Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Introduction

Reactive oxygen species (ROS)-mediated oxidative damage in arsenic pathogenesis disrupts redox balance, impairs free radical neutralization, and affects bacterial metabolism, leading to cell death. This study investigated the antibacterial activity and antioxidant system augmentation of aqueous leaf extract (JCALE) , and on arsenic-induced oxidative-stressed .

Methods

The bioactive components of JCALE obtained from the gas chromatography-mass spectroscopy (GCMS) technique were used for molecular docking in PyRx and Biovia Discovery Studio 2021. Sodium-arsenite (SA) toxicity (0.0625 mM) was induced in and treated with JCALE (0.4 and 0.8 g/10g diet) for 7 days. Thereafter, the ameliorative role of JCALE in SA-induced toxicity was evaluated using oxidative stress (hydrogen peroxide and lipid peroxidation), antioxidant (catalase and glutathione-s-transferase), and hepatic enzymes (alanine and aspartate transaminases) biomarkers, and the antibacterial activity by agar diffusion method.

Results

The results of this study showed potent inhibition of Proteus mirabilis (20 mm), Salmonella typhi (20 mm), Pseudomonas aeruginosa (19 mm), and Escherichia coli (16 mm) by JCALE. However, Staphylococcus aureus showed resistance. Treatment of the arsenic induced flies with the concentrations of JCALE significantly increased (<0.05) catalase and glutathione-s-transferase activities but reduced (p<0.05) both alanine and aspartate transaminases activities and the levels of hydrogen peroxide generation and lipid peroxidation. Additionally, out of the seven drugs predicted in this study, decane-3,7-dimethyl- showed the best binding energy with the selected target proteins.

Discussion

The results indicate that the extract significantly improved key biochemical parameters, suggesting its potential therapeutic effect. These findings support its biological activity, though further studies are needed to confirm its mechanisms and long-term safety.

Conclusion

In conclusion, JCALE showed antibacterial activity, prevented oxidative stress, and augmented the antioxidant system of , possibly due to its richly embedded secondary metabolites.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080347649250413161232
2025-05-16
2025-09-28
Loading full text...

Full text loading...

