Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Introduction

Xanthones, also known as dibenzo-γ-pyrone or 9H-xanthen-9-ones, constitute an essential group of oxygenated heterocycles that possess a dibenzo-pyrone structure having the chemical formula CHO. These compounds have generated significant interest due to their high taxonomic relevance and pharmacological characteristics. Xanthone and its derivatives are cytotoxic medications due to their planar structure and capacity to intercalate with Deoxyribonucleic acid (DNA). As a DNA intercalator, xanthone extraction and synthesis have become popular in cytotoxic research.

Methods

We developed a series of novel xanthone derivatives conventional synthesis and we then assessed their anticancer efficacy against the A549 human lung cancer cell line utilizing the MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Furthermore, we conducted a docking study using a receptor with the Protein Data Bank (PDB) ID: IZXM to validate the anticancer activity of the synthesized compounds

Results

Drug likeliness and molecular docking studies confirmed the biopotential and anticancer effectiveness of novel human DNA topoisomerase IIα inhibitors. Our anticancer activity results indicated that synthesized compound 5a had the lowest half-maximal inhibitory concentration (IC) value and a higher cytotoxicity activity.

Discussion

The newly synthesized xanthone derivatives showed promising anticancer potential, particularly compound 5a, which exhibited favorable properties.

Conclusion

The study concluded that synthesizing new xanthone derivatives and evaluating their cytotoxic activity showed promising potency in compound 5a as an anticancer candidate. The synthesized compounds have silico drug-relevant properties, which ensure their potential leads for future drug discovery studies.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080339546250325164642
2025-10-01
2025-12-16
Loading full text...

Full text loading...

