    [Google Scholar]
  6. WangL. ZhongW. GaoW. LiuW. ShangL. Dynamic multicolor luminescent anti-counterfeiting based on spiropyran-engineered gold nanoclusters.Chem. Eng. J.202447914749010.1016/j.cej.2023.147490
    [Google Scholar]
  7. ZhangC. LiY. ShaoK. LinJ. WangK. PanZ. Luminescence property of the multicolor persistent luminescence materials for dynamic anti-counterfeiting applications.J. Inorg. Mater.202136121256126210.15541/jim20210043
    [Google Scholar]
  8. ChenR. CaoK. WenY. YangF. WangJ. LiuX. ShanB. Atomic layer deposition in advanced display technologies: From photoluminescence to encapsulation.Int. J. Extreme Manuf.20246202200310.1088/2631‑7990/ad15f5
    [Google Scholar]
  9. GeY. MengL. BaiZ. ZhongH. Linearly polarized photoluminescence from anisotropic perovskite nanostructures: Emerging materials for display technology.J. Inf. Disp.201920418119210.1080/15980316.2019.1654550
    [Google Scholar]
  10. XuH. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+ J. Mater. Chem. A20164109001090510.1039/C6TA03065C
    [Google Scholar]
  11. YueY. PanG. LinN. WangY. ZhangX. ZhangY. XuS. BaiG. Designing tunable emissions and mechanoluminescence in piezoelectric luminescent ions doped oxysulfide compounds by cations substitution for optical sensing.Mater. Today Chem.202438Jun10205410.1016/j.mtchem.2024.102054
    [Google Scholar]
  12. SteblevskayaN.I. MedkovM.A. BelobeletskayaM.V. Luminophores and protective coatings based on oxides and oxysulfides of rare-earth elements prepared by extraction pyrolysis.Theor. Found. Chem. Eng.201448444945310.1134/S0040579514040125
    [Google Scholar]
  13. ZhuJ. GuM. JiaL. SongG. Structural properties of Lu2SiO5 doped with rare-earth elements.Mater. Lett.201925612641010.1016/j.matlet.2019.07.039
    [Google Scholar]
  14. FernandezE. J. Pyridine gold complexes.: An emerging class of luminescent materials.Gold Bull.20074017218310.1007/BF03215578
    [Google Scholar]
  15. SunY. Luminescent one-dimensional nanoscale materials with II⋅⋅⋅PtIIinteractionsAngew Chem Int Ed200645345610561310.1002/anie.200601588
    [Google Scholar]
  16. KinzhalovM.A. GrachovaE.V. LuzyaninK.V. Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands.Inorg. Chem. Front.20229341743910.1039/D1QI01288F
    [Google Scholar]
  17. MarchesiS. BisioC. CarniatoF. Synthesis of novel luminescent double-decker silsesquioxanes based on partially condensed tetrasilanolPhenyl POSS and Tb3+/Eu3+ lanthanide ions.Processes202210475810.3390/pr10040758
    [Google Scholar]
  18. PramanikG. KvakovaK. ThottappaliM.A. RaisD. PflegerJ. GrebenM. El-ZokaA. BalsS. DracinskyM. ValentaJ. CiglerP. Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters.Nanoscale20211323104621046710.1039/D1NR02440J34076660
    [Google Scholar]
  19. XuJ. WuX. LiJ. ZhaoZ. TangB.Z. Regulating Photophysical property of aggregation‐induced delayed fluorescence luminogens via heavy atom effect to achieve efficient organic light‐emitting diodes.Adv. Opt. Mater.2022107210256810.1002/adom.202102568
    [Google Scholar]
  20. AdsettsJ. R. Developing carbon quantum dots as a luminescent material and revisiting ECL and LED absolute measurement methods. Electronic Thesis and Dissertation Repository2022
    [Google Scholar]
  21. CaiS. Hydrogen-bonded organic aromatic frameworks for ultralong phosphorescence by intralayer π-π interactions.Angew Chem Int Ed Engl201857154005400910.1002/anie.20180069729417724
