Skip to content
2000
image of Discovering a 4H-chromen-4-one Framework to Target Breast Cancer with a State-of-the-art QSAR Model

Abstract

Introduction

Breast cancer is a leading cause of death among women worldwide. The limitations of current therapies, drug resistance, and toxicity emphasize the urgent need for targeted therapeutic agents. The 4H-chromen-4-one scaffold has emerged as a promising framework for developing potent anticancer agents, particularly against MCF-7 breast cancer cells. This study investigates the anticancer potential of 4H-chromen-4-one derivatives against the MCF-7 breast cancer cell line using computational modelling.

Methods

QSAR models were constructed using PaDEL molecular descriptors using conventional QSARINS software and state-of-the-art machine learning techniques.

Results

The QSAR model through QSARINS demonstrated strong predictive performance with a leave-one-out cross-validated R2 (Q2loo) value of 0.7790 (internal validation) and a squared correlation coefficient of the test set (R2ext) value of 0.5049 (external validation). Whereas, machine learning models yielded R2 values of 0.6614, 0.9404, 0.9093, 0.9093, and 0.714 for random forest, support vector regression, multiple linear regressions, partial least squares, and ordinary least squares, respectively.

Discussion

Key molecular descriptors contributing significantly to the model included MATS2e (electronic descriptor), SCH-5 (topological descriptor), and minaasC (electronic descriptor), indicating their importance in breast cancer activity. The predicted pIC values for the 4H-chromen-4-one derivatives from QSARINS and machine learning techniques fit well within the chemical space, further validating the models.

Conclusion

This study highlights the potential of 4H-chromen-4-one derivatives as leads for anticancer drug development. The identified electronic descriptors are essential for their activity and can guide structural optimization. Further and studies are warranted to validate their therapeutic potential.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080335471250320032842
2025-04-17
2025-08-13
Loading full text...

Full text loading...