References

  1. LavanyaK.J. KaurK. JaitakV. Synthesis and in-silico Studies of 4-phenyl thiazol-2-amine derivatives as putative anti-breast cancer agents.Curr. Computeraided Drug Des.202420437438310.2174/1573409919666230321145543 36944620
    [Google Scholar]
  2. JeongS.H. KimH.H. ParkM.Y. Flavones: The apoptosis in prostate cancer of three flavones selected as therapeutic candidate models.Int. J. Mol. Sci.20232411924010.3390/ijms24119240 37298192
    [Google Scholar]
  3. PanagiotidisE. The role of positron computed tomography (PET/CT) in lung cancer staging.Hell. J. Nucl. Med.202326Suppl.2229 37658558
    [Google Scholar]
  4. Martín-SánchezJ.C. LunetN. González-MarrónA. Projections in breast and lung cancer mortality among women: A bayesian analysis of 52 countries worldwide.Cancer Res.201878154436444210.1158/0008‑5472.CAN‑18‑0187 30068667
    [Google Scholar]
  5. NewmanL. Oncologic anthropology: Global variations in breast cancer risk, biology, and outcome.J. Surg. Oncol.2023128695996610.1002/jso.27459 37814598
    [Google Scholar]
  6. MathangasingheY. WijayawardhanaS. PereraU. PunchihewaR. PradeepS. Pathological characteristics of lung tumors in Sri Lanka 2017-2021.Thorac. Cancer202415434734910.1111/1759‑7714.15206 38185770
    [Google Scholar]
  7. SunX. ZhaoP. LinJ. ChenK. ShenJ. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system.Cancer Drug Resist.20236239041510.20517/cdr.2023.16 37457134
    [Google Scholar]
  8. KamalS. ShahzadA. RehmanK. Therapeutic intervention of serine protease inhibitors against hepatitis c virus.Curr. Med. Chem.202431152052207210.2174/0109298673234823230921090431 37855348
    [Google Scholar]
  9. TangY. LiuH. ChenH. Advances in aptamer screening and drug delivery.J. Biomed. Nanotechnol.202016676378810.1166/jbn.2020.2943 33187576
    [Google Scholar]
  10. CaoC. YangN. DaiH. Recent advances in phase change material based nanoplatforms for cancer therapy.Nanoscale Adv.20213110612210.1039/D0NA00622J 36131875
    [Google Scholar]
  11. GrisoldW. LöscherW. GrisoldA. Neurological complications of systemic tumor therapy.Wien. Med. Wochenschr.20191691-2334010.1007/s10354‑018‑0654‑y 30232660
    [Google Scholar]
  12. GulS. AslamK. PirzadaQ. Xanthones: A class of heterocyclic compounds with anticancer potential.Curr. Top. Med. Chem.202222231930194910.2174/1568026622666220901145002 36056870
    [Google Scholar]
  13. GalloriniM. CarradoriS. ResendeD.I.S.P. Natural and synthetic xanthone derivatives counteract oxidative stress via Nrf2 modulation in inflamed human macrophages.Int. J. Mol. Sci.202223211331910.3390/ijms232113319 36362104
    [Google Scholar]
  14. PytkaK. ŻmudzkaE. LustykK. The antidepressant- and anxiolytic-like activities of new xanthone derivative with piperazine moiety in behavioral tests in mice.Indian J. Pharmacol.201648328629110.4103/0253‑7613.182872 27298499
    [Google Scholar]
  15. VanessaV.V. MahS.H. Xanthone: Potential acetylcholinesterase inhibitor for alzheimer’s disease treatment.Mini Rev. Med. Chem.202121172507252910.2174/1389557521666210212152514 33583373
    [Google Scholar]
  16. ResendeD.I.S.P. Pereira-TerraP. MoreiraJ. Synthesis of a small library of nature-inspired xanthones and study of their antimicrobial activity.Molecules20202510240510.3390/molecules25102405 32455828
    [Google Scholar]
  17. CaracelliI. Zukerman-SchpectorJ. TraeselH.J. OlivatoP.R. JotaniM.M. TiekinkE.R.T. 2-[(4-Chlorophenyl)sulfanyl]-2-methoxy-1-phenylethan-1-one: Crystal structure and Hirshfeld surface analysis.Acta Crystallogr. E Crystallogr. Commun.201874570370810.1107/S2056989018006072 29850096
    [Google Scholar]
  18. KoprowskiM. OwsianikK. KnopikL. (P(III), P(IV), P(V)) Substituted acenes with more than two fused benzene rings.Molecules20222710.3390/molecules27196611 36235148
    [Google Scholar]
  19. AgieienkoV. BuchnerR. Urea hydration from dielectric relaxation spectroscopy: Old findings confirmed, new insights gained.Phys. Chem. Chem. Phys.20161842597260710.1039/C5CP07604H 26700870
    [Google Scholar]
  20. ZhuJ HouG H LiQ Crystal structure of hexa-methyl 4,4',4'',4''',4'''',4'''''-[(1,3,5,2λ5,4λ5,6λ5-tri-aza-triphosphinine-2,2,4,4,6,6-hexa-yl)hexa-kis-(-oxy)]hexa-benzoateActa Crystallogr E Crystallogr Commun201773Pt B1252125410.1107/S205698901701032528932447