    [Google Scholar]
  22. ShiH. ZouL. HuangK. WangH. SunC. WangS. MaH. HeY. WangJ. YuH. YaoW. AnZ. ZhaoQ. HuangW. A highly efficient red metal-free organic phosphor for time-resolved luminescence imaging and photodynamic therapy.ACS Appl. Mater. Interfaces20191120181031811010.1021/acsami.9b0161531037937
    [Google Scholar]
  23. ZhengH.B. ChenW. GaoH. WangY.Y. GuoH.Y. GuoS.Q. TangZ.L. ZhangJ.Y. Melem: An efficient metal-free luminescent material.J. Mater. Chem. C Mater. Opt. Electron. Devices2017541107461075310.1039/C7TC02966G
    [Google Scholar]
  24. ChenS. LuoR. LiX. HeM. FuS. XuJ. Aggregation induced emission and nonlinear optical properties of an intramolecular charge-transfer compound.Materials2021148190910.3390/ma1408190933920435
    [Google Scholar]
  25. ShiZ. ZhangX. WangH. HuoJ. ZhaoH. ShiH. TangB.Z. The synthesis, photoluminescence and electroluminescence properties of a new emitter based on diphenylethene, carbazole and 9,9,10,10-tetraoxidethianthrene.Org. Electron.20197071310.1016/j.orgel.2019.03.045
    [Google Scholar]
  26. ZhangX. LiuH. ZhuangG. YangS. DuP. An unexpected dual-emissive luminogen with tunable aggregation-induced emission and enhanced chiroptical property.Nat. Commun.2022131354310.1038/s41467‑022‑31281‑935729154
    [Google Scholar]
  27. LuoJ. XieZ. LamJ.W.Y. ChengL. TangB.Z. ChenH. QiuC. KwokH.S. ZhanX. LiuY. ZhuD. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole.Chem. Commun.2001181740174110.1039/b105159h12240292
    [Google Scholar]
  28. Pastor-PérezL. ChenY. ShenZ. LahozA. StiribaS.E. Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: Polymer architectures and pH-effects.Macromol. Rapid Commun.200728131404140910.1002/marc.200700190
    [Google Scholar]
  29. ZhouL. HuH. ZhangY-X. MengQ-Y. YuB. ShenY-Q. CongH-L. A near-infrared triggered intracellular pH regulative PAMAM/O-nitrobenzaldehyde coated UCNPs for cancer therapy.Integr. Ferroelectr.20191991859410.1080/10584587.2019.1592601
    [Google Scholar]
  30. ZhouY. HeJ. ZhangC. LiJ. FuX. MaoW. LiW. YuC. Novel Ce(III)-metal organic framework with a luminescent property to fabricate an electrochemiluminescence immunosensor.ACS Appl. Mater. Interfaces202012133834610.1021/acsami.9b1924631794188
    [Google Scholar]
  31. ZhaoE. LamJ.W.Y. MengL. HongY. DengH. BaiG. HuangX. HaoJ. TangB.Z. Poly[(maleic anhydride)- alt -(vinyl acetate)]: A pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect.Macromolecules2015481647110.1021/ma502160w
    [Google Scholar]
  32. DuY. LiuY. LiJ. HeY. LiY. YanH. Nonconventional luminescent piperazine‐containing hyperbranched Polysiloxanes with Pure n‐electron.Small20231940230209510.1002/smll.20230209537267933
    [Google Scholar]
  33. NiuS. YanH. ChenZ. LiS. XuP. ZhiX. Unanticipated bright blue fluorescence produced from novel hyperbranched polysiloxanes carrying unconjugated carbon-carbon double bonds and hydroxyl groups. Polym. Chem.201673747375510.1039/C6PY00654J
    [Google Scholar]
  34. SongR. YanD. XiF. CaoJ. WangY. YangX. Synthesis and characterization of novel non-conjugated hyperbranched polysiloxane with AIE effect.High Perform Polym202335877578410.1177/09540083231174783
    [Google Scholar]