References

  1. Selvaraj NB Swaroop AK Mariappan E Natarajan J Thangavelu P Selvaraj J Effect of calcitriol in inhibiting the cancer cell growth and promoting apoptosis in ErbB2-positive breast cancer cells. Antican. Agen. Med. Chem. 2023 23 18 2056 2071 10.2174/1871520623666230822100006 37608657
    [Google Scholar]
  2. Jubie S. Dhanabal P. Azam M.A. Kumar N.S. Ambhore N. Kalirajan R. Design, synthesis and antidepressant activities of some novel fatty acid analogues. Med. Chem. Res. 2015 24 4 1605 1616 10.1007/s00044‑014‑1235‑2
    [Google Scholar]
  3. Ayaz M. Alam A. Zainab M. Assad M. Javed A. Islam M.S. Rafiq H. Ali M. Ahmad W. Khan A. Latif A. Al-Harrasi A. Ahmad M. Biooriented synthesis of ibuprofen-clubbed novel bis-schiff base derivatives as potential hits for malignant glioma: In vitro anticancer activity and in silico approach. ACS Omega 2023 8 51 49228 49243 10.1021/acsomega.3c07216 38173864
    [Google Scholar]
  4. Alam A. Zainab Khan M. Halim S.A. Rehman N.U. Ayaz M. Khan A. Ali M. Latif A. Al-Harrasi A. Ahmad M. Synthesis of novel (S)-flurbiprofen-based esters for cancer treatment by targeting thymidine phosphorylase via Biomolecular Approaches. J. Mol. Struct. 2024 1316 138970 10.1016/j.molstruc.2024.138970
    [Google Scholar]
  5. Zainab Khan F. Alam A. Rehman N.U. Ullah S. Elhenawy A.A. Ali M. Islam W.U. Khan A. Al-Harrasi A. Ahmad M. Haitao Y. Synthesis, anticancer, α-glucosidase inhibition, molecular docking and dynamics studies of hydrazone-Schiff bases bearing polyhydroquinoline scaffold: In vitro and in silico approaches. J. Mol. Struct. 2025 1321 139699 10.1016/j.molstruc.2024.139699
    [Google Scholar]
  6. Jubie S. Durai U. Latha S. Ayyamperumal S. Wadhwani A. Prabha T. Repurposing of benzimidazole scaffolds for HER2 positive breast cancer therapy: An in-silico approach. Curr. Drug Res. Rev. 2021 13 1 73 83 10.2174/2589977512999200821170221 32955008
    [Google Scholar]
  7. Selvaraj J. Prabha T. Yadav N. Identification of drug candidates for breast cancer therapy through scaffold repurposing: A Brief Review. Curr. Drug Res. Rev. 2021 13 1 3 15 10.2174/2589977512666200824103019 32838729
    [Google Scholar]
  8. Alam A. Khan F. Rehman N.U. Zainab Elhenawy A.A. Islam W.U. Ali M. Aziz S. Al-Harrasi A. Ahmad M. Flurbiprofen clubbed schiff’s base derivatives as potent anticancer agents: In vitro and in silico approach towards breast cancer. J. Mol. Struct. 2025 1321 139743 10.1016/j.molstruc.2024.139743
    [Google Scholar]
  9. Nagaraju B. Rajeswari M. Vedasree N. Rao C.A. Srinivasa V.R. Prabha T. Rao C.V. Maddila S. Design, synthesis, and molecular docking studies of integrated benzylidenethiazolidine‐2,4‐dione and thieno[2,3‐ d ]pyrimidine‐6‐carboxylate derivatives as potent antidiabetic agents. ChemistrySelect 2023 8 48 e202303786 10.1002/slct.202303786
    [Google Scholar]
  10. Guha R. Jurs P.C. Development of QSAR models to predict and interpret the biological activity of artemisinin analogues. J. Chem. Inf. Comput. Sci. 2004 44 4 1440 1449 10.1021/ci0499469 15272852
    [Google Scholar]
  11. Jubie S Meena S Ramaseshu KV Jawahar N Vijayakumar S Synthesis and biological evaluation of substituted thiophenyl derivatives of indane-1, 3-dione. E-J. Chem. 2007 4 3 428 433 10.1155/2007/865470
    [Google Scholar]
  12. Katsila T. Spyroulias G.A. Patrinos G.P. Matsoukas M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J. 2016 14 177 184 10.1016/j.csbj.2016.04.004 27293534
    [Google Scholar]
  13. Cherkasov A. Muratov E.N. Fourches D. Varnek A. Baskin I.I. Cronin M. Dearden J. Gramatica P. Martin Y.C. Todeschini R. Consonni V. Kuz’min V.E. Cramer R. Benigni R. Yang C. Rathman J. Terfloth L. Gasteiger J. Richard A. Tropsha A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014 57 12 4977 5010 10.1021/jm4004285 24351051
