Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Introduction

Breast cancer is a leading cause of death among women worldwide. The limitations of current therapies, drug resistance, and toxicity emphasize the urgent need for targeted therapeutic agents. The 4H-chromen-4-one scaffold has emerged as a promising framework for developing potent anticancer agents, particularly against MCF-7 breast cancer cells. This study investigates the anticancer potential of 4H-chromen-4-one derivatives against the MCF-7 breast cancer cell line using computational modelling.

Methods

QSAR models were constructed using PaDEL molecular descriptors using conventional QSARINS software and state-of-the-art machine learning techniques.

Results

The QSAR model through QSARINS demonstrated strong predictive performance with a leave-one-out cross-validated R2 (Q2loo) value of 0.7790 (internal validation) and a squared correlation coefficient of the test set (R2ext) value of 0.5049 (external validation). Whereas, machine learning models yielded R2 values of 0.6614, 0.9404, 0.9093, 0.9093, and 0.714 for random forest, support vector regression, multiple linear regressions, partial least squares, and ordinary least squares, respectively.

Discussion

Key molecular descriptors contributing significantly to the model included MATS2e (electronic descriptor), SCH-5 (topological descriptor), and minaasC (electronic descriptor), indicating their importance in breast cancer activity. The predicted pIC values for the 4H-chromen-4-one derivatives from QSARINS and machine learning techniques fit well within the chemical space, further validating the models.

Conclusion

This study highlights the potential of 4H-chromen-4-one derivatives as leads for anticancer drug development. The identified electronic descriptors are essential for their activity and can guide structural optimization. Further and studies are warranted to validate their therapeutic potential.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080335471250320032842
2025-04-17
2025-09-28
Loading full text...

Full text loading...