  35. MaY. ZhangH. WangK. CaoD. WangK. GuanR. ZhouC. The bright fluorescence of non-aromatic molecules in aqueous solution originates from pH-induced CTE behavior.Spectrochim. Acta A Mol. Biomol. Spectrosc.202125411960410.1016/j.saa.2021.11960433676346
    [Google Scholar]
  36. ZhangH. QinL. CaoD. GuanR. ChengX. ZhouC. Bioinspired fluorescent molecules realize super bright blue luminescence under sunlight.J. Colloid Interface Sci.2023632Pt A16117010.1016/j.jcis.2022.10.09636413942
    [Google Scholar]
  37. CaiX.M. ChenX. ChenX. LiY. WangF. A luminescent cellulose ether with a regenerated crystal form obtained in tetra(n-butyl)ammonium hydroxide/dimethyl sulfoxide.Carbohydr. Polym.202023011564910.1016/j.carbpol.2019.11564931887945
    [Google Scholar]
  38. ChenL.L. LouL.Q. LiuC.Y. HongY. Color tunable luminescent cellulose acetate nanofibers functionalized by CuI-based complexes.Cellulose20212831421143010.1007/s10570‑020‑03586‑9
    [Google Scholar]
  39. ErdmanA. KulpinskiP. GaborJ. StanulaA. SwinarewA.S. Luminescent Cellulose Fibers Modified with Poly((9-Carbazolyl)Methylthiirane).Polymers20201210229610.3390/polym1210229633036466
    [Google Scholar]
  40. FloresM.E. AncalafD. RolleriA. NishideH. LisoniJ.G. Moreno-VillosladaI. Porous polyelectrolyte materials with controlled luminescence properties based on aromatic‐aromatic interactions with rhodamine B.Polym. Adv. Technol.20213272781278910.1002/pat.5308
    [Google Scholar]
  41. LiuQ. ZouY. YangY. WangL. LiL. WangM. TianM. WangJ. TaoY. WangD. GaoD. Fabrication of a novel dual-emission fluorescence covalent organic framework and its luminescent hybrid hydrogel material: Application in the detection and adsorption of eriochrome azo anionic dyes.Mater. Today Chem.202334Dec10181010.1016/j.mtchem.2023.101810
    [Google Scholar]
  42. LiuY. GaoX. ZhaoB. DengJ. Circularly polarized luminescence in quantum dot-based materials.Nanoscale202416146853687510.1039/D4NR00644E38504609
    [Google Scholar]
  43. XuL. LiY. GaoS. NiuY. LiuH. MeiC. CaiJ. XuC. Preparation and properties of cyanobacteria-based carbon quantum dots/polyvinyl alcohol/ nanocellulose composite.Polymers2020125114310.3390/polym1205114332429528
    [Google Scholar]
  44. AhumadaG. BorkowskaM. Fluorescent Polymers Conspectus.Polymers2022146111810.3390/polym1406111835335449
    [Google Scholar]
  45. OstosF.J. IasilliG. CarlottiM. PucciA. High-performance luminescent solar concentrators based on Poly(Cyclohexylmethacrylate) (PCHMA) films.Polymers20201212289810.3390/polym12122898
    [Google Scholar]
  46. XuC. GuanR. CaoD. LiuK. ChenQ. DingY. YanY. Bioinspired non-aromatic compounds emitters displaying aggregation independent emission and recoverable photo-bleaching.Talanta202020612023210.1016/j.talanta.2019.12023231514871
    [Google Scholar]
  47. WangY. ZhaoZ. YuanW.Z. Intrinsic luminescence from nonaromatic biomolecules.ChemPlusChem20208551065108010.1002/cplu.20200002132459886
    [Google Scholar]
  48. ZhaoZ. ZhangH. LamJ.W.Y. TangB.Z. Aggregation‐induced emission: New vistas at the aggregate level.Angew. Chem. Int. Ed.202059259888990710.1002/anie.20191672932048428
    [Google Scholar]
  49. WangR. YuanW. ZhuX. Aggregation-induced emission of non-conjugated poly(amido amine)s: Discovering, luminescent mechanism understanding and bioapplication.Chin. J. Polym. Sci.201533568068710.1007/s10118‑015‑1635‑x
    [Google Scholar]