    [Google Scholar]
  21. DuttaT. DasT. GopalakrishnanA.V. Mangiferin: The miraculous xanthone with diverse pharmacological properties.Naunyn Schmiedebergs Arch. Pharmacol.2023396585186310.1007/s00210‑022‑02373‑6 36656353
    [Google Scholar]
  22. RemaliJ. SahidinI. AizatW.M. Xanthone biosynthetic pathway in plants: A review.Front Plant Sci20221380949710.3389/fpls.2022.809497 35463410
    [Google Scholar]
  23. ShaguftaI. AhmadI. Recent insight into the biological activities of synthetic xanthone derivatives.Eur. J. Med. Chem.201611626728010.1016/j.ejmech.2016.03.058 27111599
    [Google Scholar]
  24. LeeH.N. JangH.Y. KimH.J. Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.) in YD-15 tongue mucoepidermoid carcinoma cells.Int. J. Mol. Med.201637493994810.3892/ijmm.2016.2517 26951885
    [Google Scholar]
  25. FukudaM. SakashitaH. HayashiH. Synergism between α-mangostin and TRAIL induces apoptosis in squamous cell carcinoma of the oral cavity through the mitochondrial pathway.Oncol. Rep.20173863439344610.3892/or.2017.6030 29039600
    [Google Scholar]
  26. NaumanM.C. JohnsonJ.J. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected xanthones.Pharmacol. Res.202217510603210.1016/j.phrs.2021.106032 34896543
    [Google Scholar]
  27. ZhangC. YuG. ShenY. The naturally occurring xanthone α-mangostin induces ROS-mediated cytotoxicity in non-small scale lung cancer cells.Saudi J. Biol. Sci.20182561090109510.1016/j.sjbs.2017.03.005 30174507
    [Google Scholar]
  28. JainC. MajumderH. RoychoudhuryS. Natural compounds as anticancer agents targeting DNA topoisomerases.Curr. Genomics2016181759210.2174/1389202917666160808125213 28503091
    [Google Scholar]
  29. LaevS.S. SalakhutdinovN.F. LavrikO.I. Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential.Bioorg. Med. Chem.201624215017502710.1016/j.bmc.2016.09.045 27687971
    [Google Scholar]
  30. JaswalS. NehraB. KumarS. MongaV. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors.Bioorg. Chem.202010410426610.1016/j.bioorg.2020.104266 33142421
    [Google Scholar]
  31. KhanT. SankheK. SuvarnaV. SherjeA. PatelK. DravyakarB. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents.Biomed. Pharmacother.201810392393810.1016/j.biopha.2018.04.021 29710509
    [Google Scholar]
  32. JunK.Y. ParkS.E. LiangJ.L. JahngY. KwonY. Benzo[b]tryptanthrin inhibits MDR1, topoisomerase activity, and reverses adriamycin resistance in breast cancer cells.ChemMedChem201510582783510.1002/cmdc.201500068 25809558
    [Google Scholar]
  33. KomatsuH. KosekiY. KannoT. AokiS. KodamaT. 2,3-Butandione 2-monoxime inhibits skeletal myosin II by accelerating ATP cleavage.Biochem. Biophys. Res. Commun.2017490384985410.1016/j.bbrc.2017.06.130 28648599
    [Google Scholar]
  34. WilsonJ.T. FiefC.A. JacksonK.D. MercerS.L. DeweeseJ.E. HU-331 and oxidized cannabidiol act as inhibitors of human topoisomerase IIα and β.Chem. Res. Toxicol.201831213714410.1021/acs.chemrestox.7b00302 29272108
    [Google Scholar]
  35. WilsonJ.T. JiangX. McGillB.C. LisicE.C. DeweeseJ.E. Examination of the impact of copper(II) α-(N)-Heterocyclic thiosemicarbazone complexes on DNA topoisomerase IIα.Chem. Res. Toxicol.201629464965810.1021/acs.chemrestox.5b00471 26982206
    [Google Scholar]
  36. GogoiU. GogoiN. RajkhowaS. Expanding the therapeutic arsenal against cancer: A computational investigation of hybrid xanthone derivatives as selective Topoisomerase 2alpha ATPase inhibitors.J. Biomol. Struct. Dyn.202343121124010.1080/07391102.2023.2280723 37975405
    [Google Scholar]
  37. DhanabalanA.K. KesherwaniM. VelmuruganD. GunasekaranK. Identification of new BACE1 inhibitors using Pharmacophore and Molecular dynamics simulations approach.J. Mol. Graph. Model.201776566910.1016/j.jmgm.2017.06.001 28710924
    [Google Scholar]
  38. MiladiyahI. JuminaJ. HaryanaS.M. MustofaM. Biological activity, quantitative structure-activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs.Drug Des. Devel. Ther.20181214915810.2147/DDDT.S149973 29391779
    [Google Scholar]
  39. YuanitaE. SudirmanN.K.T. DharmayaniN.K.T. UlfaM. SyahriJ. Quantitative structure-activity relationship (QSAR) and molecular docking of xanthone derivatives as anti-tuberculosis agents.J. Clin. Tuberc. Other Mycobact. Dis.20202110020310.1016/j.jctube.2020.100203 33294629