    [Google Scholar]
  14. Kalirajan R. Rathore L. Jubie S. Gowramma B. Gomathy S. Sankar S. Elango K. Microwave assisted synthesis and biological evaluation of pyrazole derivatives of benzimidazoles. Ind. J. Pharm. Edu. Res. 2010 44 4 358 362
    [Google Scholar]
  15. Thangavelu P. Thangavel S. Design, synthesis, and docking of sulfadiazine Schiff base scaffold for their potential claim as Inha enoyl-(acyl-carrier-protein) reductase inhibitors. Asian J. Pharm. Clin. Res. 2018 11 10 233 10.22159/ajpcr.2018.v11i10.27179
    [Google Scholar]
  16. Macalino S.J.Y. Billones J.B. Organo V.G. Carrillo M.C.O. In silico strategies in tuberculosis drug discovery. Molecules 2020 25 3 665 10.3390/molecules25030665 32033144
    [Google Scholar]
  17. Selvaraj J Prabha T Kumar TD Palaniappan S Artificial intelligence in biomedical image processing. Machine Learning and Systems Biology in Genomics and Health Singapore Springer 2022 147 188 10.1007/978‑981‑16‑5993‑5_8
    [Google Scholar]
  18. Safder U. Nam K. Kim D. Shahlaei M. Yoo C. Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network. Ecotoxicol. Environ. Saf. 2018 162 17 28 10.1016/j.ecoenv.2018.06.061 29957404
    [Google Scholar]
  19. Tsou L.K. Yeh S.H. Ueng S.H. Chang C.P. Song J.S. Wu M.H. Chang H.F. Chen S.R. Shih C. Chen C.T. Ke Y.Y. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci. Rep. 2020 10 1 16771 10.1038/s41598‑020‑73681‑1 33033310
    [Google Scholar]
  20. Zhavoronkov A. Ivanenkov Y.A. Aliper A. Veselov M.S. Aladinskiy V.A. Aladinskaya A.V. Terentiev V.A. Polykovskiy D.A. Kuznetsov M.D. Asadulaev A. Volkov Y. Zholus A. Shayakhmetov R.R. Zhebrak A. Minaeva L.I. Zagribelnyy B.A. Lee L.H. Soll R. Madge D. Xing L. Guo T. Aspuru-Guzik A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019 37 9 1038 1040 10.1038/s41587‑019‑0224‑x 31477924
    [Google Scholar]
  21. Nicolaou K.C. Pfefferkorn J.A. Roecker A.J. Cao G.Q. Barluenga S. Mitchell H.J. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans. J. Am. Chem. Soc. 2000 122 41 9939 9953 10.1021/ja002033k
    [Google Scholar]
  22. Katiyar M.K. Dhakad G.K. Shivani Arora S. Bhagat S. Arora T. Kumar R. Synthetic strategies and pharmacological activities of chromene and its derivatives: An overview. J. Mol. Struct. 2022 1263 133012 10.1016/j.molstruc.2022.133012
    [Google Scholar]
  23. Karmakar R. Mukhopadhyay C. -Proline catalyzed synthesis of biologically promising heterocycles under sustainable conditions. Tetrahedron Chem 2024 11 100087 10.1016/j.tchem.2024.100087
    [Google Scholar]
  24. Pratap R. Ram V.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev. 2014 114 20 10476 10526 10.1021/cr500075s 25303539
    [Google Scholar]
  25. Keri R.S. Budagumpi S. Pai R.K. Balakrishna R.G. Chromones as a privileged scaffold in drug discovery: A review. Eur. J. Med. Chem. 2014 78 340 374 10.1016/j.ejmech.2014.03.047 24691058
    [Google Scholar]
  26. Konduri S. Pogaku V. Prashanth J. Siva Krishna V. Sriram D. Basavoju S. Behera J.N. Prabhakara Rao K. Sacubitril‐based urea and thiourea derivatives as novel inhibitors for anti‐tubercular against dormant tuberculosis. ChemistrySelect 2021 6 16 3869 3874 10.1002/slct.202004724
    [Google Scholar]
  27. Kidwai M. Saxena S. Rahman Khan M.K. Thukral S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett. 2005 15 19 4295 4298 10.1016/j.bmcl.2005.06.041 16040241
    [Google Scholar]
  28. Silva C.F.M. Pinto D.C.G.A. Silva A.M.S. Chromones: A promising ring system for new anti‐inflammatory drugs. ChemMedChem 2016 11 20 2252 2260 10.1002/cmdc.201600359 27630077
    [Google Scholar]