References

  1. SelvarajN.B. SwaroopA.K. MariappanE. NatarajanJ. ThangaveluP. SelvarajJ. Effect of calcitriol in inhibiting the cancer cell growth and promoting apoptosis in ErbB2-positive breast cancer cells.Anticancer. Agents Med. Chem.202323182056207110.2174/1871520623666230822100006 37608657
    [Google Scholar]
  2. JubieS. DhanabalP. AzamM.A. KumarN.S. AmbhoreN. KalirajanR. Design, synthesis and antidepressant activities of some novel fatty acid analogues.Med. Chem. Res.20152441605161610.1007/s00044‑014‑1235‑2
    [Google Scholar]
  3. AyazM. AlamA. ZainabM. Biooriented synthesis of ibuprofen-clubbed novel bis-schiff base derivatives as potential hits for malignant glioma: In vitro anticancer activity and in silico approach.ACS Omega2023851492284924310.1021/acsomega.3c07216 38173864
    [Google Scholar]
  4. AlamA Zainab , Khan M, et al. Synthesis of novel (S)-flurbiprofen-based esters for cancer treatment by targeting thymidine phosphorylase via Biomolecular Approaches.J. Mol. Struct.2024131613897010.1016/j.molstruc.2024.138970
    [Google Scholar]
  5. ZainabKhan F Alam A, et al Synthesis, anticancer, α-glucosidase inhibition, molecular docking and dynamics studies of hydrazone-Schiff bases bearing polyhydroquinoline scaffold: In vitro and in silico approaches.J. Mol. Struct.2025132113969910.1016/j.molstruc.2024.139699
    [Google Scholar]
  6. JubieS. DuraiU. LathaS. AyyamperumalS. WadhwaniA. PrabhaT. Repurposing of benzimidazole scaffolds for HER2 positive breast cancer therapy: An in-silico approach.Curr. Drug Res. Rev.2021131738310.2174/2589977512999200821170221 32955008
    [Google Scholar]
  7. SelvarajJ. PrabhaT. YadavN. Identification of drug candidates for breast cancer therapy through scaffold repurposing: A Brief Review.Curr. Drug Res. Rev.202113131510.2174/2589977512666200824103019 32838729
    [Google Scholar]
  8. AlamA. KhanF. RehmanN.U. Flurbiprofen clubbed schiff’s base derivatives as potent anticancer agents: In vitro and in silico approach towards breast cancer.J. Mol. Struct.2025132113974310.1016/j.molstruc.2024.139743
    [Google Scholar]
  9. NagarajuB. RajeswariM. VedasreeN. Design, synthesis, and molecular docking studies of integrated benzylidenethiazolidine‐2,4‐dione and thieno[2,3‐ d]pyrimidine‐6‐carboxylate derivatives as potent antidiabetic agents.ChemistrySelect2023848e20230378610.1002/slct.202303786
    [Google Scholar]
  10. GuhaR. JursP.C. Development of QSAR models to predict and interpret the biological activity of artemisinin analogues.J. Chem. Inf. Comput. Sci.20044441440144910.1021/ci0499469 15272852
    [Google Scholar]
  11. JubieS. MeenaS. RamaseshuK.V. JawaharN. VijayakumarS. Synthesis and biological evaluation of substituted thiophenyl derivatives of indane-1, 3-dione.E-J. Chem.20074342843310.1155/2007/865470
    [Google Scholar]
  12. KatsilaT. SpyrouliasG.A. PatrinosG.P. MatsoukasM.T. Computational approaches in target identification and drug discovery.Comput. Struct. Biotechnol. J.20161417718410.1016/j.csbj.2016.04.004 27293534
    [Google Scholar]
  13. CherkasovA. MuratovE.N. FourchesD. QSAR modeling: Where have you been? Where are you going to?J. Med. Chem.201457124977501010.1021/jm4004285 24351051
    [Google Scholar]
  14. KalirajanR. RathoreL. JubieS. Microwave assisted synthesis and biological evaluation of pyrazole derivatives of benzimidazoles.Ind J Pharm Edu Res2010444358362
    [Google Scholar]
  15. ThangaveluP. ThangavelS. Design, synthesis, and docking of sulfadiazine Schiff base scaffold for their potential claim as Inha enoyl-(acyl-carrier-protein) reductase inhibitors.Asian J. Pharm. Clin. Res.2018111023310.22159/ajpcr.2018.v11i10.27179
    [Google Scholar]
  16. MacalinoS.J.Y. BillonesJ.B. OrganoV.G. CarrilloM.C.O. In silico strategies in tuberculosis drug discovery.Molecules202025366510.3390/molecules25030665 32033144
    [Google Scholar]
  17. SelvarajJ. PrabhaT. KumarT.D. PalaniappanS. Artificial intelligence in biomedical image processing.In: Machine Learning and Systems Biology in Genomics and Health.SingaporeSpringer202214718810.1007/978‑981‑16‑5993‑5_8
    [Google Scholar]
  18. SafderU. NamK. KimD. ShahlaeiM. YooC. Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network.Ecotoxicol. Environ. Saf.2018162172810.1016/j.ecoenv.2018.06.061 29957404
    [Google Scholar]
  19. TsouL.K. YehS.H. UengS.H. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery.Sci. Rep.20201011677110.1038/s41598‑020‑73681‑1 33033310
    [Google Scholar]