    [Google Scholar]
  40. PingaewR. MandiP. PrachayasittikulV. PrachayasittikulS. RuchirawatS. PrachayasittikulV. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors.Eur. J. Med. Chem.20181431604161510.1016/j.ejmech.2017.10.057 29137864
    [Google Scholar]
  41. TayalS. SinghV. BhatnagarS. 3D-QSAR and ADMET studies of morpholino-pyrimidine inhibitors of DprE1 from Mycobacterium tuberculosis.J. Biomol. Struct. Dyn.202312010.1080/07391102.2023.2294496 38112325
    [Google Scholar]
  42. DongM.H. ChenH.F. RenY.J. ShaoF.M. Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors.Bioorg. Med. Chem.2016242738410.1016/j.bmc.2015.11.025 26690913
    [Google Scholar]
  43. KhderaH.A. SaadS.Y. MoustaphaA. KandilF. Synthesis of new flavonoid derivatives based on 3-hydroxy-4′-dimethylamino flavone and study the activity of some of them as antifungal.Heliyon2022812e1206210.1016/j.heliyon.2022.e12062 36561670
    [Google Scholar]
  44. DinakarS. GurubarathM. DhananjayanK. Prediction of binding affinity of 1,2-diphenyline ketone analogues at adenosine triphosphate binding site of glycogen synthase kinase-3β: A molecular docking and dynamic simulation study.J. Biomol. Struct. Dyn.2022411111610.1080/07391102.2022.2074143 35543239
    [Google Scholar]
  45. BossonJ. Scope and limitations of the preparation of xanthones using Eaton’s reagent.Turk. J. Chem.20234761420142810.55730/1300‑0527.3624 38544710
    [Google Scholar]
  46. LiuC. LongS. 4-Methyl-2-(2-methylanilino)benzoic acid.IUCrdata202387x23059910.1107/S2414314623005990 37937126
    [Google Scholar]
  47. BairrosdAV DiasD BezerraA An analytical strategy for the identification of carbamates, toxic alkaloids, phenobarbital and warfarin in stomach contents from suspected poisoned animals by thin-layer chromatography/ultraviolet detectionToxicol Mech Methods201929751853010.1080/15376516.2019.161921331099292
    [Google Scholar]
  48. GhazviniM. Sheikholeslami-FarahaniF. ShafieeS. SalimifardM. EslamiA.A. ZnO-nanocatalyst promoted the production of imidazole derivatives via four-component reaction of aminoacid: Study of antioxidant and antimicrobial activity.Comb. Chem. High Throughput Screen.202124684184810.2174/1386207323999200820163129 33109056
    [Google Scholar]
  49. NajarA.H. HossainiZ. AbdolmohammadiS. ZareyeeD. ZnO-nanorods promoted synthesis of α-Amino nitrile benzofuran derivatives using one-pot multicomponent reaction of isocyanides.Comb. Chem. High Throughput Screen.202023434535510.2174/1386207323666200219124625 32072898
    [Google Scholar]
  50. LuJ. MaH-Y. ZhangW. MaZ-G. YaoS. Separation of berberine hydrochloride and tetrahydropalmatine and their quantitative analysis with thin layer chromatography involved with ionic liquids.J. Anal. Methods Chem.2015201564240110.1155/2015/642401
    [Google Scholar]
  51. BarriosM.A. KenyonA. BecksteadR. Development of a dry medium for isolation of Histomonas meleagridis in the field.Avian Dis.201761224224410.1637/11530‑110816‑ResNote.1 28665738
    [Google Scholar]
  52. IshikiK. NguyenD.Q. MorishitaA. ShiigiH. NagaokaT. Electrochemical detection of viable bacterial cells using a tetrazolium salt.Anal. Chem.20189018109031090910.1021/acs.analchem.8b02404 30118207
    [Google Scholar]
  53. YuF. AiM. The optimizing conditions in sorting of side population in Hep-2 J Clin.Otorhinolaryngol. Head Neck Surg.20142811371141
    [Google Scholar]
  54. MorganS.J. NeumannS. GershengornM.C. Normal human thyrocytes in culture.Methods Mol. Biol.201818171710.1007/978‑1‑4939‑8600‑2_1 29959697
    [Google Scholar]
  55. O’ DonovanD.H. FuscoD.C. KuhnkeL. ReichelA. Trends in molecular properties, bioavailability, and permeability across the bayer compound collection.J. Med. Chem.20236642347236010.1021/acs.jmedchem.2c01577 36752336
    [Google Scholar]
  56. CoimbraJ.T.S. FeghaliR. RibeiroR.P. RamosM.J. FernandesP.A. The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer.RSC Adv202111289990810.1039/D0RA09995C 35423709
    [Google Scholar]
  57. OdiR. BibiD. WagerT. BialerM. A perspective on the physicochemical and biopharmaceutic properties of marketed antiseizure drugs—From phenobarbital to cenobamate and beyond.Epilepsia20206181543155210.1111/epi.16597 32614073
    [Google Scholar]
  58. SenkardesS. KulabasN. OzakpinarB.O. Turkish.J. Pharm. Sci.202017819310.4274/tjps.galenos.2018.59389 32454765