  29. Sharma S.K. Kumar S. Chand K. Kathuria A. Gupta A. Jain R. An update on natural occurrence and biological activity of chromones. Curr. Med. Chem. 2011 18 25 3825 3852 10.2174/092986711803414359 21824102
    [Google Scholar]
  30. Gramatica P. Sangion A. A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology. J. Chem. Inf. Model. 2016 56 6 1127 1131 10.1021/acs.jcim.6b00088 27218604
    [Google Scholar]
  31. Roy K. Das R. A review on principles, theory and practices of 2D-QSAR. Curr. Drug Metab. 2014 15 4 346 379 10.2174/1389200215666140908102230 25204823
    [Google Scholar]
  32. Prabha T. Aishwaryah P. Manickavalli E. Chandru R. Arulbharathi G. Anu A. Sivakumar T. A chalcone annulated pyrazoline conjugates as a potent antimycobacterial agents: Synthesis and in silico molecular modeling studies. Res. J. Pharm. Technol. 2019 12 8 3857 3865 10.5958/0974‑360X.2019.00663.2
    [Google Scholar]
  33. Mulatsari E. Mumpuni E. Nurhidayati L. Purwanggana A. Pratami D.K. Chemical molecular visualization training with chemsketch software for senior high school students. Magistrorum Et Scholarium: Jurnal Pengabdian Masyarakat 2021 2 1 102 112
    [Google Scholar]
  34. Gramatica P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 2007 26 5 694 701 10.1002/qsar.200610151
    [Google Scholar]
  35. Gramatica P. Chirico N. Papa E. Cassani S. Kovarich S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013 34 24 2121 2132 10.1002/jcc.23361
    [Google Scholar]
  36. Kotha R.R. Kulkarni R.G. Garige A.K. Nerella S.G. Garlapati A. Synthesis and cytotoxic activity of new chalcones and their flavonol derivatives. Med. Chem. 2017 7 353 360
    [Google Scholar]
  37. Ravishankar D. Watson K.A. Greco F. Osborn H.M.I. Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity. RSC Advances 2016 6 69 64544 64556 10.1039/C6RA11041J
    [Google Scholar]
  38. Yap C.W. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011 32 7 1466 1474 10.1002/jcc.21707 21425294
    [Google Scholar]
  39. Roy K. Mitra I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High Throughput Screen. 2011 14 6 450 474 10.2174/138620711795767893 21521150
    [Google Scholar]
  40. R S. Mk K. Lead optimization of 4-(thio)-chromenone 6- O -sulfamate analogs using QSAR, molecular docking and DFT – a combined approach as steroidal sulfatase inhibitors. J. Recept. Signal Transduct. Res. 2021 41 2 123 137 10.1080/10799893.2020.1794004 32705921
    [Google Scholar]
  41. Lipiński P.F.J. Szurmak P. SCRAMBLE’N’GAMBLE: A tool for fast and facile generation of random data for statistical evaluation of QSAR models. Chem. Pap. 2017 71 11 2217 2232 10.1007/s11696‑017‑0215‑7 29104352
    [Google Scholar]
  42. Weaver S. Gleeson M.P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 2008 26 8 1315 1326 10.1016/j.jmgm.2008.01.002 18328754
    [Google Scholar]
  43. Elbouhi M. Badaoui H. Ouabane M. Alaoui M.A. Koubi Y. Mokhlis Y. ElKamel K. Lakhlifi T. Anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase ii catalytic inhibitors: 2D-QSAR study. RHAZES: Gree. Appl. Chem. 2022 14 62 75
    [Google Scholar]
  44. Ishola A.A. Adedirin O. Joshi T. Chandra S. QSAR modeling and pharmacoinformatics of SARS coronavirus 3C-like protease inhibitors. Comput. Biol. Med. 2021 134 104483 10.1016/j.compbiomed.2021.104483 34020129
    [Google Scholar]
  45. Papa E. Dearden J.C. Gramatica P. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere 2007 67 2 351 358 10.1016/j.chemosphere.2006.09.079 17109926
    [Google Scholar]
  46. Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Vanderplas J. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011 12 2825 2830
    [Google Scholar]