  50. ZhangX. ShiJ. ShenG. GouF. ChengJ. ZhouX. XiangH. Non-conjugated fluorescent molecular cages of salicylaldehyde-based tri-Schiff bases: AIE, enantiomers, mechanochromism, anion hosts/probes, and cell imaging properties.Mater. Chem. Front.2017161041105010.1039/C7QM00097A
    [Google Scholar]
  51. AiL. YangY. WangB. ChangJ. TangZ. YangB. LuS. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives.Sci. Bull. (Beijing)202166883985610.1016/j.scib.2020.12.01536654140
    [Google Scholar]
  52. QiB.P. BaoL. ZhangZ.L. PangD.W. Electrochemical methods to study photoluminescent carbon nanodots: Preparation, photoluminescence mechanism and sensing.ACS Appl. Mater. Interfaces2016842283722838210.1021/acsami.5b1155126906145
    [Google Scholar]
  53. MirónG.D. SemelakJ.A. GrisantiL. RodriguezA. ContiI. StellaM. VelusamyJ. SerianiN. DošlićN. RivaltaI. GaravelliM. EstrinD.A. Kaminski SchierleG.S. González LebreroM.C. HassanaliA. MorzanU.N. The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter.Nat. Commun.2023141732510.1038/s41467‑023‑42874‑337957206
    [Google Scholar]
  54. ZhaoW. HeZ. TangB.Z. Room-temperature phosphorescence from organic aggregates.Nat. Rev. Mater.202051286988510.1038/s41578‑020‑0223‑z
    [Google Scholar]
  55. AnZ. ZhengC. TaoY. ChenR. ShiH. ChenT. WangZ. LiH. DengR. LiuX. HuangW. Stabilizing triplet excited states for ultralong organic phosphorescence.Nat. Mater.201514768569010.1038/nmat425925849370
    [Google Scholar]
  56. YamV.W.W. ChanA.K.W. HongE.Y.H. Charge-transfer processes in metal complexes enable luminescence and memory functions.Nat. Rev. Chem.202041052854110.1038/s41570‑020‑0199‑7
    [Google Scholar]
  57. GuoY. ZhangY. MaJ. LiaoR. WangF. Wide-range tunable circularly polarized luminescence in triphenylamine supramolecular polymers via charge-transfer complexation.Nat. Commun.2024151930310.1038/s41467‑024‑53297‑z39468039
    [Google Scholar]
  58. ZhangJ. ChenM. RenX. ShiW. YinT. LuoT. LanY. LiX. GuanL. Effect of conjugation length on fluorescence characteristics of carbon dots.RSC Advances20231340277142772110.1039/D3RA05031A37727316
    [Google Scholar]
  59. JiangN. ZhuC.Y. LiK.X. XuY.H. BryceM.R. Recent progress in nonconventional luminescent macromolecules and their applications.Macromolecules202457125561557710.1021/acs.macromol.4c0018638948183
    [Google Scholar]
  60. LiuM. HanX. ChenH. PengQ. HuangH. A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors.Nat. Commun.2023141250010.1038/s41467‑023‑38078‑437127693
    [Google Scholar]
  61. WangS. WangX. FengS. LvW. LinM. LingQ. LinZ. Cluster-luminescent polysiloxane nanomaterials: Adjustable full-color ultralong room temperature phosphorescence and a highly sensitive response to silver ions.Inorg. Chem. Front.20229143619362610.1039/D2QI00914E
    [Google Scholar]
  62. WangS. WuD. YangS. LinZ. LingQ. Regulation of clusterization-triggered phosphorescence from a non-conjugated amorphous polymer: A platform for colorful afterglow.Mater. Chem. Front.2020441198120510.1039/D0QM00018C
    [Google Scholar]
  63. TuY. ZhaoZ. LamJ.W.Y. TangB.Z. Mechanistic connotations of restriction of intramolecular motions (RIM).Natl. Sci. Rev.202186nwaa26010.1093/nsr/nwaa26034691663
    [Google Scholar]
  64. VigliantiL. LeungN.L.C. XieN. GuX. SungH.H.Y. MiaoQ. WilliamsI.D. LicandroE. TangB.Z. Aggregation-induced emission: Mechanistic study of the clusteroluminescence of tetrathienylethene.Chem. Sci.2017842629263910.1039/C6SC05192H28553498