    [Google Scholar]
  59. TemelH.E. AltintopM.D. OzdemirA. Turkish.J. Pharm. Sci.20181533333810.4274/tjps.20982 32454678
    [Google Scholar]
  60. Caminero Gomes SoaresA. SousaM.G.H. CalilR.L. TrossiniG.G.H. Absorption matters: A closer look at popular oral bioavailability rules for drug approvals.Mol. Inform.20234211e20230011510.1002/minf.202300115 37550251
    [Google Scholar]
  61. MöbitzH. Design principles for balancing lipophilicity and permeability in beyond rule of 5 space.ChemMedChem2024195e20230039510.1002/cmdc.202300395 37986275
    [Google Scholar]
  62. Al-HarbiA.I. UllahA. AlmanaaT.N. A chemoinformatic-biophysics based approach to identify novel anti-virulent compounds against Pseudomonas aeruginosa disulfide-bond protein A1.J. Biomol. Struct. Dyn.2023711010.1080/07391102.2023.2245470 37551016
    [Google Scholar]
  63. RiadiY. AfzalO. KumarS. VaradharajanV. GeesiM.H. Synthesis of novel (R)-carvone-tagged thiazolidinone as anticancer leads: Characterization, in vitro antiproliferative evaluation and in silico studies.J. Biomol. Struct. Dyn.202411410.1080/07391102.2024.2331095 38523573
    [Google Scholar]
  64. MehtaC.C. RohitS. PatelS. BhattH.G. New molecular insights for 4 H -1,2,4-triazole derivatives as inhibitors of tankyrase and Wnt-signaling antagonist: A molecular dynamics simulation study.J. Biomol. Struct. Dyn.20234122134961350810.1080/07391102.2023.2175376 36755438
    [Google Scholar]
  65. OyedeleA.S. BoganD.N. OkoroC.O. Synthesis, biological evaluation and virtual screening of some acridone derivatives as potential anticancer agents.Bioorg. Med. Chem.202028911542610.1016/j.bmc.2020.115426 32201193
    [Google Scholar]
  66. AbdulaA.M. QarahA.F. AlatawiK. Design, synthesis, and molecular docking of new phenothiazine incorporated N-Mannich bases as promising antimicrobial agents.Heliyon2024107e2857310.1016/j.heliyon.2024.e28573 38571594
    [Google Scholar]
  67. AkashM. ZaibS. AhmadM. SultanS. Al-HussainS.A. Synthesis and biological evaluation of pyridylpiperazine hybrid derivatives as urease inhibitors.Front Chem.202412137137710.3389/fchem.2024.1371377 38545466
    [Google Scholar]
  68. SobhE.A. KassabA.E. El-KhoulyE.A. S A Hassan M. New pyranopyrazole based derivatives: Design, synthesis, and biological evaluation as potential topoisomerase II inhibitors, apoptotic inducers, and antiproliferative agents.Bioorg. Chem.202414410715810.1016/j.bioorg.2024.107158 38301427
    [Google Scholar]
  69. LiuJ. LiuY. HaoX. Design, synthesis, and biological evaluation of novel 4‐phenoxypyridine derivatives as potential antitumor agents.Arch Pharm20193525180033810.1002/ardp.201800338 30888688
    [Google Scholar]
  70. YaoB.L. MaiY.W. ChenS.B. Design, synthesis and biological evaluation of novel 7-alkylamino substituted benzo[a]phenazin derivatives as dual topoisomerase I/II inhibitors.Eur. J. Med. Chem.20159254055310.1016/j.ejmech.2015.01.024 25599951
    [Google Scholar]
  71. Al-SaneaM. KhanA.M. AbdelazemA. Synthesis and in vitro antiproliferative activity of new 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea scaffold-based compounds.Molecules201823229710.3390/molecules23020297 29385071
    [Google Scholar]
  72. WambangN. Schifano-FauxN. AillerieA. Synthesis and biological activity of ferrocenyl indeno[1,2-c]isoquinolines as topoisomerase II inhibitors.Bioorg. Med. Chem.201624465166010.1016/j.bmc.2015.12.033 26740155
    [Google Scholar]
  73. HanX. ZhongY. ZhouG. Synthesis and biological evaluation of N -(carbobenzyloxy)- l -phenylalanine and N -(carbobenzyloxy)- l -aspartic acid- β -benzyl ester derivatives as potent topoisomerase IIα inhibitors.Bioorg. Med. Chem.201725123116312610.1016/j.bmc.2017.03.065 28462840
    [Google Scholar]
  74. ThapaP. JunK.Y. KadayatT.M. Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents.Bioorg. Med. Chem.201523196454646610.1016/j.bmc.2015.08.018 26361737
    [Google Scholar]
  75. LiP. ZhangW. JiangH. Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors.MedChemComm2018971194120510.1039/C8MD00278A 30109008
    [Google Scholar]
/content/journals/cei/10.2174/0115734080339546250325164642
Loading
/content/journals/cei/10.2174/0115734080339546250325164642
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test