  47. Thangavelu P. Venkatesan J. Jubie S. Jayapalan S. Sivakumar T. A machine learning language to build a QSAR model of pyrazoline derivative inhibitors targeting Mycobacterium tuberculosis strain H37Rv. Lett. Drug Des. Discov. 2023 20 2 167 180 10.2174/1570180819666220420092723
    [Google Scholar]
  48. Jayaprakash V. Saravanan T. Ravindran K. Prabha T. Selvaraj J. Jayapalan S. Chaitanya M.V.N.L. Sivakumar T. Relevance of machine learning to predict the inhibitory activity of small thiazole chemicals on estrogen receptor. Curr. Computeraided Drug Des. 2023 19 1 37 50 10.2174/1573409919666221121141646 36424784
    [Google Scholar]
  49. Gasteiger J. Handbook of Chemoinformatics: From Data to Knowledge. Weinheim Germany Wiley-VCH 2008 1 1930
    [Google Scholar]
  50. Eriksson L. Jaworska J. Worth A.P. Cronin M.T.D. McDowell R.M. Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003 111 10 1361 1375 10.1289/ehp.5758 12896860
    [Google Scholar]
  51. Roy K. Kar S. Ambure P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst. 2015 145 22 29 10.1016/j.chemolab.2015.04.013
    [Google Scholar]
  52. Luque Ruiz I. Gómez-Nieto M.Á. Study of the applicability domain of the QSAR classification models by means of the rivality and modelability indexes. Molecules 2018 23 11 2756 10.3390/molecules23112756 30356020
    [Google Scholar]
  53. OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, OECD Series on Testing and Assessment. Paris OECD Publishing 2014 69 1 6
    [Google Scholar]
  54. Ambure P. Halder A.K. González Díaz H. Cordeiro M.N.D.S. QSAR-Co: An open source software for developing robust multitasking or multitarget classification-based QSAR models. J. Chem. Inf. Model. 2019 59 6 2538 2544 10.1021/acs.jcim.9b00295 31083984
    [Google Scholar]
  55. Jawarkar R.D. Khan A. Mali S.N. Deshmukh P.K. Ingle R.G. Al-Hussain S.A. Al-Mutairi A.A. Zaki M.E.A. Cheminformatics-driven prediction of BACE-1 inhibitors: Affinity and molecular mechanism exploration. Chemical Physics Impact 2024 9 100754 10.1016/j.chphi.2024.100754
    [Google Scholar]
  56. Moulishankar A. Sundarrajan T. QSAR modeling, molecular docking, dynamic simulation and ADMET study of novel tetrahydronaphthalene derivatives as potent antitubercular agents. Beni. Suef Univ. J. Basic Appl. Sci. 2023 12 1 111 10.1186/s43088‑023‑00451‑z
    [Google Scholar]
  57. Vamathevan J. Clark D. Czodrowski P. Dunham I. Ferran E. Lee G. Li B. Madabhushi A. Shah P. Spitzer M. Zhao S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019 18 6 463 477 10.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  58. Lo Y.C. Rensi S.E. Torng W. Altman R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018 23 8 1538 1546 10.1016/j.drudis.2018.05.010 29750902
    [Google Scholar]
  59. Kubinyi H. Evolutionary variable selection in regression and PLS analyses. J. Chemometr. 1996 10 2 119 133 10.1002/(SICI)1099‑128X(199603)10:2<119::AID‑CEM409>3.0.CO;2‑4
    [Google Scholar]
  60. Owen J.R. Nabney I.T. Medina-Franco J.L. López-Vallejo F. Visualization of molecular fingerprints. J. Chem. Inf. Model. 2011 51 7 1552 1563 10.1021/ci1004042 21696145
    [Google Scholar]
  61. Durgesh K.S. Lekha B. Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 2010 12 1 1 7
    [Google Scholar]
  62. Prabha T. Selvinthanuja C. Hemalatha S. Sengottuvelu S. Senthil J. Machine learning algorithm used to build a QSAR model for pyrazoline scaffold as anti-tubercular agent. J. Med. Pharma. All. Sci. 2021 10 6 4024 4030 10.22270/jmpas.V10I6.2562
    [Google Scholar]
  63. Abdi H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip. Rev. Comput. Stat. 2010 2 1 97 106 10.1002/wics.51
    [Google Scholar]
/content/journals/cei/10.2174/0115734080335471250320032842
Loading
/content/journals/cei/10.2174/0115734080335471250320032842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test