References

  1. ShajiE. SantoshM. SarathK.V. PrakashP. DeepchandV. DivyaB.V. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula.Geosci Front202112310107910.1016/j.gsf.2020.08.015
    [Google Scholar]
  2. JamwalA. RachamallaM. NiyogiS. Environmental toxicology of arsenic to wildlife (nonhuman species): Exposure, accumulation, toxicity, and regulations.Handbook of Arsenic Toxicology.United StatesElsevier202379182010.1016/B978‑0‑323‑89847‑8.00001‑8
    [Google Scholar]
  3. GenchiG. LauriaG. CatalanoA. CarocciA. SinicropiM.S. Arsenic: A review on a great health issue worldwide.Appl. Sci.20221212618410.3390/app12126184
    [Google Scholar]
  4. KatoLS FerrariRG LeiteJVM Conte-JuniorCA Arsenic in shellfish: A systematic review of its dynamics and potential health risks. Mar Pollut Bull2020161Pt A11169310.1016/j.marpolbul.2020.111693 33022493
    [Google Scholar]
  5. ZargariF. RahamanM.S. KazemPour R, Hajirostamlou M. Arsenic, oxidative stress and reproductive system.J. Xenobiot.202212321422210.3390/jox12030016 35893266
    [Google Scholar]
  6. UnsalV. CicekM. Sabancilarİ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants.Rev. Environ. Health202136227929510.1515/reveh‑2020‑0048 32970608
    [Google Scholar]
  7. BhattaraiK.R. RiazT.A. KimH.R. ChaeH.J. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling.Exp. Mol. Med.202153215116710.1038/s12276‑021‑00560‑8 33558590
    [Google Scholar]
  8. MansoorS. AliA. KourN. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants.Plants20231216300310.3390/plants12163003 37631213
    [Google Scholar]
  9. AwoteO. KazeemM. OjekaleA. AyanleyeO. RamoniH. Prospects of silver nanoparticles (AgNPs) synthesized by Justicia secunda aqueous extracts on diabetes and its related complications.Proceed Nig Acad Sci20231618710410.57046/WTNO8179
    [Google Scholar]
  10. ThakurM. RachamallaM. NiyogiS. DatusaliaA.K. FloraS.J.S. Molecular mechanism of arsenic-induced neurotoxicity including neuronal dysfunctions.Int. J. Mol. Sci.202122181007710.3390/ijms221810077 34576240
    [Google Scholar]
  11. CavalcanteN.B. Santos DdCA, Almeida GdSJR. The genus Jatropha (Euphorbiaceae): A review on secondary chemical metabolites and biological aspects.Chem. Biol. Interact.202031810897610.1016/j.cbi.2020.108976 32035864
    [Google Scholar]
  12. BekaluY. FekadM. Review on economic importance of Jatropha apart from its use as a biofuel.EPRA Inter J Res Develop20205243310.36713/epra2016
    [Google Scholar]
  13. HarnishJ.M. LinkN. YamamotoS. Drosophila as a model for infectious diseases.Int. J. Mol. Sci.2021225272410.3390/ijms22052724 33800390
    [Google Scholar]
  14. FerreroP.V. How similar are you to the fruit fly? Drosophila melanogaster as model for studying human diseases.Physiol Mini Rev20211451424
    [Google Scholar]
  15. RandM.D. TennessenJ.M. MackayT.F.C. AnholtR.R.H. Perspectives on the Drosophila melanogaster model for advances in toxicological science.Curr. Protoc.202338e87010.1002/cpz1.870 37639638
    [Google Scholar]
  16. RajawatD. KumarH. SaravananK. Cinderella of genetics (Drosophila melanogaster): Population genetics to genomics.J. Entomol. Zool. Stud.202192311319
    [Google Scholar]
  17. ShilpaO. AnupamaK.P. AntonyA. GurushankaraH.P. Lead (Pb) induced oxidative stress as a mechanism to cause neurotoxicity in Drosophila melanogaster.Toxicology202146215295910.1016/j.tox.2021.152959 34560124
    [Google Scholar]
  18. AdeyemoA.G. AwoteO.K. BelloO.P. Phytochemical screening, in vitro antioxidant and anti-inflammatory activity of aqueous extract of Jatropha curcas.South Asian Res J Nat Prod202363239247
    [Google Scholar]
  19. OyiboA. GbadegesinM.A. OdunolaO.A. Ethanol extract of Vitellaria paradoxa (Gaertn, F) leaves protects against sodium arsenite - induced toxicity in male wistar rats.Toxicol. Rep.2021877478410.1016/j.toxrep.2021.03.035 33854955
    [Google Scholar]