    [Google Scholar]
  65. On the change of refrangibility of light.Mathematical and Physical PapersCambridge University PressCambridge20093267414
    [Google Scholar]
  66. MaS. DuS. PanG. DaiS. XuB. TianW. Organic molecular aggregates: From aggregation structure to emission property.Aggregate202124e9610.1002/agt2.96
    [Google Scholar]
  67. ThirumdasR. TrimukheA. DeshmukhR.R. AnnapureU.S. Functional and rheological properties of cold plasma treated rice starch.Carbohydr. Polym.20171571723173110.1016/j.carbpol.2016.11.05027987888
    [Google Scholar]
  68. GanL. FengN. LiuS. ZhengS. LiZ. HuangJ. Assembly‐induced emission of cellulose nanocrystals for hiding information.Part. Part. Syst. Charact.2019363180041210.1002/ppsc.201800412
    [Google Scholar]
  69. ZhangH. ZhaoZ. McGonigalP.R. YeR. LiuS. LamJ.W.Y. KwokR.T.K. YuanW.Z. XieJ. RogachA.L. TangB.Z. Clusterization-triggered emission: Uncommon luminescence from common materials.Mater. Today20203227529210.1016/j.mattod.2019.08.010
    [Google Scholar]
  70. HalpernA. M. GartmanT. Structural effects on photophysical processes in saturated amines. IIJ. Am. Chem. Soc.19749651393139810.1021/ja00812a021
    [Google Scholar]
  71. LarsonC.L. TuckerS.A. Intrinsic fluorescence of carboxylate-terminated polyamido amine dendrimers.Appl. Spectrosc.200155667968310.1366/0003702011952596
    [Google Scholar]
  72. VarnavskiO. IspasoiuR.G. BaloghL. TomaliaD. GoodsonT.III Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites.J. Chem. Phys.200111451962196510.1063/1.1344231
    [Google Scholar]
  73. HuJ. LuK. GuC. HengX. ShanF. ChenG. Synthetic sugar-only polymers with double-shoulder task: Bioactivity and imaging.Biomacromolecules20222331075108210.1021/acs.biomac.1c0140935089683
    [Google Scholar]
  74. ZhengS. ZhuT. WangY. YangT. YuanW. Z. Accessing tunable afterglows from highly twisted nonaromatic organic AIEgens via effective through-space conjugation.Angew Chem Int Ed Engl20205925100181002210.1002/anie.20200065532065715
    [Google Scholar]
  75. ZhangY. LiuC. ZhenH. LinM. Microwave-assisted establishment of efficient amorphous polymeric phosphorescent materials with ultralong blue afterglow.J. Mater. Chem. C Mater. Opt. Electron. Devices20219155277528810.1039/D0TC05171C
    [Google Scholar]
  76. EguchiM. OoyaT. YuiN. Controlling the mechanism of trypsin inhibition by the numbers of α-cyclodextrins and carboxyl groups in carboxyethylester-polyrotaxanes.J. Control. Release200496230130710.1016/j.jconrel.2004.02.01315081220
    [Google Scholar]
  77. MartinčevićM. Maslić SeršićD. JokićD. Contribution of CEE authors to psychological science: Is the growing trend of publishing in non-CEE journals still present 10 years after its inception?Scientometrics202312863703372110.1007/s11192‑023‑04695‑5
    [Google Scholar]
  78. PickarJ.H. YehI.T. WheelerJ.E. CunnaneM.F. SperoffL. Endometrial effects of lower doses of conjugated equine estrogens and medroxyprogesterone acetate: Two-year substudy results.Fertil. Steril.20038051234124010.1016/S0015‑0282(03)01167‑114607581
    [Google Scholar]
  79. SeršićD.M. MartinčevićM. JokićM. The contribution of CEE authors to psychological science: A comparative analysis of papers published in CEE and non-CEE journals indexed by Scopus in the period 1996—2013.Scientometrics202112621453146910.1007/s11192‑020‑03784‑z