  20. ZhavoronkovA. IvanenkovY.A. AliperA. Deep learning enables rapid identification of potent DDR1 kinase inhibitors.Nat. Biotechnol.20193791038104010.1038/s41587‑019‑0224‑x 31477924
    [Google Scholar]
  21. NicolaouK.C. PfefferkornJ.A. RoeckerA.J. CaoG.Q. BarluengaS. MitchellH.J. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans.J. Am. Chem. Soc.2000122419939995310.1021/ja002033k
    [Google Scholar]
  22. KatiyarMK DhakadGK, Shivani Synthetic strategies and pharmacological activities of chromene and its derivatives: An overview.J. Mol. Struct.2022126313301210.1016/j.molstruc.2022.133012
    [Google Scholar]
  23. KarmakarR. MukhopadhyayC. -Proline catalyzed synthesis of biologically promising heterocycles under sustainable conditions.Tetrahedron Chem20241110008710.1016/j.tchem.2024.100087
    [Google Scholar]
  24. PratapR. RamV.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis.Chem. Rev.201411420104761052610.1021/cr500075s 25303539
    [Google Scholar]
  25. KeriR.S. BudagumpiS. PaiR.K. BalakrishnaR.G. Chromones as a privileged scaffold in drug discovery: A review.Eur. J. Med. Chem.20147834037410.1016/j.ejmech.2014.03.047 24691058
    [Google Scholar]
  26. KonduriS. PogakuV. PrashanthJ. Sacubitril‐based urea and thiourea derivatives as novel inhibitors for anti‐tubercular against dormant tuberculosis.ChemistrySelect20216163869387410.1002/slct.202004724
    [Google Scholar]
  27. KidwaiM. SaxenaS. Rahman KhanM.K. ThukralS.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents.Bioorg. Med. Chem. Lett.200515194295429810.1016/j.bmcl.2005.06.041 16040241
    [Google Scholar]
  28. SilvaC.F.M. PintoD.C.G.A. SilvaA.M.S. Chromones: A promising ring system for new anti‐inflammatory drugs.ChemMedChem201611202252226010.1002/cmdc.201600359 27630077
    [Google Scholar]
  29. SharmaS.K. KumarS. ChandK. KathuriaA. GuptaA. JainR. An update on natural occurrence and biological activity of chromones.Curr. Med. Chem.201118253825385210.2174/092986711803414359 21824102
    [Google Scholar]
  30. GramaticaP. SangionA. A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology.J. Chem. Inf. Model.20165661127113110.1021/acs.jcim.6b00088 27218604
    [Google Scholar]
  31. RoyK. DasR. A review on principles, theory and practices of 2D-QSAR.Curr. Drug Metab.201415434637910.2174/1389200215666140908102230 25204823
    [Google Scholar]
  32. PrabhaT. AishwaryahP. ManickavalliE. A chalcone annulated pyrazoline conjugates as a potent antimycobacterial agents: Synthesis and in silico molecular modeling studies.Res J Pharm Technol20191283857386510.5958/0974‑360X.2019.00663.2
    [Google Scholar]
  33. MulatsariE. MumpuniE. NurhidayatiL. PurwangganaA. PratamiD.K. Chemical molecular visualization training with chemsketch software for senior high school students. Magistrorum Et Scholarium.Jurnal Pengabdian Masyarakat202121102112
    [Google Scholar]
  34. GramaticaP. Principles of QSAR models validation: Internal and external.QSAR Comb. Sci.200726569470110.1002/qsar.200610151
    [Google Scholar]
  35. GramaticaP. ChiricoN. PapaE. CassaniS. KovarichS. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models.J. Comput. Chem.201334242121213210.1002/jcc.23361
    [Google Scholar]
  36. KothaR.R. KulkarniR.G. GarigeA.K. NerellaS.G. GarlapatiA. Synthesis and cytotoxic activity of new chalcones and their flavonol derivatives.Med. Chem.20177353360
    [Google Scholar]
  37. RavishankarD. WatsonK.A. GrecoF. OsbornH.M.I. Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity.RSC Advances2016669645446455610.1039/C6RA11041J
    [Google Scholar]
  38. YapC.W. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints.J. Comput. Chem.20113271466147410.1002/jcc.21707 21425294
    [Google Scholar]
  39. RoyK. MitraI. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design.Comb. Chem. High Throughput Screen.201114645047410.2174/138620711795767893 21521150
    [Google Scholar]
  40. R S,Mk K. Lead optimization of 4-(thio)-chromenone 6- O -sulfamate analogs using QSAR, molecular docking and DFT – a combined approach as steroidal sulfatase inhibitors.J. Recept. Signal Transduct. Res.202141212313710.1080/10799893.2020.1794004 32705921
    [Google Scholar]
  41. LipińskiP.F.J. SzurmakP. SCRAMBLE’N’GAMBLE: A tool for fast and facile generation of random data for statistical evaluation of QSAR models.Chem. Pap.201771112217223210.1007/s11696‑017‑0215‑7 29104352
    [Google Scholar]