  20. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  21. OladimejiSO IgbalayeJO AwoteOK Cissampelos pareira ethanolic extract modulates hormonal indices, lipid profile, and oxidative parameters in transient infertility-induced female albino rats. Bio-Research20232121961197210.4314/br.v21i2.4
    [Google Scholar]
  22. HabigW.H. JakobyW.B. Assays for differentiation of glutathione S-Transferases. Methods Enzymol19817739840510.1016/S0076‑6879(81)77053‑8 7329316
    [Google Scholar]
  23. JollowD.J. MitchellJ.R. ZampaglioneN. GilletteJ.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite.Pharmacology197411315116910.1159/000136485 4831804
    [Google Scholar]
  24. WolffS.P. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides.Methods Enzymol1994233182910.1016/S0076‑6879(94)33021‑2
    [Google Scholar]
  25. VarshneyR. KaleR.K. Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes.Int. J. Radiat. Biol.199058573374310.1080/09553009014552121 1977818
    [Google Scholar]
  26. StrilbytskaO. StrutynskaT. SemaniukU. BurdyliykN. LushchakO. Dietary sucrose defines lifespan and metabolism in Drosophila.Ukr. Biochem. J.20209259710510.15407/ubj92.05.097
    [Google Scholar]
  27. YurkevychI.S. GrayL.J. GospodaryovD.V. Development of fly tolerance to consuming a high-protein diet requires physiological, metabolic and transcriptional changes.Biogerontology202021561963610.1007/s10522‑020‑09880‑0 32468146
    [Google Scholar]
  28. AwoteO.K. AnagunO.S. AdeyemoA.G. Green-synthesized silver nanoparticles by using fresh Justicia Secunda, Telfairia Occidentalis, and Jatropha Tanjorensis aqueous leaf extracts against clinical and environmental bacterial isolates.Asian J Green Chm20226428429610.22034/ajgc.2022.4.1
    [Google Scholar]
  29. YazdiF. Minai-TehraniD. JahngirvandM. Functional and structural changes of human erythrocyte catalase induced by cimetidine: Proposed model of binding.Mol. Cell. Biochem.20154041-29710210.1007/s11010‑015‑2369‑3 25739358
    [Google Scholar]
  30. OyiboA. AbolajiA.O. OmoboyowaD.A. OdunolaO.A. Vitellaria paradoxa inhibits arsenic-induced toxicity in Drosophila melanogaster via the augmentation of antioxidant system.Toxicology202349415359010.1016/j.tox.2023.153590 37421989
    [Google Scholar]
  31. RazoD.L.M. Garcia-VargasG.G. Garcia-SalcedoJ. Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera, Mexico.Food Chem. Toxicol.200240101423143110.1016/S0278‑6915(02)00074‑1 12387304
    [Google Scholar]
  32. CowanM.M. Plant products as antimicrobial agents.Clin. Microbiol. Rev.199912456458210.1128/CMR.12.4.564 10515903
    [Google Scholar]
  33. AhmadI. BegA.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens.J. Ethnopharmacol.200174211312310.1016/S0378‑8741(00)00335‑4 11167029
    [Google Scholar]
  34. NairR. ChandaS. Antibacterial activities of some medicinal plants of the western region of India.Turk. J. Biol.2007314231236
    [Google Scholar]
  35. OyamaM. MalachiO. OladejoA. Phytochemical screening and antimicrobial activity of leaf extract of Jatropha curcas.J. Adv. Med. Pharm. Sci.2016811610.9734/JAMPS/2016/24146
    [Google Scholar]
  36. GuleriaD. SagarA. SehgalA.K. Jatropha Curcas L.: A Comprehensive Study on Antibacterial, Antioxidant, and Phytochemical Properties.Proc. Natl. Acad. Sci.202411210.1007/s40011‑024‑01634‑z
    [Google Scholar]
  37. HaqA. SiddiqiM. BatoolS.Z. Comprehensive investigation on the synergistic antibacterial activities of Jatropha curcas pressed cake and seed oil in combination with antibiotics.AMB Express2019916710.1186/s13568‑019‑0793‑6 31102037
    [Google Scholar]
  38. JomovaK. JenisovaZ. FeszterovaM. Arsenic: Toxicity, oxidative stress and human disease.J. Appl. Toxicol.20113129510710.1002/jat.1649 21321970
    [Google Scholar]
  39. MuraliR. KarthikeyanA. SaravananR. Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats.Basic Clin. Pharmacol. Toxicol.2013112317518110.1111/bcpt.12010 22998493