    [Google Scholar]
  80. HeC. XuP. ZhangX. LongW. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective.Carbon20221869112710.1016/j.carbon.2021.10.002
    [Google Scholar]
  81. BajpaiV.K. KhanI. ShuklaS. KumarP. ChenL. AnandS.R. TripathiK.M. BhatiA. KangS.M. LeeH. KwakC.H. HuangM. SonkarS.K. HuhY.S. HanY.K. N,P-doped carbon nanodots for food-matrix decontamination, anticancer potential, and cellular bio-imaging applications.J. Biomed. Nanotechnol.202016328330310.1166/jbn.2020.289932493540
    [Google Scholar]
  82. HuY. WangY. GuanR. ZhangC. ShaoX. YueQ. Construction of a ratio fluorescence assay of 5-aminosalicylic acid based on its aggregation induced emission with blue emitting N/P-codoped carbon dots.RSC Advances202111126607661310.1039/D0RA10258J35423171
    [Google Scholar]
  83. LinL. WangY. XiaoY. ChenX. Ratiometric fluorescence detection of riboflavin based on fluorescence resonance energy transfer from nitrogen and phosphorus co-doped carbon dots to riboflavin.Anal. Bioanal. Chem.2019411132803280810.1007/s00216‑019‑01725‑130919015
    [Google Scholar]
  84. LuF. SongY. HuangH. LiuY. FuY. HuangJ. LiH. QuH. KangZ. Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment.Carbon20171209510210.1016/j.carbon.2017.05.039
    [Google Scholar]
  85. LeT.H. LeeH.J. KimJ.H. ParkS.J. Detection of ferric ions and catecholamine neurotransmitters via highly fluorescent heteroatom co-doped carbon dots.Sensors20202012347010.3390/s20123470
    [Google Scholar]
  86. ErdelyiM. A big hello to halogen bonding.Nat. Chem.20146976276410.1038/nchem.204225143209
    [Google Scholar]
  87. RisingA. HarringtonM. J. Biological materials processing: Time-tested tricks for sustainable fiber fabrication.Chem Rev202312352155219910.1021/acs.chemrev.2c0046536508546
    [Google Scholar]
  88. HalgrenT.A. MurphyR.B. FriesnerR.A. BeardH.S. FryeL.L. PollardW.T. BanksJ.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.J. Med. Chem.20044771750175910.1021/jm030644s15027866
    [Google Scholar]
  89. HarringtonM. J. External forces align supramolecular materials.Nature Synthesis20243121446144710.1038/s44160‑024‑00647‑w
    [Google Scholar]
  90. ZhangY. The non-covalent and covalent interactions of whey proteins and saccharides: Influencing factor and utilization in food.Crit Rev Food Sci Nutr202411510.1080/10408398.2024.237338638961829
    [Google Scholar]
  91. TianL.U. Fei-WuC.H.E.N. Comparison of computational methods for atomic charges.Wuli Huaxue Xuebao201228111810.3866/PKU.WHXB2012281
    [Google Scholar]
  92. ChenH. HuH. SunB. ZhaoH. QieY. LuoZ. PanY. ChenW. LinL. YangK. GuoT. LiF. Dynamic anti-counterfeiting labels with enhanced multi-level information encryption.ACS Appl. Mater. Interfaces20231512104211110.1021/acsami.2c1787036541836
    [Google Scholar]
  93. LinT. TianC. SunY. LiuS. WangD. HouL. ZhaoS. Information encryption with a high information-carrying capacity based on a stimulus-responsive hydrogen-bonded organic framework and a smartphone.Chin. Chem. Lett.202334510786410.1016/j.cclet.2022.107864
    [Google Scholar]
  94. XuM. LiX. ZhouD. ChenY. ZhangL. YaoL. LiuY. Light and humidity dual-responsive anti-counterfeiting films based on hydrogen-bonded cholesteric liquid crystal polymers with spiropyran.ACS Appl. Mater. Interfaces20231550589555896610.1021/acsami.3c1607938052001