  42. WeaverS. GleesonM.P. The importance of the domain of applicability in QSAR modeling.J. Mol. Graph. Model.20082681315132610.1016/j.jmgm.2008.01.002 18328754
    [Google Scholar]
  43. ElbouhiM. BadaouiH. OuabaneM. Anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase ii catalytic inhibitors: 2D-QSAR study.RHAZES: Gree Appl Chem2022146275
    [Google Scholar]
  44. IsholaA.A. AdedirinO. JoshiT. ChandraS. QSAR modeling and pharmacoinformatics of SARS coronavirus 3C-like protease inhibitors.Comput. Biol. Med.202113410448310.1016/j.compbiomed.2021.104483 34020129
    [Google Scholar]
  45. PapaE. DeardenJ.C. GramaticaP. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.Chemosphere200767235135810.1016/j.chemosphere.2006.09.079 17109926
    [Google Scholar]
  46. PedregosaF. VaroquauxG. GramfortA. Scikit-learn: Machine learning in Python.J. Mach. Learn. Res.20111228252830
    [Google Scholar]
  47. ThangaveluP. VenkatesanJ. JubieS. JayapalanS. SivakumarT. A machine learning language to build a QSAR model of pyrazoline derivative inhibitors targeting Mycobacterium tuberculosis strain H37Rv.Lett. Drug Des. Discov.202320216718010.2174/1570180819666220420092723
    [Google Scholar]
  48. JayaprakashV. SaravananT. RavindranK. Relevance of machine learning to predict the inhibitory activity of small thiazole chemicals on estrogen receptor.Curr. Computeraided Drug Des.2023191375010.2174/1573409919666221121141646 36424784
    [Google Scholar]
  49. GasteigerJ. Handbook of Chemoinformatics: From Data to Knowledge.Weinheim, GermanyWiley-VCH200811930
    [Google Scholar]
  50. ErikssonL. JaworskaJ. WorthA.P. CroninM.T.D. McDowellR.M. GramaticaP. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs.Environ. Health Perspect.2003111101361137510.1289/ehp.5758 12896860
    [Google Scholar]
  51. RoyK. KarS. AmbureP. On a simple approach for determining applicability domain of QSAR models.Chemom. Intell. Lab. Syst.2015145222910.1016/j.chemolab.2015.04.013
    [Google Scholar]
  52. Luque RuizI. Gómez-NietoM.Á. Study of the applicability domain of the QSAR classification models by means of the rivality and modelability indexes.Molecules20182311275610.3390/molecules23112756 30356020
    [Google Scholar]
  53. OECD Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, OECD Series on Testing and Assessment. Paris.OECD Publishing20146916
    [Google Scholar]
  54. AmbureP. HalderA.K. González DíazH. CordeiroM.N.D.S. QSAR-Co: An open source software for developing robust multitasking or multitarget classification-based QSAR models.J. Chem. Inf. Model.20195962538254410.1021/acs.jcim.9b00295 31083984
    [Google Scholar]
  55. JawarkarR.D. KhanA. MaliS.N. Cheminformatics-driven prediction of BACE-1 inhibitors: Affinity and molecular mechanism exploration.Chemical Physics Impact2024910075410.1016/j.chphi.2024.100754
    [Google Scholar]
  56. MoulishankarA. SundarrajanT. QSAR modeling, molecular docking, dynamic simulation and ADMET study of novel tetrahydronaphthalene derivatives as potent antitubercular agents.Beni. Suef Univ. J. Basic Appl. Sci.202312111110.1186/s43088‑023‑00451‑z
    [Google Scholar]
  57. VamathevanJ. ClarkD. CzodrowskiP. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  58. LoY.C. RensiS.E. TorngW. AltmanR.B. Machine learning in chemoinformatics and drug discovery.Drug Discov. Today20182381538154610.1016/j.drudis.2018.05.010 29750902
    [Google Scholar]
  59. KubinyiH. Evolutionary variable selection in regression and PLS analyses.J. Chemometr.199610211913310.1002/(SICI)1099‑128X(199603)10:2<119:AID‑CEM409>3.0.CO;2‑4
    [Google Scholar]
  60. OwenJ.R. NabneyI.T. Medina-FrancoJ.L. López-VallejoF. Visualization of molecular fingerprints.J. Chem. Inf. Model.20115171552156310.1021/ci1004042 21696145
    [Google Scholar]
  61. DurgeshK.S. LekhaB. Data classification using support vector machine.J. Theor. Appl. Inf. Technol.201012117
    [Google Scholar]
  62. PrabhaT. SelvinthanujaC. HemalathaS. SengottuveluS. SenthilJ. Machine learning algorithm used to build a QSAR model for pyrazoline scaffold as anti-tubercular agent.J Med Pharma All Sci20211064024403010.22270/jmpas.V10I6.2562
    [Google Scholar]
  63. AbdiH. Partial least squares regression and projection on latent structure regression (PLS Regression).Wiley Interdiscip. Rev. Comput. Stat.2010219710610.1002/wics.51
    [Google Scholar]
/content/journals/cei/10.2174/0115734080335471250320032842
Loading
/content/journals/cei/10.2174/0115734080335471250320032842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test