    [Google Scholar]
  40. HassanS.K. El-SammadN.M. MousaA.M. Hypoglycemic and antioxidant activities of Caesalpinia ferrea Martius leaf extract in streptozotocin-induced diabetic rats.Asian Pac. J. Trop. Biomed.20155646247110.1016/j.apjtb.2015.03.004
    [Google Scholar]
  41. AbolajiA.O. KamdemJ.P. LugokenskiT.H. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster.Redox Biol.2015532833910.1016/j.redox.2015.06.001 26117601
    [Google Scholar]
  42. TurkE. KandemirF.M. YildirimS. CaglayanC. KucuklerS. KuzuM. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats.Biol. Trace Elem. Res.201918919510810.1007/s12011‑018‑1443‑6 30066062
    [Google Scholar]
  43. OloyedeO.B. SalauA.K. AkewusolaR.T. Phytochemical content, radical scavenging and antibacterial properties of aqueous extract of Jatropha curcas Linn leaves.Fountain J. Nat. Appl. Sci.201211414810.53704/fujnas.v1i1.33
    [Google Scholar]
  44. ErejuwaO.O. SulaimanS.A. WahabM.S. Hepatoprotective effect of tualang honey supplementation in streptozotocin-induced diabetic rats.Int. J. Appl. Res. Nat. Prod.201243741
    [Google Scholar]
  45. LukeU.O. EbongP.E. EyongE.U. Effect of ethanolic root and twig extracts of Vernonia amygdalina (ETIDOT) on liver function parameters of streptozotocin induced hyperglycaemic and normal wistar rats.Eur. Sci. J.20139199211
    [Google Scholar]
  46. AdeyemiD.O. UkwenyaV.O. ObuotorE.M. AdewoleS.O. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage.BMC Complement. Altern. Med.201414127710.1186/1472‑6882‑14‑277 25077880
    [Google Scholar]
  47. OdunolaO.A. KazeemA.K. IbegbuD.M. The influence of Garlic and Spondias mombin on sodium arsenite-induced clastogenicity and hepatotoxicity in rats.Pac. J. Sci. Technol.2011122401409
    [Google Scholar]
  48. DehpourA.A. YousefianM. KelarijaniJ.S.A. Antibacterial activity and composition of essential oils of flower Allium rotundum.Adv. Environ. Biol.20126310201025
    [Google Scholar]
  49. ChetehounaS. DerouicheS. ReggamiY. Gas chromatography analysis, mineral contents and anti-inflammatory activity of sonchus maritimus.Trop J Nat Prod Res20248467876798
    [Google Scholar]
  50. ShahD.M. Seelan Sathiya SeelanJ. IqbalM. Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves.Arab. J. Chem.20201397170718210.1016/j.arabjc.2020.07.022
    [Google Scholar]
  51. NyaloO.P. OmwengaI.G. NgugiP.M. GC-MS analysis, antibacterial and antioxidant potential of ethyl acetate leaf extract of senna singueana (Delile) grown in kenya.Evid. Based Complement. Alternat. Med.2022202211510.1155/2022/5436476 36034966
    [Google Scholar]
  52. AhmadS. UllahF. SadiqA. Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan.BMC Complement. Altern. Med.20161612910.1186/s12906‑016‑0998‑z 26810212
    [Google Scholar]
  53. HailuY.M. AtlabachewM. ChandravanshiB.S. Composition of essential oil and antioxidant activity of Khat (Catha edulis Forsk), Ethiopia.Chem. Int.20173125
    [Google Scholar]
  54. RhetsoT. ShubharaniR. RoopaM.S. SivaramV. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don.Future J. Pharm. Sci.20206110210.1186/s43094‑020‑00100‑7
    [Google Scholar]
  55. AwoteO.K. AmisuK.O. AnagunO.S. In vitro and molecular docking evaluation of the antibacterial, antioxidant, and antidiabetic effects of silver nanoparticles from cymbopogon citratus leaf.Trop J Nat Prod Res20248984008411
    [Google Scholar]
  56. AwoteO.K. KanmodiR.I. EbubeS.C. AbdulganniyyuZ.F. Nutritional profile, gc-ms analysis and in-silico anti-diabetic phytocompounds candidature of Jatropha gossypifolia leaf extracts.Curr. Drug Discov. Technol.2024213e22122322476410.2174/0115701638267143230925172207 37817655
    [Google Scholar]
/content/journals/cei/10.2174/0115734080347649250413161232
Loading
/content/journals/cei/10.2174/0115734080347649250413161232
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test