    [Google Scholar]
  95. LeeG.H. YunY. ChungJ.W. KangH.B. Bio imaging systems and bio imaging methods.Patent US 117171682023
  96. MaX. SunX. ChenJ. LeiY. Natural or natural-synthetic hybrid polymer-based fluorescent polymeric materials for bio-imaging-related applications.Appl. Biochem. Biotechnol.2017183246148710.1007/s12010‑017‑2570‑928840474
    [Google Scholar]
  97. TangC. XuH. LiuF. LiuX-D. LaiW-Y. WangX-L. HuangW. Alternating pyrene–fluorene linear copolymers: Influence of non-conjugated and conjugated pyrene on thermal and optoelectronic properties.Synth. Met.2013174334110.1016/j.synthmet.2013.04.015
    [Google Scholar]
  98. TangC. XuH. LiuF. LiuX-D. XiaY-J. WangX-L. HuangW. Pyrene substituted terfluorenes: Special influence of non-conjugated pyrene group on thermal and electroluminescent properties.Mater. Res. Innov.201317640841510.1179/1433075X13Y.0000000085
    [Google Scholar]
  99. LiuJ. WangS. LvW. WuJ. LingQ. LinZ. Spring lock: Constructing cluster emitters with colorful TADF from non‐conjugated polymaleimide helical chains.Adv. Funct. Mater.20243438240257810.1002/adfm.202402578
    [Google Scholar]
  100. JiangX. GuoY. WangL. ZhangQ. Novel multi-mode anti-counterfeiting encryption material of CaAl12O19:Eu, Er with multi-color down-conversion luminescence, up-conversion luminescence, dynamic luminescence, and photochromism.J Colloid Interface Sci2025678Pt A87288510.1016/j.jcis.2024.08.169
    [Google Scholar]
  101. QuanZ. ZhangQ. LiH. SunS. XuY. Fluorescent cellulose-based materials for information encryption and anti-counterfeiting.Coord. Chem. Rev.202349321528710.1016/j.ccr.2023.215287
    [Google Scholar]
  102. LiuY. HanF. LiF. ZhaoY. ChenM. XuZ. ZhengX. HuH. YaoJ. GuoT. LinW. ZhengY. YouB. LiuP. LiY. QianL. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication.Nat. Commun.2019101240910.1038/s41467‑019‑10406‑731160579
    [Google Scholar]
  103. ShenY. LeX. WuY. ChenT. Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: Recent advances and future challenges.Chem. Soc. Rev.202453260662310.1039/D3CS00753G38099593
    [Google Scholar]
  104. ShiZ. ZhaoW. ZhangY. YangD. GanL. HuangJ. Triply hiding optical information via excitation‐dependent allochroic photoluminescence based on cellulose derivates.Small2023193220569710.1002/smll.20220569736408922
    [Google Scholar]
  105. GaoQ. ShiM. RaoJ. SuZ. ChenG. LüB. BianJ. PengF. Fully exploiting clusterization‐triggered room temperature phosphorescence of cellulose by stepwise rigidification for long‐lived and excitation wavelength‐dependent afterglows.Adv. Funct. Mater.20243440240397710.1002/adfm.202403977
    [Google Scholar]
  106. DouX. ZhuT. WangZ. SunW. LaiY. SuiK. TanY. ZhangY. YuanW.Z. Color‐tunable, excitation‐dependent, and time‐dependent afterglows from pure organic amorphous polymers.Adv. Mater.20203247200476810.1002/adma.20200476833089564
    [Google Scholar]
  107. ShaoL. WanK. WangH. CuiY. ZhaoC. LuJ. LiX. ChenL. CuiX. WangX. DengX. ShiX. WuY. A non-conjugated polyethylenimine copolymer-based unorthodox nanoprobe for bioimaging and related mechanism exploration.Biomater. Sci.2019773016302410.1039/C9BM00516A31134990
    [Google Scholar]
/content/journals/celt/10.2174/012666948X375153250412165436
Loading
/content/journals/celt/10.2174/012666948X375153250412165436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test